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Relative Entropy

Hereafter, we always use the convention

x|

0log(0) = lim xlog(x) = lim 29%X) _ i —= lim —x=0.
x—0+ x—0+ x—0+ -5z x—0+
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Relative Entropy

Let 7 be a reference probability measure on E. For a probability
measure u denote by H(u|x) the relative entropy f p« with respect to «
defined by the variational formula:

H(p|m) = sup{< p, f > —log(< , e >)}.
f

In this formula the supremum is carried over all bounded functions f
and < pu, f > stands for the integral of f with respect to . From now
on, to keep notation and terminology simple, we denote H(u|x) by
H(w) and refer to it as the entropy of u.

Notice that the addition of a constant to the function f does not
change the value of < p, f > — log(< =, € >). We may therefore
restrict the supremum to bounded positive functions.
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Relative Entropy

Proposition

The entropy is non-negative, convex and lower semicontinuous.

Letce R, f; : E — R be such that fi(x) = ¢,Vx € E. Then f; is
bounded and

<, fy > —log(< m, eh Z# — log (Z (X)ef‘(X))

XeE xeE
= Z w(x) - c—log (Z 7T(X)ec)
XeE xXeE
=cY _ pu(x) - /og(eC > 7r(X)> =c—log(e®)=c—c=0.
xXeE xXeE
Therefore,

H(u) = sup{< pu, f > —log(< m, &' >)} >< u, f; > —log(< m,€" >) =0
f

and we have that the entropy is non-negative.
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Relative Entropy

Let « € [0, 1] and let p1, u2 be probability measures on E. Then,
H(aps + (1 — @)pz) = sup{< ap1 + (1 — a)uz, f > —log(< 7, €' >)}
f

:st;p{a[<,u1,f>—log(<7r,ef>)}+(1—a)[<u1,f>f|og(<7r,ef>)]}
SSl;p{a[ < 1, f> —log(< m,€" >)|}

—|—Sl;p{(1 —a)[ <, f> —log(< m e >)]}

:asgp{[ < 1, f> —log(< m,€" >)|}

+(1 —a)SL;p{[ < 1, f> —log(< m € >)|}

=aH(u1) + (1 — a)H(p2).

Since for every u4, uo probability measures on E, we have
H(aps + (1 — a)uz) < aH(u1) + (1 — a)H(p2),

we have that the entropy is convex.

Pedro Cardoso



Relative Entropy

Let (un)nen @ sequence of probability measures on E which
converges weakly to i, which is a probability measure on E. Assume
that H(u) > liminf,_ . H(un). In this case, choose

L H(p) — lim i;f,Hoo H(wn) S0

Since H(p) = sups{< p, f > —log(< =, € >)} over all bounded
functions, there exists f such that f; is a bounded function and

H(p) < < p,fo > —log(< m, €0 >) +e.
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Relative Entropy

Since u, converges weakly to u, there is ny € N such that
< p,fo>< < pupfo>—+e,Vn> ng,
which is the same as
<, fy > —log(< m, €% >)+e < < pn, fy > —log(< m, €% >) +2¢,¥n > ng,
and leads to
H(pw) < < pin, fy > —log(< 7, € >) +2¢,¥n > ng.

Taking the supremum over all bounded positive functions bounded
below by a strictly positive constant, we get

H(p) <sup{< pn, f > —log(< 7, &' >) + 25]}
f

=2¢ + sup{< pun, f > — log(< , &' >)}} = 2¢ + H(pn),Vn > ng.
f
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Relative Entropy

Taking the lim inf above, we get

H(p) < 2e+ Iinn_1>ior!>f H(un) =2+ H(p) — 3e = H(p) — e < H(w).

Therefore, the assumption that H(x) > liminf,_, . H(un) is false and
we have

H(w) < liminf H(pp).

n—oo

Since H(p) < liminf,_ o H(un) for every sequence (un)nen Of
probability measures on E such that (f,),cn converges weakly tou,
we have that the entropy is lower semicontinuous.
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Relative Entropy

We shall repeatedly use the entropy to estimate the expectation of a
function with respect to a probability measure p in terms of integrals
with respect to the reference measure . Indeed, for every positive
constant « and for every bounded function f : E — R, the entropy
inequality gives that

H(u) >< p,af > —log(< m, e >),
which is the same as
o < p, f>=< p,af >< H(p) + log(< m, " >),
which leads to
<, f>< o log(< m, e >) + H(p)}

For indicator functions this inequality takes a simple form.
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Relative Entropy

Proposition
Let A be a subset of E such that w[A] > 0. Then

log 2 + H(y)

HlA] < :
log(1 + ﬁ)

Choose f = 14. Then we have
<, F>=<p,1a >= plAl
and for every a > 0

<m e >= <71 e >= r[Ale*" + 1[AC]e*"
=n[Ale® + (1 — «[A]) - 1 = n[A](e“ = 1) + 1.
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Relative Entropy

Then
<, f>< o log(< m, e >) + H(u)}

leads to
log(m[A](e™ — 1) +1) + H(p)

H[A] < "

Since w[A] > 0, we can choose « such as

a = log(1+ > log(1+0)=0

:

ﬂ)

which leads to
log(r[A](€™ — 1) + 1) = log(n[A](€°8"+7A) — 1) + 1)

1
= log(w[A](1 + ﬁ)
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Relative Entropy

Then, from
JlA] < log(7[A](e” —;) + 1)+ H()
We get
JIA] < log(r[Al(e* —1) +1) + H(u)  log2+ H(u)

a  log(1 + ﬁ)
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Relative Entropy

The following result will be useful in the proof of an explicit formula for
the entropy.

Proposition

Let S be a set. Let i, w be probability measures on S. Define the
functional ¢ : RIS — R by

&(f) =< p, f > —log(< m, € >),vf: S = R.

Then & is concave in RIS!.
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Relative Entropy

Letf,g: S — R.. Let a € [0, 1]. There are three possibilities: o =0
(case 1), « =1 (case 2) or o € (0,1) (case 3).
Case 1: o = 0. In this case, we have

®(af+(1—a)g) =¢(0-f+ (1 -0)g) = o(g)
>0-d(f)+1-d(g)=0-d(f)+ (1 —0)P(g) = ad(f) + (1 — a)P(9).

Case 2: o = 1. In this case, we have

d(af + (1 — a)g) = d(1-f+ (1 — 1)g) = b(f)
>1-0(f)+0-d(g) =1-0(F) + (1 — 1)d(g) = ad(f) + (1 — a)d(g).
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Relative Entropy

Case 3: a € (0,1). From Holder’s inequality, we have

log(< , e*H(1=2)g>y — Iog(/
s

</og<( [y ([ (eww)ﬂadﬁ)“‘*)

o (f am)"( [ er0r) )
—alog /Sefdw) +(1-a) /og(/segdw)

—alog(< 7, e >)+ (1 —a)log(< w, &9 >),

eafe(1 7o¢)gdﬂ,)

which leads to

—log(< ,e**(1=2)9>) > _nlog(< 7, €' >) — (1 — a)log(< =, €9 >).
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Relative Entropy

Then, we get

®(af + (1 - a)g) =< p,af + (1 — a)g > —log(< w, e*+(172)9>)
> < p,af >+ < p, (1 —a)g > —alog(< 7, e >) — (1 - a)log(< 7,9 >)
=a < pu,f>+(1—-0a)<upg>—alg(< e >)—(1-a)log(< e >)
=a( < pu,f>—log(<m € >))+(1—a)(<pug>—log(< e >))
=ad(f) + (1 — a)®(g).

Since f, g are arbitrary, we have
®(af+ (1 —a)g) = ad(f) + (1 — a)®(g),Va € [0,1],Vf: S — R.

Therefore, the functional ¢ is concave in R!SI.
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Relative Entropy

The next results presents an explicit formula for the entropy.

Theorem

The entropy H(u) is given by the formula
1(x) 11(x) 1(x)
k) = 3 70 s (5ea) = 3 ux)log (56a)

if i is absolutely continuous with respect to = and is equal to ~o
otherwise.

4

There are two possibilities: u is not absolutely continuous with respect
to w (case 1) or i is absolutely continuous with respect to = (case 2).
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Relative Entropy

Case 1: p is not absolutely continuous with respect to «. In this case,
since E is countable, there is xo € E such that u(xo) > 0 and
m(Xo) = 0. For each n € N, consider f, : E — R given by

n, if x=Xxp,
fo(x) = ) 0
0, if x # xp.
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Relative Entropy

Then, we have

<, fy > —log(< m, e >) Z“ ,/og(z (x )efn(x))
XeE xeE
=u(%0)fa(X0) + D n(X)fa(X) — /og(w(xo)ef"(XO) +) w(x)efn(x))
X#Xo X#Xo
=u(Xo)n+ > u(x)-0— /og(O "+ ) 7r(x)e1)
X#Xo X£Xo

=nu(x0) - log(e' > 7(x)) = nu(x0) — log(e(1 — 7(x))))

X#Xo

=nu(xo) — log(e(1 — 0)) = nu(xo) — log(e) = nu(xo) — 1,¥n € N.
Since f, is bounded, Vn € N, we get

H(p) > limsup [ < p, f, > — log(< m, el >)] = limsup[nu(xo) — 1] = o0
n—oo

n—oo
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Relative Entropy

Case 2: u is absolutely continuous with respect to «. Then, for every
x € E with =(x) = 0, we have u(x) = 0.

There are two possibilities: E is finite (case 2.1) or E is not finite
(case 2.2).
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Relative Entropy

Case 2.1: E is finite.

In this case, we can write E = {xi, ..., xn}, with N = |E|. For every
f: E — R, denote y; = f(x;),Vj =1,...,N. We denote p; := p(x;) and
7 = m(x;). We also denote the functional ¢ : RIEl — R by

O(f) ;= < p, f > —log(< , € >)

_ZH/}// /OQ<Z7T/ey'>_ V1,5 YN

This leads to
[0} 7r,-eyi
N, YN :u'_77vz17' >N
ayj( ) /) le-i17'(','eyi
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Relative Entropy

From Proposition 3, we have that ¢ is concave in RIE|, then ¢
assumes its maximum where its gradient vanishes. In particular,
consider f : E — R given by

log(12) i m; #0;
QW%ZMF{O%ZXOI#
/=0

Then we have

N N 1 A
Yo, — L= g =
which leads to
b v Wi
aT/j(}’o,1,--~7}’o,N) =pj — W —HT
:W_W%ZW_W:QWZLHWN
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Relative Entropy

Then ¢ attains its maximum at fy, which leads to
N N
H(p) =0(fo) = > piyo,i — /og( 3 7r,.eyo,,)
i=1 i=1
N i
= Z u;/og(;{) — log(1)
i=1 /

= Z u(x) log (’I;g;) = EW(X)'I;EX log (ﬁg{;)

xeE
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Relative Entropy

Case 2.2: E is not finite.

Since E is countable, we can write E = {x1, X2, ...}. For every k € N,
denote Ex := {x1, ..., X} and D(Ex) for the set of functions f : E — R
that are constant on the complement of Ex. Then (Ex)x>1 is an
increasing sequence of finite subsets of E whose union is equal to E
and D(Ex) C D(Ex+1), Yk € N. For every f bounded, denote ®(f) as

O(f) =< pu, f > —log(< 7, € >).
Since f is bounded for all f € D(Ek), Vk € N, we have

sup (f) < H(u), Yk € N,
fE'D(Ek)

which leads to

lim sup ®(f) < H(u).
k=00 teD(Ey)
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Relative Entropy

Suppose that H(u) > limy—oo supsep(g,) P(f). Then there exists f
bounded such that

lim  sup ®(f) < < pu, f> —log(< 7, € >) < H(p).
k=00 feD(Ey)

Since f is bounded, there exists M > 1 such that |f(x)| < M,Vx € E.
Since p is a probability measure, we have

Tim [ 37 (0] < lim S p(0)lf(x)] < Jim >~ p()M

x€Ef x€Ef x€Ef
=M i =M li ) =0.
Jim > 7 u(x) = M lim p(ES) =0
x€EL
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Relative Entropy

Since  is a probability measure, we have

lim n(x)e'™ < lim m(x)e < lim > w(x)eM
k—o0 k— o0 k—o0
XeEf x€Ef x€E¢
M Mo @
Jm, 2wl = et im (E¢)

x€Ef

For every k € N, define fx : E — R by

2o = f(x), if x € Ex;
Yo, i x ¢ E

Since |fc(x)| < |f(x)| < M,¥x € E,Vk € N, f, is bounded, Vk € N.
Moreover, we have f, € D(Ex), vk € N.
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Relative Entropy

For every k € N, we have

O(f) — d(f) = < p. f > —log(< 7, & >) — ( < i, fe > — log(< m, & >))

> xee m(x)e")
= ol = )~ oo S5
= > u(IFx) = &COT+ D p(If(x) = f(x)]

X€EE x€Ef

| ZXEEk 7T(X) *) 4+ ZXEEC 7T(X)ef(x)
08 0 T g 7))

=" uX)F(x) = F)] + > u(x)[f(x) - 0]

XEE x€EL
erEk 7"'(X)ef(x) + erEkC 7"'(X)ef(x) )
> xek M(X)€M) + 37, cpom(x)e® /0

Pedro Cardoso
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Relative Entropy

Then, we get

Sice 09 + Ve 09

O(f) = d(f) = > u(x)f(x) - ’Og< > (x)ef®) + r(EC)
xeEx T ™k

x€ES

Pedro Cardoso



Relative Entropy

This leads to

lim [&(f) — ()]

k— o0
Y xee, T(X)€) + 37, o m(x)e™
= 1Mk o p(x)f(x) — log i :
7 [EZE:C ( > e, T(X)€) + m(ES)

=liMk 00 > p(X)f(X)

x€Ef

limy 00 3 ye g, ™(X) €'V + limis 00 3oy epo m(x)€")
im0 Y xeg, (X)) + limy s oom(ES)

B Soxcem(x)e ™ 40\ _ B
—0— IOQ(ZXEEW(X)G’(X’ R 0) —0—log(1)=0—0=0.

—/og(
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Relative Entropy

Since limg_,o [P(f) — ¢(fc)] = 0, we have a contradiction with

lim  sup ®(f) < <, f>—log(< 7, € >) < H(u).
k=00 teD(Ey)

Therefore, we have

lim sup &(f) = H(u).
k=00 feD(Ey)
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Relative Entropy

Let k € N. Let f € D(Ex). Then there exists yp € R such that
f(x) = yo,Vx € EC. Denote y; := f(x;),V1 < j < k. Therefore

o(f) =:>_ p(x) /og(Zw(x)ef(X))

xeE xeE
=" u()f) + Y u(x)f(x) - /og( 3 w(x)e™ + 3 w(x)ef("))
X€EEx x€EL X€EEy x€EL
—Zu,y,+ Z yo—log(zmeyur Z ey°)
x€EL x€EF
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Relative Entropy

Then, we get

k k

O(f) =Y iy + (EC)yo — log (> me¥ + m(EL)e" )
j=1 j=1

:¢k(y07y17"'ﬂyk)7

where ¢4 : R“*1 — R is defined by

k k
¢k(}/07}/1a- oo ayk) - Ziu’]y] +:u’(EkC)y0 - /Og(ZTf]ey/ +7T(Ekc)ey0>'
j=1 j=1
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Relative Entropy

This leads to
oLor* 71'jeyf ,
— (Yo, V1s-- -, = i — NVi=1,...k
dy; (Yo, ¥4 Yk) = 1y ZL % + m(EC) e /
and to
0k 7r(E,§3)ey0

(y07y1a"'ayk):u(EkC)7

B Sk mies + m(EC)er
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Relative Entropy

Let Sk = {0, x1, X2, ..., Xk} be a set with k + 1 different elements.
Define p* : Sy — R by

EC) > 0,if x =0;
,U/k(x _ /’L( k)— :
w(xk) > 0,if x = x.

Then, we have

k

k
k) =pk0) + > k() = w(EE) + > n(x)
X€ESk j=1 j=1
k
=u(EQ) + D pu(x) = W(EF) + n(Ex) = 1.

x€Ey

Therefore, 1. is a probability measure on Sk.
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Relative Entropy

Define 7 : Sx — R by
7Tk(X) _ 7r(EkC) > Oiif x=0;
m(xk) > 0,if x = x.
Then, we have

Z k(x —7T

Xx€ Sk

K
k(%) = ©(ES) —I-Zﬂ'
j=1

- HM»

=n(EF) + Z m(x) = m(ES) + n(Ex) = 1.

x€eEy

Therefore, 7% is a probability measure on Sk.
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Relative Entropy

Let fy € RIS, If we write f = (yo, 1, . ., ¥k), we have

Pi(fc) =Pk(Yo, Y1, -+, Yk)

k k
=" 1y + 1(EQ)yo — log (>_ me + m(E°)er)

j=1 j=1

k k
=1 (0)y0 + Y u*(x)y; — log (*(0)e” + 3" n(xy)e")
j=1 j=1
= < pk fi > —log(< 7k, el >).
Since X, 7% are probability measures on the finite set Sk, from

Proposition 3, ®x is concave in RISk, Then &, assumes its maximum
where its gradient vanishes.
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Relative Entropy

In particular, define fo x : E — R by

log(“4%}), if x € Ex and m(x) #0;
fox(x) =40, if x e E Camd 7(x) = 0;
Co = Iog(%), if x ¢ Ex.
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Relative Entropy

Denote yo; := fok(X;),Vi=1,..., k. Then

k (EQ)
3wt 4+ m(ES)e® = 3 m(x)ebx) 4 n(EC)e ™ &)
i=1 x€Ex

oy H(EF)

=) n(x)e + n(EP) =6

= ( k)

w(x)

= ¥ (053 + u(ES)

Xx€Ex
= > x) + n(ES) = p(Ex) + (EF) = n(E) = 1.

x€EEx
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Relative Entropy

Forevery j=1,...,k, we have
0P 7r,-eV°v/
- \Co, Y0,15---, Yok) = Hj —
ay )T S e 1 (ED)e
iy
= — 1' = pj — pj = 0.
Also, we have
0P c m(ES)e%
707Y,7~-~a}’, ::LLE -
By (0122 Vo) = i) K e + n(EC)ea
C
m(EQ) e
w(EZ)
=n(EF) — ——=" = w(EP) — n(EF) = 0.
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Relative Entropy

Then & attains maximum in (Co, Y01, - - - , Yo.k)- This leads to

sup (D(f) :q)k(CO?yOJ P 7}’0,k)
feD(Ex)

k k
=" wi¥o; + m(EL)co — log (Y mes + n(EF)e™ )
j=1 j=1

_ u(x)/og(/;(;(;) +u(EkC)log(iE§g) ~log(1)

= w(x)Mlog(u(x))+ =(ES)E HE )/og( H(Ey ))

xeEy (X) (X) m(EZ) m(EF)
(x) HES)
_x;f(x)g(m) +r(ER( EE))
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Relative Entropy

Since D(Ex) C D(Ex+1), Vk € N, we have that (supsep(g,) P(f))ken is
an increasing sequence. Finally, observe that

lim ©(EF) = lim u(EF) =0,
& k—><>o &

k—o0

which leads to

H(p) = lim  sup @(f)
k=00 feD(Ey)

i [Z w(x)g(ﬁg;) +w(E,?)g(“(E"C))}

koo Lo m(ES)
-5 e 20 v
5 g (9) = 5 isoa(2).
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Relative Entropy

This explicit formula for the relative entropy involving the function
ulog u explains the relation between the entropy and the expectation
of functions of type e’ in the entropy inequality. Indeed, we starting
from the explicit formula in the previous result, we can derive the
entropy inequality.

The following result is true:

Proposition

We have
uv < e’ + ulog(u) — u,Yu > 0,Vv € R. (1)
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Relative Entropy

If u=0, we have
uwv=0<e"=¢e"+0log(0)—0=¢e"+ulogu—u
and the result holds. Consider F : (0,00) x R — R given by

F(u,v) = ulog(u) + €" — uv — u,Yu > 0,Vv € R.
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Relative Entropy

We have
oF
%(u, v)=log(u) +1—v—1=log(u) — v,Yu > 0,Vv € R

and

%C(u, v)=EY—u,Yu>0,vveR.

Then the points (up, Vo) in which the gradient of F vanishes are the
points of the curve vy = €%, vy € R.
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Relative Entropy

We also have
5%F 1
ﬁ(“’ V) = D,VU >0,Vv € R,
2
;T;/(u’ v)=—-1,Yu > 0,Vv € R,
and
&?F

572 (u,v) =¢e",Yu>0,Vv e R.

In the points of the curve uy = e, the eigenvalues of the Hessian
matrix of F are 0 and up + - > 0.
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Relative Entropy

Therefore, F attains its minimum when u = &Y, which leads to

Frmin(u, v) =F(uo, Vo) = Uplog(tp) + € — upVo — Up
=UgVp + Up — UpVy — Up = 0.

Therefore,
ulog(u) +e" —uv—u>0,Yu>0,Vv e R,
which leads to

uv < ulog(u) + € — u,Yu > 0,Vv € R.
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Relative Entropy

Proposition

If uw is absolutely continuous with respect to = and

() = Y2 (0 g (1))

Z 0\ ()
then

H(p) > sup{< p, f > —log(< m, €' >)},
f

where the supremum is carried over all bounded functions f and
< u, f > stands for the integral of f with respect to .
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Relative Entropy

Let f: E — R be a bounded function. Take u as the density of p with
respect to = and v as the function f plus a constant c. Then

/UVdﬂ:/@(f—&—C)dW:/(f—&-C)du:C—i—/fdu,
E g dr E E

/E ulog(u)dr =" w(x)u(x)log(u(x))

X€EE

= m(x i (ZE);;) = H(pw),

xXeE

/e"dw:/e’*cdw:/ece’dw:eC/e’dvr,
[ E E E
/ —udr = — /d“dw_— (E) = 1.
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Relative Entropy

Therefore, integrating (1) with respect to =, we get

/uvdwg/ulog(u)dw+/ e"d7r/ —udr,
E E E E

which is the same as
/fd,u—i—cg I:I(u)+e°/ efdr —1
E E
and we get
H(u) > c+1 +/ fdu — eC/ e'dr = gi(c),
E E
where g1 : R — R is given by

g1(c):c+1+/fdu—e"/efdw,vCe]R.
E E
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Relative Entropy

Since H(y) > g1(c), Ve € R, choosing
co=—lo /efdw ,
a J, ¢'ér)
we get
F() 201(0) = gr(c0) = co-+ 1+ [ fau—o® [ ir
E E
e'dr
=—1 d 1 iy — 1
og(/Eedw>+ +/E dp [ eldn

:—/og(/f_:e’dvr)+1+/Efdu—1 :/Efduf/og(/b_e’dw).
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Relative Entropy

Taking the supremum over every bounded function f : E — R, we

have
F/(M)ZSl;p{/Efdu—/Og(/Eefdﬂ)}.
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Entropy and Markov Processes

Consider a Markov chain on a countable space E with an invariant
measure denoted by 7. Let (P;):>o be the semigroup associated to
the Markov chain. The following result will be useful in the first
Proposition of this section.

If v is absolutely continuous with respect to =, then 1.P; is absolutely
continuous with respect to wr, Vt > 0.
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Entropy and Markov Processes

Let f > 0. Let x € E such that n(x) = 0. Since 7 is an invariant
measure, we get

0=m(x) = (7P)(x) = >_7(y)Pi(y,X),

yeE

which leads to 7(y)P:(y, x) = 0,Vy € E. Since p is absolutely
continuous with respect to «, u(y) = 0 if and only if =(y) = 0, for
every y € E.

Let yp € E. There are two possibilities: u(yo) = 0 (case 1) or
1(¥o) # 0 (case 2).

Case 1: u(yo) = 0. In this case, we have

1(Yo)Pi(yo,x) = 0 - Pi(yo, x) = 0.
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Entropy and Markov Processes

Case 2: u(yo) # 0. In this case, we have 7(y) # 0. Since
7(¥0)P:(¥o, X) = 0, we get P¢(yo, x) = 0, which leads to

w(Yo)Pt(¥o, x) = 1(¥0) - 0 = 0.
Therefore, we have p(y)Pi(y, x) = 0,Vy € E, which leads to

(uPr)(x) = > u(y)Pi(y,x) =) 0=0.

yeEE y€E

Then (uPt)(x) = 0 when 7(x) = 0. This means that uP; is absolutely
continuous with respect to 7. Since f > 0 is arbitrary, we have that
1Pz is absolutely continuous with respect to , Vt > 0.
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Entropy and Markov Processes

The relative entropy with respect to the invariant measure plays an
important role in the investigation of the time evolution of the process.
indeed, since ¢(u) = ulog u is strictly convex and vanish only at s =0
and s = 1, the relative entropy of 1.P; with respect to = does not
increase in time. This is the content of the next proposition.

Proposition

For every probability measure ., we have

H(pPr) < H(p).

Moreover, H(uPt) = H(u) < oo implies that . =  if the chain is
indecomposable.
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Entropy and Markov Processes

Let ¢ : (0,00) — R, ¢(x) = x log(x),Vx > 0. Observe that
NS C°°((O ), L (x) = log(x) +1,¥x > 0 and

99(x) =1 > 0,¥x > 0, therefore ¢ is strictly convex.

a) 2
Ifxu is not absolutely continuous with respect to 7, we have
H(p) = oo, which leads to

H(uPr) < 0o = H(w), vt > 0.

If 1 is absolutely continuous with respect to 7w, Lemma 1 gives that
1P is absolutely continuous with respect to , Vt > 0.
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Entropy and Markov Processes

Let t > 0. From Theorem 1, we get

AP = 32 w000~

xeE )

m(x
= ntx (= > )Py )
~ S n(x) (Z“ L)

xXeE

(HP)(x))

Since « is an invariant measure, = = 7PVt > 0. Then, for every
t>0, x € E, we have

Tr(y)PT(YaX) >0 Vye E

m(X)
and
TPy, x) 1 - _ (@P)(x¥) _ m(x) _
y%:g 7(x) _w(x)yZE:E WP X) = =00 =700 ~
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Entropy and Markov Processes

Therefore, oy : E — R given by oy x(y) = W is a probability

measure. Then, Jensen’s inequality leads to

H(pP) = 3 ()6 (5 (#PO(X)

Pedro Cardoso



Entropy and Markov Processes

Then, we get
H(uPy) <X62Ew(x)Ea, [4(£)]
—Xezgw(x)yezy(‘;gyi)at,x(y)
PR = el
- S S
y;w(yw(ﬁ(ﬁ) = H(w)
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Entropy and Markov Processes

For the remainder of this section, P; stands for the adjoint of P; in
L?(r), f stands for the density of 1 with respect to = and f; stands for
the density of P with respect to =. Then, we have

Proposition

fi(x) = (P F)(X).

In particular, the density f; is solution of

fo=1 @
Oify = L*f;.
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Entropy and Markov Processes

We know that the adjoint of L in L?(u), denoted by L*, is a generator
with Py = e'™" is also the adjoint of Py in L?(u). Then, for g € L?(),
we have

< G P >r= < Pig, f >ne /(P,g)fdw_/(Prg) 9

/Ptgdu > () (P)(x) = u(x) > Pi(x,y)a(y)

xeE XeE yeE

—ZZM )Pi(X, ¥)a(y)-

xeE yeE
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Entropy and Markov Processes

We also have

P
<g,ft>w—/gfd —/g Wh)

:/gduP, (uPt Wg ZZMX)Pth y)
y

cE yeE xcE

=Y > uX)Pi(x,)9(y) =< g, Pif >, .

xeE yeE
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Entropy and Markov Processes

Since < g, i >.=< g, P{f >,,Vg € L?(r), we have

fi(x) = (P{f)(x).
From the definition of f;, we get

_ GQuPo _dp _

fo dm _dw_f'
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Entropy and Markov Processes

From P; = e''", we get
0Py = (&) = e = L*P},
which leads to
Oty = (P f) = (OP))f = (L"PP)f = L*(Pif) = Lf,.

Therefore, the density f; is solution of

fo="f
Oify = L* f;.
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Entropy and Markov Processes

The following result will be useful.

We have

x[log(y) — log(x)] < 2VX[v/y — V], ¥x,y > 0.
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Entropy and Markov Processes

For x =0, y > 0, we have

x[log(y) — log(x)] = x log(y) — X log(x) =0 -0
=0 = 2v0[yy — V0] = 2Vx[vy — Vx].

For x > 0, y = 0, we have

X[log(y) — log(x)] = xlog(0) — x log(x) = —co — X log(x)
= — 00 < —2x = 2Vx[V0 — vx] = 2Vx[\/y — V]
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Entropy and Markov Processes

Define F : (0,00)?> — R by

F(x,y) = 2vx\/y — 2x + xlog(x) — xlog(y),¥x,y > 0.
Then we have

oF Y _\/7 b%
ax 00 Y) = V2 — 2+ log(x) + 1~ log(y) = ;+Iog(;)f1,VX,y>O,
and

OF VX X X \/Y

— X, y)="=—-== 1—,/=),vx,y >0,

3y( y) VY Y y( y) Y
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Entropy and Markov Processes

We also have
O?F A1 VY
W(va) - ; - m7vxay > 07
O?F O?F V1o
—_— = — = _ — 07
ayax(x,y) axay(x,y) 51 7 y7Vx,y>
and
0?F X NS
— X, ¥y)= =5 — ——=.,Vx,y > 0.
o2 V)= 2 "oy gy Y
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Entropy and Markov Processes

Then, the points (X, yo) such that

oF

OF
a(xod/o) = @(Xod/o) =0

are such that xo = yp > 0. In such points, we have

F(Xo, ¥0) =2v/Xov/Yo — 2Xo + Xo log(Xo) — Xo log(o)
:2\/)70\/7 — 2Xp + Xo |Og(Xo) — Xo |Og(X0) =2xp — 2xy = 0.
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Entropy and Markov Processes

Moreover, it holds
O?F 1 VYo
W(X(JayO) - 70 - 2X0\/)To

BRRRY. S N N

_Xo 2X0\/Xo - X0 2X0 - 2X0,

82F( )= 82F( - Vi1
ayox 0V = xay Y = 3 5w v

VAR N O N

_2\/XOX0 70 B 2Xg X0 2X0’

and

OF o) = 22— /%
ay? X0, Yo 2 v

X0 V% _ 11 _ 1

X2 2xXo Xo 2X0 2X
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Entropy and Markov Processes

In the points of the curve yy = xo > 0, the eigenvalues of the Hessian
matrix of F are 0 and Xlo > 0. Then, F attains its minimum in the

points (Xo, o) such that xo = yo. Then we have
2V x\/Y — 2x + xlog(x) — xlog(y) = F(x,y) > F(xo,y0) = 0,¥x,y > 0,
which is the same as
X[log(y) — log(x)] < 2Vx[Vy — Vx],Vx,y > 0.
In this way, we get

x[log(y)  log(x)] < 2VX[\/¥ — V&I, ¥x,y = 0.
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Entropy and Markov Processes

Finally, we will deduce a estimate for the time derivative of the entropy
of ILLPt

Theorem

Let i be a probability measure with finite entropy: H(u) < oo. For
every t,h > 0, we have that

t+h
H(:Puun) = HuP) = [ < foLlogfy > d
t

t+h
g/ 2 < \/fs, L\/fs > ds.
t
Moreover,

2 < Vo, LV >o= = 3 w()LOxY)IVEW) = V)P

x,yeE
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Entropy and Markov Processes

We have
9

6(fs log (f5(x)) =0s(fs(x)) log(fs(x)) + fs(x)9s log(fs(x))

~04(1(0) g () + ) L)

=05 (f(x))[1 + log (£:(x))] = L£(x)[1 + log (f(x))1.
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Entropy and Markov Processes

By the explicit formula for the entropy, the difference
H(uPrin) — H(pPy) is equal to

H(uPrin) — H(pPr) = Z 7(X)fen(x) log (feen(x)) — ZW(X)ft(X) log (fi(x))

XeE xeE
= Z T(X)[feen(x) log (frn(x)) — fi(x) log (£(x))]
xeE

t+h
— S (%) /t %(fslog(fs(x))ds

t+h
=3 7(x) /t L*fs(x)[1 + log (fs(x))]0s.
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Entropy and Markov Processes

Since 7 is an invariant probability measure, we observe that for every
x € E,

Zp*(xjy) _ Z )\(y)ﬂ'(}/)p(y,X)

e sz AOmx)

We denote the upper bound of the jump rate A(-) by .
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Entropy and Markov Processes

We make the following claim.

Claim
The positive function g1 : E — R given by

g1(x) = > L*(x, 1)fs(y) + fs(x)A(x), ¥x € E,
y#x

is such that [ g1dr < 2) < <.
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Entropy and Markov Processes

Indeed, we have

Laidn =3 a100m00 = X2 [ 3 L6 ))ey) + NG00

X€E XEE y#x
=D > L EW)Tx) + D )M X) ()
X€EE y#x XeE
—Z[ZL*xyfs Yr(x) — L*(x, X)fs(x ] + 3 KON
xeE yeE X€E
=L CNEWT) = Y (= A)) ()T(x) + D (A7 (x)
X€EE yeE xeE xeE
=3 [ L enli) = 6601+ 660|700 +2 3 folx
xeE yeE X€E
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Entropy and Markov Processes

This leads to

/Q1d7T
E

<3S L lfsy) —fsx)]+ZL*xy)fsx)} )+23 " f(x)An(x)

XEE yeE yeE X€EE

=3[ L)) — (0] + f(x) ZL*xy} )+ 23S f(x)m(x)

X€EE y€eE yeE X€EE

=[S L Oanis(y) = 001+ f5(x) - 0] m(x) + 23 3 (1Ps)(x)

X€E y€eE XEE

=21 [Z L*(x, y)Ifs(y) — fs(x)]] m(x) +2X- 1

xeE  yeE

=) 1 (L) (x) +2)

X€EE
=<1, >, 42X =< L1, f; >, 42X =< 0, fs >, +2) = 2\ < oo.
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Entropy and Markov Processes

For every x € E, we have

L 600 =| D2 L) — K|

yeE

= > Lot - )|
Yy#x

= 3 L) - 3 L)
y#x y#X

:ZL*xy)f ZL*Xy‘
y#X y7#X

[ > o) - fs(x)Mx)]
Yy#X

<| 3 Lo b)] + 1660A)]
y#x

<D LG + BOOAX) = gi(x).
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Entropy and Markov Processes

This leads to

/tHh {/E|L*f|d7r}ds§/tt+h [/Eg1d7r]ds

t+h t+h B
:/ Z g1(x)m(x)dx < / 2\ds = 2)\h.
t t

xeE

Then, by Fubini Theorem, we get

S () / T 0 ds = /E [ /t o L*yds| o

xeE

t+h t+h
:/ [/ L*fsdw]ds:/ < "1 >, ds
t (g t

t+h t+h t+h
:/ < fs, L1 >7rds:/ <fs70>7rds:/ 0ds = 0.
t t t
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Entropy and Markov Processes

By Fubini Theorem, we also get

3 w(x) /t thog (f:(x)) L*fs(x)ds = /E [ /t thog(fs)L*fsds] dr

xeE

t+h t+h
- / [ / log(fs) L fsdlr| ds = / < L*fs,log(fs) > ds
t 5 t

t+h
:/ < fs, Llog(fs) >ﬂ- dS.
t

This leads to

t+h
HPri) = HuPr) = Son(x) [ LGl +1og ((0)]ots

xXeE

t+h t+h
=S [ Lds + ra) [ g (600) i)
t+h

t+h
=0 +/ < fs, Llog(fs) >, ds = / < fs, Llog(fs) >, ds.
t t
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Entropy and Markov Processes

From Lemma 2, we get

t+h t+h
/ < fo, Llog(fs) >gy ds = / S £(x) (Llog(s)) (X)m(x)dls
t ! xeE
t+h
_ /,+ >~ 1500 3 A0p(x )llog ((£)(¥)) — log ((7)(x)]| m(x)dls
X€E yeE

t+h
= / S [ 32 AR y) (008 ((5)(¥)) — log ((£)(x))]|w(x)ds

xeE yeE

2 > VAR AR VB0 Vs
xXe ye
t+h

t+h
—2 VRV r(x)ds = [ 2< VE LV >, ds.
 awm ,

xXcE
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Entropy and Markov Processes

Finally, we will prove the final claim of the Theorem. We have

2 < VI, L/ fs >n=< /Ts, LN/ Ts > + < VTs, L/ Fs >1
= < Vs, L\/Fs >n + < '\Ts, /s >
= VEX)(LVE)X)m(x) + > VEC)(L V) (x)m(x)

xeE xeE

=Y VEX) Y L IVEY) = V) (x)
xeE yeE

+3 VEX) Y L GIVEY) = VER)IR(X).
xeE yeE
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Entropy and Markov Processes

Then, 2 < /T, L\/Ts > is equal to

> VAR S L NVED) - VERIR()

xX€E yeE

+y V) Y L GIVEY) = VG)Ir(x)
xX€E yeE

= > 7L YVEMIVEY) - VX))
X€EEyeE

+ > 7L VXV E(Y) — V()]
X€EEyeE

=3 > wILEVEX VW) = VX
xcE yeE

+ Z ZW )Ly, )V EWIVE(X) = V)]
y€eE xeE
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Entropy and Markov Processes

Since L* is the adjoint of L in L?(r), we have

m(X)L(x, y) = m(y)L*(x,y),vx,y € E,

which leads to

2 < \/g, L\/g >n
= Z ZW(X)L(XJ)\/fs(X)[\/fs(Y) — V(X))

xeEyeE

+ ) 7Ly )VEWIVEX) — VW)

y€EE xeE

= Z ZN(X)L(X,}’)\/fs(X)[\/fS(Y) — V(x)]

xeEyeE

+> > 7L YVEWIVEX) = VW)L

y€eE xeE
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Entropy and Markov Processes

Finally, we get that 2 < /fs, L\/f; > is equal to

> > TOLXVENIVEY) - VEX)]

xeEyeE

+> > 7L YVEWIVEX) = V)]

Y€EE x€E

=Y 7L VERVEY) = VX))

x,yeE

+ > 7L (—VEW)IVEY) = V(X))

x,yeE

= > 1)L YIVEX) = VEWIIVEY) — VX))

x,yeE

== > 7LCIVEY) = VEIIVEY) - VEX)]

x,yeE

— Y L NWVED) - VAR

x,yeE

Pedro Cardoso




Dirichlet Form

We introduce, for every function f € L2(r), the Dirichlet form D(f) of f
defined by

D(f) = — < f,Lf >= =Y f(x)LF(x)7(x).

xeE

The sum is well defined because the generator L is a bounded
operator in L?(r).
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Dirichlet Form

Proposition

The Dirichlet form of a function f € L2(r) is positive and equal to

D(f) =5 > m()L(xY)If(y) — f(x)1

X,yeEE
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Dirichlet Form

Denote the adjoint of L in L2(r) by L*. Then

2< fs’ Lfs >r=< fS; LfS >+ < fs, Lfs >
=<fs,Lfs>+< L*fs,f >

= ST HELEY )T + S L))

xeE X€E

=3 K002 Lx YY) — f(x)]n(x)
xeE yeE

+ 3500 D0 LG )IEWY) — B)In(x).
xXeE yeE
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Dirichlet Form

Then, 2 < fs, Lfs >, is equal to

D100 D Lx YIfs(y) — fs(x)]m(x)

xXe€E yeE

D600 X L) = KXl (x)
xXeE yeE

=37 32 ROOLO PAIY) — K(X)
X€EE yeE

+Z Z *(x, Y)Es(x)[fs(y) — fs(x)]
X€E yeE

=D 7L Y E)Es(y) = f5(x)]
XeE yeE

+ZZ L* (v, X)fs(V)[fs(x) — fs(¥)]-
Y€EE x€E
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Dirichlet Form

Since L* is the adjoint of L in L?(r), we have

T(X)L(x,y) = n(y)L*(X,y),VX,y € E,
which leads to

2 < fs, Lfs >,
=33 7L ) () sy) — F(X)]

XEEyecE

+ 3 w7y ) E)fs(x) = fs(y)]

yeE xeE

=3 3 AL BRI - 6]

XECEyecE

+ Z Z L(x, y)fs(¥)[fs(x) — fs(¥)]-

yeE xeE
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Dirichlet Form

Then, we get that 2 < f;, Lfs >, is equaI to

> wlx (N)fs(y) = fs(x)]
xeEyeE
+y ) w(x WDNIfs(x) = fs(¥)]
Y€EE x€E
=y > wlx (N)fs(y) = fs(x)]
XEE yeE
+> D 7O)LxGY) (= W) fs(y) = ()]
YEE x€E
= T(X)L(x, y)[fs(x) = fs(¥)][fs(y) — fs(x)]
x,yeE
=- Z ()Lx, Y)Es(y) — f()][fs(y) — fs(X)]
x,yeE
== > 7L Y)fs(y) — ()P
x,yeE
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Dirichlet Form

Finally, we have
D(f) :=— < f,Lf >,

1
—-5[2-< @,L@ >ﬂ]

=3[~ X AL 60 - 600F]
X, yeE
1 Z ()L Y)Ifs(y) = ()P
xyeE
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Dirichlet Form

Notice that if D(f) = 0 and the process is indecomposable, then f is
constant.

Proposition

If a function F : R — R is a contraction, (i.e., |F(a) — F(b)| < |a— b|),
then
D(F o f) < D(f). 3)
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Dirichlet Form

Indeed, we have

D(Fof)=3 3 (OLX.YIF o Ny) ~ (Fo N(x)
x,yeE
=2 3 L YIF(H)) ~ F(H0)P
x,yeE
;Zw L Y)If(Y) — (02
x,yeE
% (OL(x Y)[F(y) — FOR = D(F)
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Dirichlet Form

Proposition

Let M be a fixed real number. Then the function F(x) = min{x, M} is
a contraction .

If M is a fixed real number and F(x) = min{x, M}, we have

IM—M|=10l=0<|a—b|, ifa>Mandb> M,
IM—bl=M-b<a-b=la—-b|,ifa>Mandb< M,
la—M=M-a<b-—a=|a—b|, fa<Mandb> M,
la—b|<|a—b|, fa<Mand b< M,

[F(a) — F(b)| =
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Dirichlet Form

Proposition

The function F(x) = |x| is a contraction.

Indeed, we have

|F(a) — F(b)| = [|al — [bl| < |a—b].
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Dirichlet Form

Another interesting result is the convexity of the Dirichlet form.

Proposition

Let p be a probability measure on N and (f)jen C L2(w). Then

D(Z Pjﬂ') <> pD(f).

JEN JEN

Pedro Cardoso



Dirichlet Form

For every (x,y) € E?, let ay, : N — R be the random variable which
is f,(y) — fi(x) W|th probablllty p;- Then

(Elows)” =( X Bl ») ~ 10])”

JeN

<> plky) -

JEN
=E[0% ],Vx,y € E.
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Dirichlet Form

This leads to
(Y p6) =3 3 7Lxen|(Xes)w) - (X o))
jEN X,yEE - jeN jEN
=2 3 w0t [ Y - X pieo)]
x,yeE " jeN JEN
=2 3 w0t ) [ X pliy) 501
X,yE€E " jeN
<3 3 7L ) Y plhy) — H)P
x,yeE JEN
- p,-(% > w (LX) ~ 10F).
jEN x,yeE
which leads to
p(Yph) <> AD()
JjEN JEN
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Dirichlet Form

If the probability measure 7 is reversible, there exists a variational
formula for the Dirichlet form D(f).

Theorem

(Variational formula for the Dirichlet form)Assume  is reversible.
For every non-negative function f € L?(r),

f2(x)
9(x)

D(f) == — inf > w(x) Lg(x).

In this formula, the infimum is taken over all bounded positive
functions g which are bounded below by a strictly positive constant.

v
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Dirichlet Form

Fix a function g that is bounded and is bounded below by a strictly
positive constant. Set o = 41{f > 0}, so that a(x) = 0 if and only if
f(x) = 0. With this definition,

2 2
<L.pg>= 3 L8 (pg))atn

i 9(x)
5 P _
-2 (X)(y; Pi(x,¥)9() ) w(x)
f(x)>0

~

f(x) aly
=Y (X P 7))

xeE f(x) yeE
f(x)>0 ( )>o

-5 W (P PG L) > 0))a(x),
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Dirichlet Form

Then,

%
-3

we have

< ;v Pfg >
o ) )

> W1i1005 03 (;Pr(x,y)f(y) T{1(y) > 0} ()
@ «Q us

EEQ(X)(KZEPI(X,y)f(y) (¥))7(x)
(D)o (3 Pt )Y ) ()

cE yeE
XEX;(;) (P(fa)) (x)m(x) =< é,Pt(foz) >, Vt > 0.
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Dirichlet Form

Since the probability measure « is reversible, P; is self-adjoint, which
leads to

<f—2P >—<1 Pi(fo) >
ga tgd >n= Oé, t\ T
[<1 Pi(fa) > <i Py(fa) > ]
a T o’ ™
f f
[<a Pi(fa) > + < fa, P,( )>ﬂ}
f

[XI::_( (X)(Pi(fa)) +Z (fa)( ( (f)>(x)ﬂ.(x)}

N‘—Ll\)‘—ll\)‘_n

(6
X xeE

-3 Z [(;) (Pifa)) () + (Fa)() (Po( L)) 0] ).

X
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Dirichlet Form

Then, we have

f2
< a , Ptg >x
-] Z (D) (Pt (6) + (a0 (Pe( £) ) )] )
( )>0
(x) ) 10)
QZ[XZP,(xy yez;Ptxy Sl
f( )>o f(y)>0 f(y)>0
1 i aly) , a(x)
=5 X TP (Ge+ 56y)
f(x)f(y)>0
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Dirichlet Form

Since x + x~1 > 2,vx > 0, we get

< f—z, Pig >,
g
- py) RO P) (55 + 500)
f(x)f(y)>0
>3 Y wAY)Px v
M)~
= > 7fXY)Pi(x,y) = Y 7(X)F(X)f(y)Pi(x,y)
oo
_Zf(x(ZP,(xy ) = 3" F)(P)(x)m(x) =< F, Pif > .
xeE y€eE XeE
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Dirichlet Form

Then, we have

f2
< E,Prg >o > < f,Pf > V>0,
and we get
1 f 1
-7 < E,ng >n < =3 <FPf>2 V1> 0.
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Dirichlet Form

This leads to

1 f2 1 f2 1 2

?<5,(9—Ptg)>w—7<—,g>w—7<—,Ptg>7r
1 1 2
—?<f,f>7r—?< , Prg >x
1 1
§?<f,f>7r—?<f,Ptf>ﬂ—
:1? < £,(f = Pf) >n,t > 0.
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Dirichlet Form

Since g is bounded, we have that the sequence {t~'(P;g — g),t > 0}
converges uniformly to Lg as t | 0. Since g is bounded below by a
strictly positive constant, there is C > 0 such that ﬁ < C,Vx e E.
We claim that
_ 1 2 f2

tin8+ 7 < E,(g— Pg) >,=< I —Lg>x.
Indeed, let ¢ > 0. Since the sequence {t~'(P;g — g),t > 0}
converges uniformly to Lg as t | 0, there exists f, > 0 such that

~1 _ _ &
t7(Pg = 9)(X) = (L) < Grgrsqy WX EEVO< i<t
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Dirichlet Form

Then, for all 0 < t < ty, we have
2 f2
(g Pig) >» — < o —Lg >

<

f2
| < E,t“(Ptg—g)—Lg > |

=| 2 P00 5y (17 (Pig = 9)(X) ~ (L9)(X)) ()
X€eE
]
<> (x) 1t (Pig — 9)(x) — (Lg)(X)|m(x)
xeE g(X
2 € _e<ff>g
<XZ€:Ef o) = s 1) < °
and we have
li 1<f—2(—P)>7<f—2—L>
o1 S g 9T TS g T e
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Dirichlet Form

Since f € L?(r), we have that
lim < t='(f — Pef) — Lf, t='(f — Pif) — Lf >,= 0.
t—0+

From Holder inequality, we have

2
1t < (f=Pif) >n — < f,—Lf >,
=< f,t7(f— Pif) — Lf>2
<< ff>a< t7W(f = Pf) = LE 7V (f — Pif) — LE >,

which leads to
lim |1 < f,(f = Pf) > — < f,—Lf >, =0,
t—ot+  t

which is the same as

lim 1 < f,(f = Pif) >p=<f,—Lf >.= — < f,Lf >,.=D(f).
t—0+ t
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Dirichlet Form

Since

:
(9= Pg) >x< 3 <1, (f = Pif) >2,9 >0,

-ﬂ-\—k

f
S
Making t — 0%, we get

f2 2 2

f 1 f
- < —,lg>=<—,-L >7r—||m—<— — P:q) >

< lim T (- Py 5= D).

“t—0+ f

This is the same as
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Dirichlet Form

Since g is a arbitrary function that is bounded and is bounded below
by a strictly positive constant, we get

f2(x) . f2(x)
D(f) > Sl;P* ZW(X)WLQ(X) == ”;f);W(X)WLQ(X)v

where we take the supremum and the infimum over all bounded

positive functions g which are bounded below by a strictly positive
constant.
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Dirichlet Form

If f is bounded and bounded below by a strictly positive constant, we
can make g = f, which leads to

f2(x)
9(x)

Lg(x)

: f2(x) B
— inf > w(x) 90 Lg(x) = sup — > w(x)

f2(x)
>->) m(X) 7~ LX) = = > m(X)f(X)LA(x) = — < f,Lf >.=D(f),
xXeE
which leads to

f2(x)
500 Lg(x),

D(f) < — igf);w(x)

where we take the infimum over all bounded positive functions g
which are bounded below by a strictly positive constant.
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Dirichlet Form

However, in the general case f is neither bounded or bounded below
by a strictly positive constant. In this case, we need to approximate f
by bounded positive functions bounded below by strictly positive
constants.

For each positive integer M, let fy : E — R be the function defined by

fu(x) = M~" + min{f(x), M},Vx € E.
Since f is positive, 0 < min{f(x), M} < M,V¥x € E, which leads to
M='=M"40< M+ min{f(x), M} = fu(x) <M~ + M,Vx € E.

Then, fy is bounded and bounded below by a strictly positive
constant, for every M € N.
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Dirichlet Form

We claim that limy_. fu(x) = f(x),¥x € E. Indeed, let x € E. Also,
let e > 0. Choosing My such that My > max{e~', f(x)}, we get

fu(X) = M~ + min{f(x), M} = M~ + f(x) > f(x),YM > My,
which leads to
[fu(x) — F(X)| = fu(x) — f(x) = M~ < &,YM > M.
Since for every € > 0, there exists My € N such that
[fu(x) — f(X)| < &,YM > My, we have limy_. fu(x) = f(x). Since

x € E is arbitrary, we have

lim fu(x) = f(x),vx € X.
M— oo
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Dirichlet Form

Define the measure 1 : E> — R on E? by

mOL0Y) _ mOMNOPY) iy £ -
u(x,y) = A Y
0, if x=y;

Define F: E2 — R by

F(x,y) = (F(y) - F(x))%,vx.y € E.
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Dirichlet Form

Then F(x,y) > 0 and we have

D(f) =1 3 wLIY) - R = 3 IO py )
X,yeE X, yeE
XAy
= 3" ey = X ulxy)Feey) = [ Fo
& e E

For each positive integer M, let F), : E? — R be the function defined
by

Futxy) = [T~ COW T ) — o vt €2
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Dirichlet Form

Since f is positive, for every (x, y) € E?, we get

(f(y)® (f(X))
Jim Fu(x,y) = lim [ T o )}[f () — fu(X)]
N (v (fw)°
f

limysoo fu(y)  limpse

(W) (fx)°
=[50 o))~ 0l

=[f(y) = FOONlF(y) — F()] = [F(y) = F()I? = F(x, y).

o fim_fu(y) = Jim_ ()

We claim that Fy(x,y) > 0,Vx, y € E. For every (x,y) € E?, we have
four possibilities: f(x) > M and f(y) > M (case 1), f(x) > M and

f(y) < M (case 2), f(x) < M and f(y) > M (case 3), f(x) < M and
f(y) < M (case 4).
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Dirichlet Form

Case 1: f(x) > M and f(y) > M. In this case, we have

fu(x) = M~ + min{f(x),M} =M=+ M

and
fu(y) = M~ + min{f(y), M} = M~ + M.

Then we get

putx) =[S~ CO9 1) o)
2 2

[
1) = (F00)°y
N M-1+M ] 0=0

Pedro Cardoso



Dirichlet Form

Case 2: f(x) > M and f(y) < M. In this case, we have
fu(X) = M~ + min{f(x),M} =M~ + M
and
fu(y) = M~" +min{f(y), M} = M~" + f(y).
Then we get
2 2
y)~ _ (fx)
) fu(x)
f(x )2
+M

) (M~ M) (F()* = (M~ + 1) (7(x))].

Fu(x,y) = [( Fuly

_{ (f(v))? (f(
LM+ f(y) M1
_ fly)—M

(M= +f(y)) (M-

U (y) = ()

|7+ 1) =M =

"+ M
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Dirichlet Form

i _ fy)—M
Since f(y) — M < 0 and f(y) > 0, we have (ima10y)) (1) < 0.

Also,
(M~ + M) (f(y))" — (M~
=M~ (f(y))* + M(#(y))" -
=M~ [(F1)* = (F(x))?
since f(y) < M < f(x) leads to ((y))® — (f(x))? < 0 and to

ME(y) — (f(x))? < M.M — (f(x))® < 0.

x)" = ) (f(x))°
]+ ) [Mf(y) - (f00)*] <o,

Therefore,

fy) —
(M=T+f(y))(M—1+ M
ZFM(X,}/) > 0.

Pedro Cardoso
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Dirichlet Form

Case 3: f(x) < M and f(y) > M. In this case, we have
fu(X) = M~ 4+ min{f(x), M} = M~" 4 f(x)
and
fu(y) = M~" + min{f(y), M} = M~" + M.

Then we get

2 2
Futxy) =[G~ COW i)~ o

f(y))? f(x))?
= {/\/(/—(1}1)/\// - ME1(i(|—))f(x)} M7+ M=M= ()]

M — f(x)

~ (M M) (M £(x)) {(M_1 +H0) (F))" = (M~ + M)(f(x))z}'
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Dirichlet Form

Since M — f(x) > 0 and f(x) > 0, we have (m 1+AA;)_(“MX)1+« y
- - X

Also,
2 (M + M) (f(x))?

f())* = M~ (F(x))° = M(f(x))

M- [(f(y))2 —(F x))"‘] +f(x) [(f(y))2 - Mf(x)} >0,

since f(x) < M < f(y) leads to (f(y)) — (f(x))? > 0 and to

2

(f(y))" = MF(x) > (f(y))* = MM > 0.
Therefore,

M — f(x)
(M=1+ M) (M~ + f(x)
ZFM(X,}/) > 0.
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Dirichlet Form

Case 4: f(x) < M and f(y) < M. In this case, we have
fu(x) = M~ 4+ min{f(x), M} = M~" + f(x)
and
fu(y) = M~"+ min{f(y), M} = M~ + f(y).

Then, we have
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Dirichlet Form

Then, Fu(x, y) is equal to

G +';((yy)))_([,§ = Ty LM+ F00) (F)" = (M + £) (F00)']

[Fy) = 01 M~ (F0))® + 1) (1)) * = M~ (100)° = £(3) (F())°]
(M- +f(y))(M1+f )
M [(10)? - (£x)° ] W) — ()]
(M= +f(y)) (M~ + f(x))
1) = TN M) + FCON(Y) = FO0] + FOFIEY) = F(x)]]
(M= + £(y)) (M~ + 1(x))
[F(y) = TR M) + FO0] + £ ()]
(M—1 + f(y))(M—1 + f(x))
Therefore, we have Fy(x,y) > 0, V(x, y) € E?, YM € N.

[f(y) — f(x)

—_

> 0.



Dirichlet Form

We know that

_ - ;; Lhy>a=—Y w(x)(lgj)(x)(LfM)(x)

xeE

2
5 w0 YOS L pttuty) — fux)
yeE

xeE M(X)

2
=33 wx)L(x,y) () [fu(y) — fu(x)]

XeE yet fu(x)

S % > (X)L, y) () [fm(y) — fm(x)]

X€EE yeE fM(X)

2
*% > > m()L(x,y) (f(x) [fu(y) — fu(x)].

X€EE yeE fM(X)
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Dirichlet Form

Interchanging the variables in the second double summation, we get

2

2
- < gl >= =5 3 S nL(xy) VO ) — )

X€E yeE fu(x)

2
25 S w0206 L ) - )

xcE ycE fM(X)
1 f(X) 2
=-3 > w(x)L(x,y) (fm(x)) [fm(y) — fu(x)]

X€EE yeE

2
*% > my)Ly.x) () [fu(x) — fu(y)].

JCExcE fu(y)
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Dirichlet Form

Since = is reversible, w(x)L(x,y) = n(y)L(y, x)Vx,y € E, and

—<ﬁ Lfy >.= 722 x)ny(())z[fM()—fM(x)]
fu’ i

X€EE yeE ( )
f 2
PR 00 L () - )

2
=3 3 L)~ GO )~ o)

XxeE yeE

3 3wt 00 i)

y€Ex€E
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Dirichlet Form

Then, we have

_<L2[_fM>Tr ZZ x)ny( (()) )[fM(J/)_fM( )]

er yeE (X)

2
— Z > a(x)L(x,y) (;I\EI}(/J)/)) [fu(x) — fu(y)]

yeE xeE

23 3wt (- O )

xeE yecE

(())2 ~
1 ZZ (X)L(x, y) ()[f(y) fu(x)]

eryeE

2 2
=3 3 stxs)| O ) - o
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Dirichlet Form

This leads to
2 1 (f)*  (F(0)°
~ < ol >3 3 w(xL(x, y)[ ROT T ][fM(y)— fun(x)]

(
> 2
_ 3 T [CON” Dy g

f
xyeE fu(y) fu(x)

X2y

2 2
=2 [ (Y})/)) - (;,.E,)(())()) }[fM(y) — fu(x)]
X,yeE

%
—Z (x,¥)Fu(x,y)

x,yeE
X2y

= Y Fubc)utxy) = [ Fudh

(x.y)eE?
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Dirichlet Form

Since Fy(x,y) > 0, ¥(x,y) € E?,¥YM € N, and we have

liminf Fy(x,y) = lim Fu(x,y) = F(x,y),¥(x,y) € E?,
M— o0 M— oo
Fatou’s Lemma gives

D(f):/ Fd,u:/ I|m|anMdu
E? 2 M

2
<liminf Fydu = I|m|nf—

M—oco Jp2 —00 f ’

Ly >, .
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Dirichlet Form

This leads us to

2 2
D(f) <liminf — < L , Ly >z=sup inf — <

M— o0 fu’ keN M>k fu fip L >
2 f2
<sup— < —, Lfy >,< sup— < —,Lg >,
keN ﬁw g
f2(x
—sup— Y- (0 - Lg(x).
9 X€EE 9

leading to

) < sup Z mfz

XEE XEE

where we take the supremum and the infimum over all bounded
positive functions g which are bounded below by a strictly positive
constant.
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Dirichlet Form

Finally, we have

) Lg(x),

D(f) = — igf);w(x) 30

where we take the infimum over all bounded positive functions g
which are bounded below by a strictly positive constant.
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Dirichlet Form

The next result is a simple consequence of this proposition.

If = is reversible, the functional

defined for all densities with respect to « is convex and lower
semicontinuous.
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Dirichlet Form

Since 7 is reversible, we have by the previous result that
_ - f(x) _ f(x)
D(f) = D(Vf) = - Ing%:EW(X)m(Lg)(X) = sup— X%:;W(X)mug)()()’

where we take the supremum and the infimum over all bounded
positive functions g which are bounded below by a strictly positive
constant.
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Dirichlet Form

If « € [0,1] and fi, f» are densities with respect to =, we have

Dla + (1 = )) = sup— 3 (x y (et (1= )B)0) ) oy

xXeE g(X)
—sup [ a 370028 (1g)) + (- (1~ ) 0 w0 2 (1))
g 2 9 2 9
fi(x) fo(x)
<sup _axezf(x) 300 (L9 +sup—(1 = a) Xezgw(x) 300 (L))
— s f1 (X) — ) sup — m fg(X)
~a'sup 2; ()50 (L) +(1 —a)sup Z% () 500 (L9

=aD(fi) + (1 — a)D(f).
Since for every fi, f, densities with respect to 7, we have
D(afi + (1 — a)k) < aD(fi) + (1 — a)D(£),Va € [0, 1],

the functional D(f) is convex.
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Dirichlet Form

Let(f,)nen be a sequence of densities with respect to = such that 1,
converges weakly to f. Assume that D(f) > liminf,_,o D(f,). In this
case, choose

D(f) — liminf,_, o D(f;)

e = 3 > 0.

Since D(f) = supy — >,k w(x)%(Lg)(x) over all bounded positive
functions g which are bounded below by a strictly positive constant,
there exists gy such that gy is a bounded positive function, is bounded
below by a strictly positive constant and

£(x)
9o(X)

D(f) < =Y m(x) (Lgo)(x) +&.

xXeE
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Dirichlet Form

Since f, converges weakly to f, there is ny € N such that

_ Z 9o)(x) < — Z w(x);’;(x)(Lgo)(x) +¢e,Yn > ng,

xeE xeE

which is the same as

=D mlx

J+e<—> w(x f,,(x Lgo)(x) +2¢,Yn > ng,

xXeE X€E
and leads to
fa(x)
D(f) < — X L X)+2e,Yn>n
(f) XEEE ( )go(x)( 90)(X) o
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Dirichlet Form

Taking the supremum over all bounded positive functions g which are
bounded below by a strictly positive constant, we get

N )
D(f) <sup | D e )g( )(Lg)( )+2s}
—28+Sup > w(x ) = 2¢ + D(f,),¥n > ny.
xeE

Taking the lim inf above, we get
D(f) <2e + |inm inf D(fp) = 2 + D(f) — 3e = D(f) — e < D(f).
— 00

Therefore, the assumption that D(f) > liminf,_,., D(f,) is false and
we have
D(f) < liminf D(f,).

n—oo

Since D(f) < liminf,_, ., D(f,) for every sequence (f,)nen Of densities
with respect to 7 such that f, converges weakly to f, the functional
D(f) is lower semicontinuous.
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A Maximal Inequality for Reversible Markov Processes

We conclude the Appendix 1 with a maximal inequality for reversible
Markov processes. We assume throughout this section that X; is a
reversible Markov process with respect to some invariant state .

Fixg: E - R. Foreach T > 0 and A > 0, we have that

e
P:[ sup |g(X:)| > A] < ;\/< 9.9 > +TD(g). (4)
0<t<T
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A Maximal Inequality for Reversible Markov Processes

Fixg: E— R, T > 0andA > 0. Denote the subset

G :={x € E : |g(x)| > A} by G and the hitting time of Gby 7, i.e.,
7 =inf{t > 0, X; € G}. Denote £(G.,) for the set of functions

f: E — Rsuchthat f € [?(r) and f(x) = 1,¥x € G.

Let A > 0 and define the function ¢, : E — R by

O(X) == d(A\, X) = Ex[e V] < Ex[le°] =1,Vx e R.
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A Maximal Inequality for Reversible Markov Processes

This leads to
3 (6200)21(x) < 3 (1% (0 = m(x) =1 < o0,
X€E XeE XeE

and ¢, € L?(n).
Since 7 > 0, for x € G, we have

Py(r =0) = P(r = 0|Xo = x) = P(inf{t > 0, X € G} =0|Xo = x € G) =1,

which leads to Py(7 > 0) = 0.
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A Maximal Inequality for Reversible Markov Processes

Then, we get
0< Ex[e_“]l{7>0}] < Ex[e_)\o]l{.,.>0}] = EX[]I{T>0}] = PX(T > O) =0,
which leads to Ex[e *"1,~0;] = 0 and to

dA(X) =Ex[€*T] = Ex[e "1 (—0y] + Ex[€" " 1(50)]
=Ex[e 1 ,_o}] + Ex[e M 1{r20y]
=Ex[1{r—0}] +0=Py(r=0)+0=1+0=1.

Therefore,
oa(x) =1,Vx € G. (5)

and ¢, € £(Gx).
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A Maximal Inequality for Reversible Markov Processes

Now let us consider the case x not in G. Let f > 0. We will
decompose the chain according to the first site visited. If T; is the
instant when the chain changes from the initial state to the first state
and &; is the first state, we have

Exllir<rye M 1{& = y}]

t
— / P& = y,s< Ty < s+ dsléo = x)Exle |6, = ylds
0

t
= [ P& =y,s<Ti <s+ds|& =x, To=0)Ec[e & = y]ds

~

P& =y,s< Ty <s+ds|& = x, To = 0)Ex[e e 9)|¢; = y]ds

o— o— S—

t
P& =y, s< Ty < s+dslé =x, To = 0)e *E[e " 9)|¢ = y]ds.
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A Maximal Inequality for Reversible Markov Processes

This leads to
Ex[1{r,<nye M 1{& = y}]

t
:/ P& =y,s< Ty < s+dslé = x, To = 0)e *E,[e M"=9|¢; = y]ds
0
t
:/ P& — y.s < Ty < s+ dsléo = x, Ty = 0)eSE, [~ "] ds
/ ,0 3% y —)\(X) (s— 0)1{S>0}e—)\sEy[e—>\r]ds

- /0 Px. YIA(X)e e E, [e=7]ds
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A Maximal Inequality for Reversible Markov Processes

With Fubini’s Theorem, we get

Ex[1(r,<ne™]
= Z Exllir<rye M 1{& = y}]

yeE

Z/ p X y 7)\(X)Sef)\sEy[e7/\T]ds

yeE

/ [Z'D (x, Y)A(x)el AN E [efm]}
yeE
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A Maximal Inequality for Reversible Markov Processes

Then, we have
Ex[l{ﬂgt}e_/\T] :/ {ZP(X YIA(x)el )= Aksg (Y)} (6)
yeE

Since 0 < e < 1and {Ty < t} = {0 < t} has probability one, the
Markov property gives that

Exl(r,>n€ X =E (17,562 7D|(Xo = X, To = 0)]
MOt — 0)Ey[e=] = e=2Wlg (x),
which leads to
Ex[1(r,>ne ] =Ex[l{r>ne” e
—e 7)\fE []]_{T1>t}ef)\(7'ft)]
e—)\t qu (X)

A(T—t) At]

and we have
Exl{r,>ne 7] = el 072 g, (x). (7)
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A Maximal Inequality for Reversible Markov Processes

Equations (6) and (7) give

ox(x) =Ex[e™7]
=Ex[1{r,<ne "] + Ex[1{r,>n€ 7]

= [ [ ptx )t =025 1)] o + o160 ),

yeE

which is the same as

/[pry x)e{ =226, (1)) ds

yeE
+(ef A=A _1)g, (x) = 0,Vt > 0.
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A Maximal Inequality for Reversible Markov Processes

Differentiating with respect to t, we get

> p(x, Y)A(x) el g, () — (A(x) + A)et A=A g, (x) = 0, vt > 0.
yeE

Making t — 0%, we get

> PO YIAX)EA(Y) = (A(X) + A)a(x) = 0.

yeE

Pedro Cardoso



A Maximal Inequality for Reversible Markov Processes

This is the same as

AdA(X) = = A(X)oa(¥) - 1+ 37 PO, YAX)SA(Y)

yeE
== A(X)a(¥) D _p(x.y)+ > p(x, y)AX)pa(y)
yeE yeE
=Y (X, )AX)[PA(Y) — 6 (x)]
yeE
=> (X, Y)AX)[a(¥) — éa(X)]
=
=D L y)ealy) — ()]
yeE
yx
=) LxY)ealy) — oa(0)].
yeE
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A Maximal Inequality for Reversible Markov Processes

Therefore, we have
(Lpp)(X) = Apa(x),Vx € GE. (8)

We are interested in finding out how many functions h € £(G..)
satisfy

(Lh)(x) = Ah(x),Vx ¢ G. 9)
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A Maximal Inequality for Reversible Markov Processes

Assume that hy, hy € £(G.,) satisfy (9). Let h; : E — R be such that
hs(x) = hy(x) — ha(x), Vx € E. Then

h3(X) = h1(X) = hg(X) =1-1=0,Vx € G.
In particular, we have

(Lhg)(x)hs(x)m(x) = Ahs(x)hs(x)m(x), VX € G.
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A Maximal Inequality for Reversible Markov Processes

We also have
(Lha)(x) =D L(x,¥)[ha(y) — ha(x)]
y€eE
=Y L.y [((y) = ha(y)) — (M (x) = ha(x))]
y€eE
=Y L Y)(y) = hi(x)] = > L(x, y)[he(y) — he(X)]
YEE yeE

=(Lhy)(x) — (Lh2)(x) = Ah1(x) — Ahao(X)
=A(h1(x) — h2(x)) = Ahs(x),Vx ¢ G.
This leads to
(Lhs)(x)hs(x)m(x) = Ahs(x)hs(x)m(X), VX ¢ G
and to
(Lhs)(x)hs(x)m(x) = Ahs(x)hs(x)m(x), ¥x € E.
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A Maximal Inequality for Reversible Markov Processes

Then we have

—D(hs) = < Lhg, hg >,=">_(Lhg)(x)hs(x)m(x)
xeE

:Z Ahs(x)hs(x = )\Z hs(x)hs(x)m(x) = XA < hs, hg >.> 0.

xeE X€eE

Since —D(h3) < 0, we have that A < hg, hs >,.= 0, which means that
hs(x) =0, ¥x € E, which is the same as hy(x) = ho(x), ¥x € E.
Then, if hy, hy satisfy (9), hy = ho. This means that there is at most
one function h € £(G,) that satisfies (9). By (5) and (8), we have that
¢, satisfies (9). Therefore, ¢, is the unique function on £(G.,) which
satisfies (9).
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A Maximal Inequality for Reversible Markov Processes

By definition of the stopping time 7, the events {supy;< 7 |9(X:)| > A}
and {r < T} are the same, which leads to

P=( sup_[9(Xi)| = A) = Px(7 < 7).
0<t<T

We have

PX(T < T) :EX[H{TST}] < EX[eA(TiT)]l{TST}]
<E[e*T 7] = TE,[e7] = &' T (x).
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A Maximal Inequality for Reversible Markov Processes

Schwartz’s inequality leads to

Pr( sup_ 19X 2 A) =Pr(r < T) = Y m(X)Pu(r < T)

xeE

<> m(x)eMoa(x) = > m(x)pa(x)

xeE X€E

=" Ex[ox] < 9”\/ Ex[¢3]

)\T ¢2 X)
\/ xeE
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A Maximal Inequality for Reversible Markov Processes

Since the Dirichlet form is non-negative, it holds
1
D m()BEX) < Y m()AX) + 1 D). (10)
xXeE xX€eE
Define the functional J,(f) by
A = 3 w00 + (), (1)

among all functions f € £(G).
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A Maximal Inequality for Reversible Markov Processes

Then, we have

Pr( sup_|g(X:)| > A) <e*'
0<t<T oy

&[S m()B () + 3 D(6)

xeE

=e*T\/r(¢r).

Let h: E — R be such that

h(x) = A" min{|g(x)|,A} <A™ -A=1VxcE.
Since |g(x)| > A,Vx € G, we get

h(x) = A" min{|g(x)|,A} = A"TA=1,Vx € G.
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A Maximal Inequality for Reversible Markov Processes

Then h € £(G) and we have

da(h) = m(x)RP(x) + %D(h)

XeE

=" m(x)(A"" min{|g(x)], A})2+%D(A_1 min{|gl, A})

XeE
= 37 A 2x(x)(min{lg(x)], A})? + A>3 D(min{g], A})
xeE
<3 A Er(0)G(x) + A~ D(min{|g], A})
xeE
A2 32 7()P(x) + 1 D(min{lg], A})]
xcE

Pedro Cardoso



A Maximal Inequality for Reversible Markov Processes

By Proposition 10 and Propositon 11, we get

J(B) <A 2 7()P(x) + 1 D(min{lg], A})
“X€EE
<A Y2 7)) + 1 D(Ig))
“X€E
<A " 7)) + 1 D(g)]
x€E

We claim that

A function which minimizes the functional J, must satisfy (9).
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A Maximal Inequality for Reversible Markov Processes

Assume that the claim holds. Since ¢, is the unique function on
E(Gw) which satisfies the (9), ¢, is the minimizer of J,. In particular,
1
I(62) < () < A2 3 7(x)g%(x) + 1 D(9)]
XeE A

which leads to

Pr( sup_[g(X)| = A) <e*\/r(¢x)

0<t<T

ge”\/A—z [ 3 ®(x)g2(x) + 1D(a)]

xeE

AT

]
= \/<9.9>x +XD(9)-
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A Maximal Inequality for Reversible Markov Processes

Since X\ > 0 is arbitrary, we have

AT 1
Pr( sup_[g(X)| = A) < e\/< 9,9 > +7D(g),vA > 0.
0<t<T A A

In particular, choosing A = lT we have

e 1
Pr( sup _[g(Xt)| > A) SA\/< 9,9 >x +XD(Q)
0<t<T

erT 1
=2 1/<9:9>x +ITD(9)

e
=z¢< 9,9 >- +TD(g),

and the theorem is proved.
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A Maximal Inequality for Reversible Markov Processes

We only need to prove the claim. We have
1
Ih(f)=<f,f>, +XD(f)

= 3 R X) + 5 ST ILOx YY) — FOF

xXeE Xy
= m)FP(x) + 217 > 7L YY) — ()P
X€E X,yeE

Since J, is defined over the functions f : E — R such that
f(x) =1Vx € G, we get

S w()P(x) =" 7))+ Y w(x)F(x)

xeE xeG xeGC
=Y w12+ ) w(x)FP(x) =7(G) + > w(x)F(x).
xX€G xeGC xeGC
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A Maximal Inequality for Reversible Markov Processes

Since X; is a Markov process reversible with respect to the probability
measure w, ©(X)L(x,y) = n(y)L(y, x), VX,y € E and we have

> 7L YY) = 0P

x,yeE

= > 7L YY) = P+ > a(x)Lx, y)[f(y) — f(x)]?
X,yeG XeGyeGC

+ ) D 7 ILEGOIFY) = F)P + > m()Lx)Iy) = f(0)P
XEGC yeG X,yeGC

= > 7OOLOGY) = 1P+ D D 7Ly, )IF(y) - f(x)P
x,yeG xeGyeGC

+ 3 Y TILEGYIY) — FOP + Y 7L y)IF(y) — ()1
xXeGC yeG X,yeGC
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A Maximal Inequality for Reversible Markov Processes

Interchanging x and y in the second summation,

Y TLOG YY) — FOOP2

x,yeE
= > 7L, Y)0% + > D w(X)Lx, Y)If(x) — f(y)P
Xx,yeG yeGxeG°
+ O 7OLGYIFY) — FOP + > 7L, y)If(y) — F)P
xeGC yeG X,yeGC
=0+2 > Y w(X)LO VX)) — FWP+ > m(X)Lx, y)If(y) — f(x)]P
xeGC yeG x,yeGC
=2 3" > m()LG X)) = 1P+ > 7()Lx YY) — ()PP
XeGC yeG x,yeGC
=2 > 7)) =12 Lxy)+ > 7(x)Lx y)If(y) — f(x)P.
xeG° yeG X,y€GC
Yy#x
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A Maximal Inequality for Reversible Markov Processes

Define g : G° — R by

=> L(x,y)>0,vx € G°.

yeG
Then
> ()L YY) — FOOPP
x,yeE
=23 () = 1D _ LGy + D 7L IFY) — ()P
xeGC yeG x,yeGC
Y#X
=23 w()[f(x) = 11Pq0) + > ()L y)If(y) — F(OP.
X€GC x,yeGC

y#x
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A Maximal Inequality for Reversible Markov Processes

This leads to

() =Z7T(X)f2(x)+2lA Y L YIF(Y) = FOOP2

XeE x,yeE
=m(G) + Y 7(x)f(x) +1X > m()lf(x) = 117q(x)
xeGC x€GC
Z L(x, V() — F(x)?.
x ,yeGe
y#X

There are two possibilities: GC is finite (case 1) or G€ is not finite
(case 2).
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A Maximal Inequality for Reversible Markov Processes

Case 1: GC is finite. In this case, we can write G¢ = {xq,..., xn},
with N = |G€|. For every f : E — R such that f(x) = 1, Vx € G,
denote y; = f(x;), Vi=1,..., N. We also denote 7; := m(x;) > 0,
Vi=1,...,N,qi:=q(x),Vi=1,...,Nand L(/,)) := L(x;, X;),
Vi,j=1,...,N. Then, we have

M) =r(G) + Y m(x)F(x) +1X Y m()If(x) = 1Fa(x)

xeGC xeGEC

Z L(x, y)If(y) = ()PP

xyeGC

y#X
N N

=n(G)+ Y _ m(x) XZ ON)IF(x) — 11%q(x)
i=1 i=1
2)\2 Xi)L(xi, %) [F(x) — F(0)]2.
ij=1
J#i
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A Maximal Inequality for Reversible Markov Processes

Since 7r(x,-)L(x,-,x,-) = 7m(Xx;))L(x;, x;),Vi,j € {1,...,N},

+Z (X)) 2 (x7) Z m(x)[f(x;) — 117q(x)

N
;AZ () L(x, )F(3) — FOR + () L ) () — FO)P]

ij=1
j<i
N N
=m(G)+ ) _ m(x) Z () [F(x:) — 117q(x)
i=1 i=1
N
2)\2 )L, X)) [F(x) — FOa)I2 + m(a) LG, X:)[F(x1) — F()T?]
Ilj<l1
N 1 N 1 N
= G)+ZWIY?+XZ7T:‘[Y:'—1]2ql'+XZ7T/L(i,/)[yi—y/‘]2~
=1 =1 ij=1
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A Maximal Inequality for Reversible Markov Processes

Then, we have
() = Oy, yn) = O(F(x1),..., F(xn)),

where we define ¢ : RN — R by

S(y1,---, ¥N)
N 1 N 1 N
=n(G)+ ) _my? + X > milyi - 1Pqi + XZmL(ﬂ/)[y/’ - y?
=1 (=1 ij=1
j<i
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A Maximal Inequality for Reversible Markov Processes

We observe that x — x2, x — (x — 1)2 and (x, y) — (x — y)? are
convex functions in R, R and R?, respectively.

Since r; >0,Vi=1,...,N, g >0,Vi=1,... N,
L(i,j)>0,Vi#je1,...,N x>0 and a finite linear combination
(with non-negative coefficients) convex functions is convex, we have
that ® is convex in RN, Then ® assumes its minimum where its
gradient vanishes.
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A Maximal Inequality for Reversible Markov Processes

Foreveryi=1,..., N we have
o 2 1
ay; (A, yN) =2miyi + M )\ZW/ i,))2lyi — yjl
/#:
1 1
=2m(yi+ 3l = Mg+ 3Ll - i)
j#i
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A Maximal Inequality for Reversible Markov Processes

This leads to
gj;(f(xﬂ ..... f(xn))
N
=2 (106) + 1 [f00) ~ 1100) + 3 3L, %)[Fx) — 05)])
i
=2 ((06) + 11£00) — 1137 L06,y) + 5 32 LOG N)IF(x) — )
yeG yeGe
y;ﬁx
~2m(1(x) ZLX, FOa) — 1]+ ~ ZLX' )IF(0) = F)))
yeG yeGC
Y#Xi
—2m () + 3 32 LOGIFO) — FT+ 5 3 L0 IFCK) = F)])-
yEG yeGe
Y#Xi
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A Maximal Inequality for Reversible Markov Processes

Then, we have

S () Fw)
—2m (F00) + 3 30 L0u G — F1+ 5 3 L0uy)IECe) — ()
yeG yeGC
Y#Xi

—2m(1(6) + £ SOLOGYIFCx) — ()]

yeE
y;ﬁx

—27r,<f j ZLX, (X —f(y)])

yeE

=2m (1) — 3 3 LOGY)IFY) — 7))

yeE

—2m; (f(x;) — (Lf)( )),¥i=1,...,N.
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A Maximal Inequality for Reversible Markov Processes

Since m > 0, Vi =1,..., N, we have that 32 (f(x1),. .., f(xn)) = O if
and only if (Lf)(x;) = AMf(x;). Since ¢ attains its mininum where its
gradient vanish and Jx(f) = ®(f(x1), ..., f(xn)), we have that a
function f which minimizes the functional J, must be such that
(Lf)(x) = M(x), Vx € G and therefore satisfies (9).

Pedro Cardoso



A Maximal Inequality for Reversible Markov Processes

Case 2: GC is not finite.

Since G is countable, we can write GC = {x4, X2, ...}. For every

k € N, denote Gi := {x1,..., Xk} and £(Gy) for the set of functions
f € £(Gy) that are constant on G — Gk. Then (G )k>1 is an
increasing sequence of finite subsets of G whose union is equal to
GC and £(Gk) C £(Gk11),Vk € N. Observe that

0< ) L(x,y)=q(x) <> L(x,y) = A(x) < X,¥x € G°.

yeG yeE
Y#X
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A Maximal Inequality for Reversible Markov Processes

Since £(Gk) C E(Gk+1) C E(Gx), YKk € N, we have

f f) > f J(f),VkeN
fe'gr}Gk)J() feSI?G 7l oI €

which leads to

f)> f f).
kIme fe‘lsn(];k)J ( ) fesl?G )J/\( )

Suppose that infrcg (g ) IA(F) < limko oo infreg(g,) Jr(f). Then there
exists f, € £(G) such that

() O <) < i ot (O

Pedro Cardoso



A Maximal Inequality for Reversible Markov Processes

From the definition of g, we have that

0<q(x) =Y L(x,y) <> L(x,y) = Ax) <X, ¥x € G°.

yeaG yeE
Yy#X

For every k € N, define fx : E — R by

w(x) =1, if x € G;
fiu(x) = < fo(x), if x € Gk;
0, if x € G° — Gy.
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A Maximal Inequality for Reversible Markov Processes

Since fx(x) = 1,Vx € G,Vk € Nand |f(x)| < |fx(X)|,VXx € E,Vk € N,
fi(x) € £(Gs), Yk € N. Moreover, since fi(x) = 0,Vx € G¢ — Gk, we
have f, € £(Gk), Vk € N. Also, for every k € N, we have

() = dalfe) = m(G) + Y w(x)F (%) +% Y 7)o (x) = 112a(x)

xeGC xeGC
Z L(x, Y)[fo(¥) — ()P
x ,yeGC
Y#X
~m(G) = Y m(x)fF(x) —% > () (x) = 11Pq(x)
x€GC xeGC
—217 (X)L YY) = K (PP
X,yeGC
Y#X
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A Maximal Inequality for Reversible Markov Processes

Then, Jx(fx) — Ja(f) is equal to

Y rRM 4y Y w0kt~ 1P - 1]g(x)

XEGC -Gy x€GC— Gy

QAZ Y 7COLOGY) [[e(y) = ()PP — 2 (x)]

x€Gk yeGC— Gy

o O 2 LX) [fe(y) — Fo (O = £ (y)]
XEGC Gk Y€Gk

+217 ST AL () — (K.

X,ye GC— Gk
y#x
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A Maximal Inequality for Reversible Markov Processes

This leads to
(o) — (A0
< Y ARy Y w000~ 1P+ 1]a(x)

X€GC—Gy XEGC— Gy

+7Z Z T(X)L(X, ¥) [[fo (¥) — o (X)]Z + 12 (X)]

x€Gk yeGC— Gy

o 2 O mOILN) [Ihe(y) — B (¥ + (1)
xeGC Gy y€Gi
+l S TOLOG YY) — ()P

2\
X,y €GC— Gy

y#x
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A Maximal Inequality for Reversible Markov Processes

Since g(x) < A Vx € G, we get
| (fo) — ()l
< Y AW+ X A0l - 1+ 13

XGGcfek XGGchk

Y Y ROL ) [ y) — GO + (0]

xeGx yeGC— Gy

i Y S LY Ol — A + ()]
y€GC— Gy xe Gy

+1X S R OLX P (y) — (R

x,ye GC—GK
y#x
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A Maximal Inequality for Reversible Markov Processes

Since w(x)L(x, y) = n(y)L(y, x),Vx,y € E, we get
[a(fos) — In(fo)l i
< Y w0R0+ § > ) lfelx) 1P+ 1]

XEGC Gk X€GC—Ci
4] D Z LG Y) [ (y) — Fa (X)) + 2 (X))]
xeekyeGC
+1X S ALK (y) — (R
X,y€GC — Gy
y#x
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A Maximal Inequality for Reversible Markov Processes

Then, |Jx(fs) — Jr(f)| is smaller or equal to

> ﬁ(x)fozo(x)+§ > w0 [l (x) = 1P +1]

XEGC Gk xeGC— Gk

Y Y AL )~ 0P

xe€Gy ye GC— Gy

_ w(x)L(x,y)[foo(y)—foo<x)12}

X yeGC Gk

HY Y LR ).

xeGk y€GC—Gy
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A Maximal Inequality for Reversible Markov Processes

Since f,, € L?(r), we have
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A Maximal Inequality for Reversible Markov Processes

We also have that

x€ Gy
=3 1) [fe(¥) = 1P +1] <Y 7(x)[foo(x) = 117 + 1]
xeGC XcE
<3 w()[[2f2 (x) +2] + 1]
xeE
=3) “w(x)+2) w(x)fA(x) =8+2) n(x)f3(x) < o0,
X€E XE€E X€E

which leads to

lim > a(x)[fe(x) = 12+ 1] =0.
2o caoa,
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A Maximal Inequality for Reversible Markov Processes

We know that

Jim T(X)L(X, Y)[fe(¥) — fo(X)P
X,y € Gk
= Y 7()LX, Yo (y) — (X))
X,yeGC
< Z L(x, V)0 (¥) = F(X)]? = D(fy) < 0.
x,yeE
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A Maximal Inequality for Reversible Markov Processes

Then, we have

o< lim {3 Z LX) (y) = ()P

koo x€Gk yeGC—
+ Y AL (x,y)[foo(y)—foou)]z}
X,y €GC— Gy
< lim { > TN NNEe(y) = (0P
x,yeGC
= 3 7L Y)IBe(y) - ()2} = 0.
X,y € Gk
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A Maximal Inequality for Reversible Markov Processes

We know that

lim Y w(x)L(x, ) (x)

k— o0

X,y € Gy
XFY

= > LX) (x)

X,y€GC

XZ£Yy
<3 ALY R () = D7 ()R ()Y L(x,y)

x,yeE xXeE yeE

XAy y#X
=) m(x A(X) <> ()2 (X)X < oo

X€EE xeE
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A Maximal Inequality for Reversible Markov Processes

Then, we have

S LG < D Y m(x)Lx, )R (x)

xeGx ye GC— Gy x€Gk ye G — Gy
+ D> > LGN+ Y m()Lx Y (x)
x€GC—Gy yeGi x,y€GC— Gy
X2y
=Y 7L (X)) = > (X)X, y) 2 (%),
X,yeGC x,y€ Gk
X2y X2y

which leads to

2 2
fn T T e
XGkaEGC Gy

§k|i_>moo[ ST LX) - w(x)L(x,y)fEO(X)] =0.
x,y€GC X,y € Gy

X2y X7y
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A Maximal Inequality for Reversible Markov Processes

Finally, we get
lim [Ur(fo) — I (f)] = lim | (fs) — In(fk)| = O,
k— o0 k— o0

which is the same as

J)\(foo) = ||m J)\(fk) > kll—>n;o fe!i‘n(fc-:}k) J)\(f)

which is a contradiction with

f).
fegn(“c J>\(f) < J)\(f ) < lem felgr}ka)J)‘( )

Therefore, we have
lim inf J(f)= inf Jy\(f).

k—o0 fE£(Gy) fe€(Goo)
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A Maximal Inequality for Reversible Markov Processes

Let x € GC. Since G = {x1, Xz, .. ., }, there exists m € N such that
Xm = X. Choose k > m € N. Let f € £(Gk). Then there exists yp € R
such that f(x) = yo, VX € G° — Gk. Denote y; := f(x;),V1 <j < k.

Therefore
W) =n(G) + Y m(x)FP(x) +1X > w(If(x) - 117q(x)
xeGC xeGC
o 3 TOL ) — TP
x,yeGC
Yy#x
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A Maximal Inequality for Reversible Markov Processes

Then, we get
() =r(G)+ > c()Px)+ DY w(x)FP(x)
x€ Gy x€GC — Gy
1 Y0 O~ a0 + 1 Y w(0lfx) — 1Pa(x)
XEGk XEGC— Gy
o 3 T (OLEIAY) ~ (P
x,y€Gk
y#X
Z Z 7L Y)[F(y) = F)PP
XEGk yeGC—

o Z COL( YY) — FOP

XEGC Gy y€Gi

+217 > wOOLOCYIAY) — )

X, ye GC—Gk
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A Maximal Inequality for Reversible Markov Processes

Then, we have

k k
Ah()=r(G)+ Y )y +y¢ > = XZ Oy — 112q(x)
i=1 X€GC — Gy i=1
o — 117 1 VAN SR -
+ /\ Z W(X)Q(X) + 2)\ 71—(X)L(XH X/)[y/ yl]
XEGC—Gy ij=1
J#i

A > Y )L Y)IFY) — ()P

x€ Gy ye GC— Gy

Z Y. LGP — )2

XeGk yeGC—Gy
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A Maximal Inequality for Reversible Markov Processes

This leads to

=

A (f) =n( G)+Z (xi)yf + y§m(GC Z ()i — 112q(x)

i=1 i=1

U ST

xeGC—Gk

+*21 o> [W(Xi)L(xi, X)W — yil? + 7 () L(xi, X)) yi — y,-j]z}
=
j<i

)\ Z Z X,, [yO - y/]

i=1 yeGC—
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A Maximal Inequality for Reversible Markov Processes

Then, we get

k
() =r(G) + Y O + Br(GP XZ (0)lyi — 1Pa(x)

i=1

42
+H Z W(X)Q(X) I XZT(XI')L(XHXI')D/I' - y’]2

XEGC—Gk ’aj:1
J<i
)\Z Z L(xi,y [YO*YI] .

i=1 ye GC— Gy
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A Maximal Inequality for Reversible Markov Processes

Define ¢ : Rt — R by

k

kYo, Y1, -5 V) = (G) + ZW(XI)}’/Z +y5m(GC — Gr)
i=1

k
X Z XI [}/I - 1]2 (Xl)

k

D0 TE S a0 + 3 D n0e)L0s )y~ i
xeGC—Gy =1
j<i

uM»

Z m(xi))L(Xi, ¥)[Yo —}/I] °
eGC—

Then J\(f) = ®(¥o, Y1, - - Yk)-
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A Maximal Inequality for Reversible Markov Processes

We observe that x — x2, x — (x — 1)2 and (x, y) — (x — y)? are
convex functions in R, R and R?, respectively.

Since 7(x) > 0,Vx € E, q(x) > 0,Vx € E, L(x,y) > 0,Vx #y € E
,A > 0 and a finite linear combination (with non-negative coefficients)
convex functions is convex, we have that ® is convex in R*'. Then
&, assumes its minimum where its gradient vanishes.
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A Maximal Inequality for Reversible Markov Processes

Forevery i=1,..., k we have
oP 27w (xi)[yi — 1]9(x;
T;(YO7Y1,-~-,YI<) =27 (X))yi + ul ,)[y,)\ l9(x)
k
1 1
+XZ7T(Xi)L(Xi7X/)2[y/'—Y/] +3 > w()L(xi, y)2lyi — ol
j=1 ,VGGC*G;(
J#
1 1
=2m() { i + 5 = 11900) + 5 YL )1 — ]
=1
J#

Y Lyl

ychka
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We have
k
Y 3= 11000 -y Lo -yl + 5 Y Lol o
/;11 yeGC—Gy
k
= 1(06) + 11F00) — 11 Y L6 )+ 1D L0k 9)[706) — ()]
yea Jj=1
J#

+1X S Lx »)If(x) — F()]

ychfGK

=100) + 3 30 L0600 11+ 5 3 L0 )F6) — F(¥)]
yeG yeGk
Y#Xi

Y L)) - )]

yeGCka
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Then, we get

k
1 1 1
yi+ i —1]g(xi) + XZL(X/',X/')[YI —yl+5 > Lyl — vl
j=1 yeGC—Gy

JAi

=106) + 5 30 L0 IO ~ FT+ 5 3 LOGPIF0) — F(9)

yeG yeGC
YF#Xi

ZL xi, Y)[f(xi) — f(y)]

yeE
y#X

=f(x) ZLX/ )F(xi) — f(y)]

}/EE

f(x;) —fZLx, NF(y) — f(x)] = f(x;) — (Lf)(x,-).

yeE
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This leads to

oo, F06). £)) =

Dy
Yo, Yi,.--, Vi
y.(o 1 k)

:27r(x,-){y,- + 7[ —1]q(x;) ZL Xi, X)) [yi — ¥l
/aé:

> L ylyi— YO]}

ych—Gk

:27r(x,-){f(x,-) - %(Lf)(x,-)}.
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A Maximal Inequality for Reversible Markov Processes

Since 7(x) > 0, Vx € G°, we have that %%(yo, f(x1),...,f(xc)) = 0if
and only if (Lf)(x;) = AMf(x;). Since ® attains its mininum where its
gradient vanish and Jx(f) = ®«(yo, f(x1), ..., f(Xk)), we have that a
function fx which minimizes the functional J, on £(Gx) must be such
that (Lfk)(x) = Mk(x), VX € Gk. In particular, (Lfi)(X) = My (X).
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A Maximal Inequality for Reversible Markov Processes

Then, for every k > m, we have that a function fx which minimizes the
functional J, on £(Gk) must be such that (Lf,)(X) = Afx(X). Since

lim inf J\(f)= inf Jx(F),
k— o0 fEE(Gk) fe€(Goo)

we have that a function f,, which minimizes the functional J, on
E(Gx) must be such that (L, )(X) = M. (X). Since x is an arbitrary
element in G°, we hava that

(Lf)(X) = My (x),¥x € GE.

Therefore, ., satisfies (9) and the claim is proved.
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