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Chapter 1

Introduction

These notes have been written based on material of the articles [1], [2] and [3]
which was presented on a mini-course that the author gave while visiting Insti-
tut Henri Poincaré in Paris in May 2017 for the trimester "Stochastic dynamics
out of equilibrium" that held from the 3rd of April to the 7th of July. The slides
and the videos of the mini-course can be seen in
https://indico.math.cnrs.fr/event/844/page/5.

The content of the notes is to explain how to derive partial differential equa-
tions with different types of boundary conditions from varied underlying micro-
scopic stochastic dynamics. In the next coming chapters we consider a macro-
scopic space which is the interval [0, 1] and which is discretized according to a
scaling parameter N giving rise to N intervals of size 1/N . To each q ∈ [0, 1]
belonging to the interval [i/n, i+1/n)we associate to it the point i/n and in the
discrete set of points {1, ..., i, ...N −1} we will define a microscopic dynamics of
exclusion type which is Markovian. The discrete set of points {1, ..., i, ...N − 1}
will be called the bulk and to it we add two extra points x = 0 and x = N which
will act as reservoirs. The exclusion dynamics ensures that there is at most one
particle per site in the bulk and the Markovian dynamics comes from the fact
that each particle waits for rings of random clocks exponentially distributed and
independent, after which the particle jumps from a site x in the bulk to another
site y in the bulk according to a probability transition rate p : Z×Z→ [0, 1], or
the particle leaves the system through one of the reservoirs. The reservoirs will
be regulated by a parameter which has the capacity to slow or fast the bound-
ary dynamics. More precisely, particles can be injected in the bulk from the site
x = 0 (resp. x = N) to the site y at rate ακN−θ p(y) (resp. βκN−θ p(N − y))
and can be removed from the bulk at the site y to the site x = 0 (resp. x = N)
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6 Introduction

at rate (1− α)κN−θ p(y) (resp. (1− β)κN−θ p(N − y)). Above, α,β ∈ [0, 1],
θ ∈ R and κ > 0. The goal in these notes is to derive the partial differential
equations which describe the space-time evolution of the density of particles in
the system. These equations will have boundary conditions which will depend
on the strength of the boundary dynamics, namely, the parameter θ .

The goal is to analyse which type of boundary conditions we can get and
what is their dependence on the strength of the reservoirs. For that purpose, we
split these notes into two main chapters to distinguish the case in which jumps
are nearest-neighbor or not. Therefore in Chapter 2, we consider the dynamics
described above but with p : Z×Z→ [0,1]which satifies p(x , y) = p(y−x) = 0
if |x − y| > 1, p(0) = 0 so that p(1) = p(−1) = 1

2 . This means that in
the bulk particles can jump to their nearest-neighbors and particles can be in-
jected/removed in the bulk/from the bulk through the sites x = 1 or x = N −1.
For these models we will derive the heat equation with three different types of
boundary conditions: non-homogenenous Dirichlet boundary conditions when
the reservoirs are fast (which corresponds to θ < 1) and Neumann boundary
conditions when the reservoirs are slow (which corresponds to θ > 1). Linking
the aforementioned two types of boundary conditions, for a particular strength
of the boundary dynamics (which corresponds to θ = 1), we will derive the
heat equation with a type of linear Robin boundary conditions.

In Chapter 3, we will consider the dynamics described above, but allowing
long jumps given by a probability transition rate p : Z × z → [0, 1] such that
p(x , y) = p(y − x), which is symmetric, namely p(y − x) = p(x − y), and we
will distinguish two cases: the first one where p(·) has finite variance and then
the case where p(·) has infinite variance. In the first case, we will obtain an
extension of the results of the model with only nearest-neighbor jumps, that is
we will derive the heat equation with the three types of boundary conditions
mentioned above but for a certain choice of the transition probability two new
regimes appear when the reservoirs are fast, namely, a reaction-diffusion equa-
tion and a reaction equation, both endowed with non-homogeneous Dirichlet
boundary conditions. In the case where p(·) has infinite variance and for a par-
ticular strength of the reservoirs (which corresponds to θ = 0), we will derive
a collection of fractional reaction-diffusion equations with non-homogeneous
Dirichlet boundary conditions. For the interested reader we note that when p(·)
has infinite variance and when the strength of the reservoirs is slow (which cor-
responds to θ > 0), we cannot say anything about the equation nor its boundary
conditions. In [2] a similar model has been studied and some conjectures have
been presented in the case where the reservoirs are slow. We believe that the
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same conjecture should be true for this model, but we leave this for a future
problem to look at. We also note that it would be very interesting to consider
other types of boundary dynamics or even more general type of bulk dynamics
than the exclusion dynamics in order to obtain other partial differential equa-
tions with various boundary conditions.
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Chapter 2

Symmetric simple exclusion in
contact with reservoirs

2.1 The models

In this section we describe the collection of models that we are going to consider
in these notes. First we start by fixing the notation which fits all the models and
then we particularize our choice of the parameters in such a way that we treat
each model, with its special features, separately.

For that purpose, we denote by N a scaling parameter, which will be taken
to infinity later on. For N ≥ 2 we denote by ΛN = {1, . . . , N −1} the discrete set
of points to which we call the bulk.

The exclusion process in contact with stochastic reservoirs is a Markov pro-
cess, that we denote by {ηt : t ≥ 0}, which has state space ΩN := {0,1}ΛN .
The configurations of the state space ΩN are denoted by η, so that for x ∈ ΛN ,
η(x) = 0 means that the site x is vacant while η(x) = 1 means that the site x
is occupied. For an illustration of the dynamics let us first take N = 5 so that
the bulk is the discrete set of points {1, 2,3, 4}:

1 2 3 4

Now, to describe a possible initial configuration we can do the following.
Toss a coin, if we get head we put a particle at the site 1 and if we get a tail we
leave it empty. Repeat this for each site of the discrete set ΛN and suppose that
we got at the end to the configuration η0 = (0, 1,0, 0)which can be represented
as:

9



10 Symmetric simple exclusion

1 2 3 4

Now, we start to particularize our choice for the dynamics. We are going
to add one reservoir at each end point of the bulk. This means that in our
construction, we add the points x = 0 and x = N to the bulk. Going back to
the picture above, this means that we have now the set {0,1, 2,3, 4,5} where
particles can be placed, but the sites x = 0 and x = 5 will act as reservoirs.

0 1 2 3 4 5

Note that the bulk stays unchanged, the role of the boundary points {0, N}
is to allow particles to get in and out of the bulk. So, for example, in the initial
configuration given above, now we have the sites x = 0 and x = N occupied,
representing the fact that in x = 0 and x = N there are particles that can enter
to the bulk and that can be removed from the bulk to the reservoirs.

0 1 2 3 4 5

Now we describe the time between jumps. For that purpose, for each pair of
sites (x , y) we associate a Poisson process of intensity p(x , y) = p(y − x). The
Poisson processes associated to different bonds are independent. Note that the
bonds in the bulk are not oriented. In the first dynamics that we are describing,
we consider p(y−x) = 0 if |x− y|> 1, p(1) = p(−1) = 1

2 so that jumps can only
occur to a nearest-neighbour position and for that reason the exclusion process
coins the name simple exclusion process. At the boundary points we associate two
Poisson processes to each bond containing a boundary point. More precisely, to
the bond {0, 1} (resp. {1,0}) we associate a Poisson process of intensity ακN−θ

(resp. (1−α)κN−θ ) and to the bond {N −1, N} (resp. {N , N −1}) we associate
a Poisson process of intensity (1 − β)κN−θ (resp. βκN−θ ). Above we fix the
parameters α,β ∈ [0, 1], θ ∈ R and κ > 0. The role of the parameter θ is to
regulate the slowness/fastness of the reservoirs. If θ > 0 and θ increases then
the reservoirs are slower and if θ < 0 and θ decreases then the reservoirs are
faster.

We remark that another interpretation of the previous dynamics at the bound-
ary could be given as follows. Particles can either be created or annihilated at
the sites x = 1 and x = N − 1 according to the following rates:
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• at site x = 1:

– creation rate ακN−θ ,

– annihilation rate (1−α)κN−θ ,

• at site x = N − 1:

– creation rate βκN−θ ,

– annihilation rate (1− β)κN−θ .

Note that in any case, the exclusion rule has to be respected. At most one
particle is allowed at each site of the bulk (recall that the state space is {0,1}ΛN )
so that particles can only be created (resp. removed) at the sites x = 1 or
x = N−1 if the corresponding site is empty (resp. occupied), otherwise nothing
happens.

Before we proceed let us see an illustration of a possible realization of the
Poisson processes as given in the figure below.
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Figure 2.1: Marks of Poisson processes.

At the right hand side in
Figure 2.1 we represent by
"×" each mark of a possi-
ble realization of the Poisson
processes associated to the
bonds. At the left hand side
we put an arrow going down
which is representing the evo-
lution of time and each sign
"−" means that a clock has
rung according to some Pois-
son clock, so that at the corre-
sponding time, a jump from a
particle might have occurred.

We note that in Figure
2.1 we did not distinguish
the marks of the Poisson pro-
cesses associated to the ori-

ented bonds at the boundary because we believe that it is simpler to analyse
the dynamics at the boundary by allowing particles to get in or get out accord-
ing to the Poisson marks but also taking into account the exclusion rule.

In order to give an example, let us see now all the configurations that we
obtain starting the dynamics from the configurationη0 = (0, 1,0, 0) represented
above and the realization of the Poisson processes given in the previous figure.
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η0
η1
η2
η3
η4
η5
η6
η7
η8
η9
η10
η11
η12
η13
η14
η15
η16
η17
η18
η19
η20

Figure 2.2: Possible configurations
starting from (0, 1,0,0)

By abuse of notation, in the Figure
at the left hand side, we numbered the
configurations that we obtained by the
number of the marks of the Poisson pro-
cesses (which in the example are equal
to 20) just to make the presentation sim-
ple. We note that the configurations are
indexed by time t which is continuous
and not discrete. Note that the differ-
ence between η0 = (0, 1,0, 0) and η1 =
(0, 0,1, 0) is only at two sites (this is al-
ways the case when we compare two con-
figurations which differ by a jump of a
particle in the bulk, a jump in the bulk af-
fects the occupation variables at two sites)
and η1 is obtained from η0 by shifting the
particle at the site 2 in η0 to the site 3.
This is a consequence of the fact that the
first mark of the Poisson process that oc-
curs is associated to the bond {2,3} and
that in η0 there us a particle at the site 2.
The next mark we see is associated to the
bond {4, 5} and since in η1 = (0, 0,1, 0)
there is no particle at the site x = 4,
a particle is injected in the bulk at the
site 4, giving rise to η2 = (0,0, 1,1) and
so on. Note that the boundary dynamics

only changes the configuration at one site.
We also note that the ring of a clock does not imply that the configuration

of the system has changed. In the example above η3 = η4 = (0, 0,1,0) since
the corresponding Poisson mark is associated to the bond {1,2} and since both
sites x = 1 and x = 2 are empty, nothing happens and particles wait a new ring
of a clock.

The first dynamics that we are going to consider in these notes, and which
is described in this chapter is completely characterized by now, but we note
that in Chapter 3 we are going to generalize the previous dynamics by allowing
particles to give long jumps according to some probability transition rate p :
Z × Z → [0,1] such that p(x , y) = p(y − x) and which is symmetric, that is
p(y − x) = p(x − y). In the latter dynamics, there is only one reservoir at
each end point of the bulk but can particles can be injected from them to any
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site of the bulk or they can be removed from any site of the bulk to one of the
reservoirs. We will distinguish two cases: when p(·) has finite variance and
when p(·) has infinite variance.

2.2 Illustration of the dynamics

In this section we draw some pictures to illustrate more easily the dynamics that
we defined in the previous subsection. The particles at the bulk are coloured
in gray and the particles at the two reservoirs are coloured in blue. We also
added the clocks only at the bonds where there are particles but we note that
the clocks are present in all bonds of the form {x , x + 1}. Whenever there is a
ring of a clock we see some red lines on top of the corresponding clock and the
jump rates are indicated above the corresponding jumps which are represented
by arrows.

In the first picture below, we take N = 11 and the initial configuration is
η0 = (0, 1,0, 0,0, 1,0, 0,1, 0). Note that this initial configuration changes only
if one of the clocks associated to bonds containing the sites x = 2,6, 9 rings
(which makes the corresponding particle to displace one position to the left or
right of it) or if the clocks at the boundary sites x = 0 (resp. x = 11) ring
(which makes a particle get into the system at the site x = 1 (resp. x = 10).

κβ/Nθ

κ(1− β)/Nθ

κ(1−α)/Nθ

κα/Nθ

1
2

1
2

Suppose that the first clock to ring is associated to the bond {6,7}. Since there
is a particle at the site x = 6 it jumps to the site x = 7 with rate 1/2. See the
figure below.
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κβ/Nθ

κ(1− β)/Nθ

κ(1−α)/Nθ

κα/Nθ

Now let us suppose that the next clock to ring is associated to the oriented
bond {0, 1}.

κβ/Nθ

κ(1− β)/Nθ

κ(1−α)/Nθ

κα/Nθ

Since there is no particle at the site x = 1, a particle is injected into the
system at the site x = 1 with rate ακN−θ . See the figure below.

κβ/Nθ

κ(1− β)/Nθ

κ(1−α)/Nθ

κα/Nθ

Finally let us suppose that the next clock to ring is associated to the oriented
bond {N , N − 1}.
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κβ/Nθ

κ(1− β)/Nθ

κ(1−α)/Nθ

κα/Nθ

Since there is no particle at the site x = N −1, a particle is injected into the
system at the site x = N − 1 with rate βκN−θ . See the figure below.

κβ/Nθ

κ(1− β)/Nθ

κ(1−α)/Nθ

κα/Nθ

2.3 Infinitesimal generator

The dynamics described above is Markovian and can be completely character-
ized by mean of its infinitesimal generator. The Markov process {ηt : t ≥ 0}
whose dynamics we have just defined has infinitesimal generator denoted by
LN which is expressed as

LN =LN ,0 +LN ,b, (2.3.1)

where LN ,0 and LN ,b are given on functions f : ΩN → R by

(LN ,0 f )(η) =
N−2
∑

x=1

1
2

�

f (ηx ,x+1)− f (η)
�

,

LN ,b =L 1
N ,b +L

N−1
N ,b , (2.3.2)
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where for x ∈ {1, N − 1}

(L x
N ,b f )(η) =

κ

Nθ
cx(η, r(x))

�

f (ηx)− f (η)
�

,

r(1) = α and r(N − 1) = β ,

(ηx ,y)(z) =











η(z), z 6= x , y,

η(y), z = x ,

η(x), z = y

, (ηx)(z) =

¨

η(z), z 6= x ,

1−η(x), z = x ,
(2.3.3)

and for x ∈ ΛN and y ∈ {0, N}

cx(η; r(x)) :=
1
2
[η(x) (1− r(x)) + (1−η(x))r(x)] . (2.3.4)

Note that the generator above splits into the sum of the generator LN ,0
(which is related to the jumps in the bulk) and LN ,b (which is related to the
jumps from the boundary or from the reservoirs). We will refer to the first one
as the exchange dynamics and the latter one as the flip dynamics, because in
LN ,0 we exchange the occupation variables η(x) and η(x + 1) and in L x

N ,b we
flip the value of the occupation variable at η(x).

We consider the Markov process speeded up in the time scale Θ(N) and
we note that the process {ηtΘ(N) : t ≥ 0} has infinitesimal generator given by
Θ(N)LN . To see this relation, let L̃N be the generator of the process {ηtΘ(N) :
t ≥ 0}. By definition, for f : ΩN → R, we have that

L̃N f = lim
s→0

S̃s f − f
s

, (2.3.5)

where S̃s := SsΘ(N) is the semigroup associated to L̃N and Ss is the semigroup
associated to LN . Then,

Θ(N)LN f = lim
t→0
Θ(N)

St f − f
t

= lim
s→0
Θ(N)

SsΘ(N) f − f

sΘ(N)
= L̃N f , (2.3.6)

we conclude that L̃N := Θ(N)LN .
We note that ηtθ (N) depends on α, β , θ and κ but we will omit these in-

dexes in order to simplify notation. Fix T > 0 and θ ∈ R. We denote by PµN

the probability measure in the Skorohod space D([0, T],ΩN ) induced by the
Markov process {ηtΘ(N) : t ≥ 0} and the initial probability measure µN and we
denote by EµN

the expectation with respect to PµN
.
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Our goal in these notes is to analyse the impact of changing the strength
of the reservoirs (by changing the value of θ) on the macroscopic behaviour
of the system. More precisely, we want to obtain the hydrodynamic equations
of the process which will have different boundary conditions depending on the
range of the parameter θ which rules the strength of the reservoirs. Before
proceeding, in the next subsection we analyse the invariant measures for this
model.

2.4 Stationary measures

For ρ ∈ (0,1) we denote by νN
ρ the Bernoulli product measure in ΩN with den-

sity ρ, that is, for x ∈ ΛN :

νN
ρ {η : η(x) = 1}= ρ. (2.4.1)

According to this measure the occupation variables {η(x)}x∈ΛN
are independent

and for each x ∈ ΛN the random variable η(x) has Bernoulli distribution of
parameter ρ. When we restrict the parameters α and β such that α = β = ρ,
then these measures are invariant for the dynamics described above. In fact,
a stronger result is true, see the next lemma where we prove that that these
measures are reversible.

Lemma 2.4.1. For α= β = ρ the Bernoulli product measures νN
ρ are reversible.

Proof. Fix two functions f , g : ΩN → R. To prove the lemma, we need to show
that

∫

ΩN

g(η)LN f (η)dνN
ρ =

∫

ΩN

f (η)LN g(η)dνN
ρ . (2.4.2)

Let us start with the exchange dynamics given by L(N , 0). In this case we need
to check that
∑

x∈ΛN

∫

ΩN

g(η)( f (ηx ,x+1)− f (η))dνN
ρ =

∑

x∈ΛN

∫

ΩN

f (η)(g(ηx ,x+1)− g(η))dνN
ρ .

For that purpose note that, for fixed x ∈ ΛN and performing a change of vari-
ables ξ= ηx ,x+1, we have that

∫

ΩN

g(η) f (ηx ,x+1)dνN
ρ =

∑

η∈ΩN

g(η) f (ηx ,x+1)νN
ρ (η)

=
∑

ξ∈ΩN

g(ξx ,x+1) f (ξ)
νN
ρ (ξ

x ,x+1)

νN
ρ (ξ)

νN
ρ (ξ).
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Now note that
νN
ρ (ξ) =

∏

x∈ΛN

ρξ(x)(1−ρ)1−ξ(x)

so that

• if ξ(x) = 1 and ξ(x+1) = 0, denoting by ξ̃ the configuration ξ removing
its values at x and x + 1 so that ξ = (ξ̃,ξ(x),ξ(x + 1)), then νN

ρ (ξ) =
νN
ρ (ξ̃)ρ(1−ρ) and νN

ρ (ξ
x ,x+1) = νN

ρ (ξ̃)(1−ρ)ρ, so that

νN
ρ (ξ

x ,x+1)

νN
ρ (ξ)

= 1. (2.4.3)

• if ξ(x) = 0 and ξ(x+1) = 1, then νN
ρ (ξ) = ν

N
ρ (ξ̃)(1−ρ)ρ and νN

ρ (ξ
x ,x+1) =

νN
ρ (ξ̃)ρ(1−ρ), so that (2.4.3) is also true.

Therefore, we obtain that
∫

ΩN

g(η) f (ηx ,x+1)dνN
ρ =

∑

ξ∈ΩN

g(ξx ,x+1) f (ξ)νN
ρ (ξ) =

∫

ΩN

g(ηx ,x+1) f (η)dνN
ρ .

which proves (2.4.2) forLN ,0. For the flip dynamics given byLN ,b we note, for
the left boundary, that

∫

ΩN

g(η)c1(η,α) f (η1)dνN
ρ

=
∑

η∈ΩN

g(η)(1−η(1))α f (η1)νN
ρ (η) +

∑

η∈ΩN

g(η)(1−α) f (η1)νN
ρ (η).

By the change of variables ξ= η1, the previous expression can be written as

∑

ξ∈ΩN

f (ξ)
¦

g(ξ1)ξ(1)α
νN
ρ (ξ

1)

νN
ρ (ξ)

+ g(ξ1)(1− ξ(1))(1−α)
νN
ρ (ξ

1)

νN
ρ (ξ)

©

νN
ρ (ξ).

A simple computation shows that if ξ(1) = 1, then
νN
ρ (ξ

1)
νN
ρ (ξ)

= 1−ρ
ρ so that the

previous expression can be written as

κ

Nθ

∑

ξ∈ΩN

f (ξ)
¦

g(ξ1)ξ(1)α
1−ρ
ρ
+ g(ξ1)(1− ξ(1))(1−α)

ρ

1−ρ

©

νN
ρ (ξ),



Stationary measures 19

from where we get, for α= ρ, that
∫

ΩN

g(η)c1(η,α) f (η1)dνN
ρ =

∫

ΩN

g(η1)c1(η
1,ρ) f (η)dνN

ρ .

The same computation can be done if ξ(1) = 0, from where we conclude. We
can repeat the same computation for the right boundary and this proves (2.4.2)
for LN ,b. This ends the proof of the lemma.

When α 6= β , the Bernoulli product measures are not reversible nor invari-
ant. A simple way to check the non-invariance is to argue as follows. Sup-
pose that the measures νN

ρ are invariant. Then we know that for any function
f : ΩN → R we have that

∫

ΩN

LN f (η)dνN
ρ = 0. (2.4.4)

But for f (η) = η(1), a simple computation shows that LN ,0 f (η) = 1
2(η(2) −

η(1)) and L 1
N ,b f (η) = κ

2Nθ [α− η(1)], so that
∫

ΩN
LN f (η)dνN

ρ =
κ

2Nθ (α− ρ)
and this equals to 0 iff α = ρ. Analogously, repeating the same computations
as above for f (η) = η(N − 1), we would conclude (2.4.4) iff β = ρ. But this
contradicts the fact that α 6= β .

When α 6= β , since we have a finite state irreducible Markov process, then
there exists a unique stationary measure that we denote by µss. A way to get
information about this measure is to use the matrix ansatz method introduced
in [6, 7]. The idea behind the method is the following. Let

fN−1(η(1), · · · ,η(N − 1))

denote the weight of the configuration η := (η(1), · · · ,η(N − 1)) with respect
to the stationary measure µss and let us suppose that

fN−1(η(1),η(2), · · · ,η(N − 1)) =wT Xη(1)Xη(2) · · ·Xη(N−1)v,

where
Xη(x) = η(x)D+ (1−η(x))E,

and D, E are matrices (which in general do not commute) and the vectors
wT ,v are present in order to convert the matrix product into a scalar. In the
figure below we take N = 6 and we present a possible configuration η =
(0,1, 0,1, 1) whose corresponding weight is given by fN−1(η) = wT EDEDDv.
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↓
wT

↓
E

↓
D

↓
E

↓
D

↓
D

↓
v

Let P(η(1),η(2), · · · ,η(N − 1)) be the normalized weight of the configuration
η := (η(1), · · · ,η(N−1))with respect to the stationary state µss, which is given
by

P(η(1),η(2), · · · ,η(N − 1)) =
fN−1(η(1),η(2), · · · ,η(N − 1))

ZN−1
,

where ZN−1 is the sum of the weights of the 2N−1 possible configurations in ΩN :

ZN−1 =
∑

η(1)∈{0,1}

· · ·
∑

η(N−1)∈{0,1}

fN−1(η(1),η(2), · · · ,η(N − 1)).

From the definition of fN−1, we have that

P(η(1),η(2), · · · ,η(N − 1)) =
wT Xη(1)Xη(2) · · ·Xη(N−1)v

ZN−1
,

and the normalization can be written as

ZN−1 =
∑

η(1)∈{1,0}

· · ·
∑

η(N−1)∈{1,0}

wT Xη(1)Xη(2) · · ·Xη(N−1)v

=
∑

η(1)∈{1,0}

· · ·
∑

η(N−2)∈{1,0}

wT Xη(1)Xη(2) · · ·Xη(N−2)(D+ E)v

= · · ·=wT (D+ E)N−1v.

(2.4.5)

Let us now impose conditions on the matrices D and E. For that purpose, let
C = D+E. The expectation of the occupation variable at the site x , with respect
to the stationary state µss, is given by

ρN
ss (x) =

∫

ΩN

η(x)dµss =

∑

η(1)∈{1,0} · · ·
∑

η(N−1)∈{1,0}η(x) fN−1(η(1), · · · ,η(N − 1))

ZN−1

=
1

ZN−1

∑

η(1)∈{1,0}

· · ·
∑

η(N−1)∈{1,0}

�

wT
x−1
∏

j=1

Xη( j)D
N−1
∏

j=x+1

Xη( j)v
�

=
wT C x−1DCN−1−xv

wT CN−1v
.

(2.4.6)
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Note that above the sum does not contain the factor η(x) ∈ {1, 0} since the
expectation is non-zero iff η(x) = 1. We can also compute the expectation of
the product of two point occupation variables at the sites x and y , with respect
to the stationary state µss, that is, for 1≤ x < y ≤ N − 1, we have that
∫

ΩN

η(x)η(y)dµss =

=

∑

η(1)∈{0,1} · · ·
∑

η(N−1)∈{0,1}η(x)η(y) fN−1(η(1), · · · ,η(N − 1))

ZN−1

=
wT C x−1DC y−x−1DCN−1−yv

wT CN−1v
.

Therefore, the two point correlation function, with respect to the stationary
state µss, is given on 1≤ x < y ≤ N − 1 by

ϕN
ss (x , y) :=

∫

ΩN

(η(x)−ρN
ss (x))(η(y)−ρ

N
ss (y))dµss

=
wT C x−1DC y−x−1DCN−1−yv

wT CN−1v

−
wT C x−1DCN−1−xv

wT CN−1v
.
wT C y−1DCN−1−yv

wT CN−1v
.

(2.4.7)

A simple computation (see [5]) shows that for the dynamics that we are consid-
ering in this chapter, the matrices D, E and the vectors wT ,v satisfy the following
relations:

DE − ED = D+ E = C ,

wT
�

κα

2Nθ
E −

κ(1−α)
2Nθ

D
�

=wT ,
�

κ(1− β)
2Nθ

D−
κβ

2Nθ
E
�

v= v.

(2.4.8)

Moreover, we also have that

wT D =wT [αC − Nθ ],

Dv= [Nθ + βC]v,

wT E =wT

�

Nθ

α
+

1−α
α

D

�

.

(2.4.9)

We note that the equations above also show that

C(D+ I) = (D+ E)(D+ I) = DD+ D+ ED+ E,
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and that C(D+ I) = DD+DE = DC . Analogously we have that C D = (D− I)C .
Using (2.4.5), we obtain that ZN−1 for our dynamics is given by

ZN−1 =
1

(α− β)N−1

Γ (2Nθ + N − 1)
Γ (2Nθ )

,

where Γ (·) denotes the Gamma function. For the details on these computations
we refer the interested reader to [5]. Now, in (2.4.6), by writing DCN−1−x =
DCCN−2−x and using the fact that C(D+ I) = DC we obtain

ρN
ss (x) =

wT C x−1C(D+ I)CN−2−xv
ZN−1

=
wT C x DCN−2−xv

ZN−1
+

wT CN−2v
ZN−1

.

Repeating the procedure above and using the explicit expression for ZN−1 given
above, we obtain a simple expression for ρN

ss (x) given by

ρN
ss (x) = β + (N − x)

α− β
2Nθ + N − 2

+ (Nθ − 1)
α− β

2Nθ + N − 2
. (2.4.10)

In fact last identity can be rewritten as

ρN
ss (x) =

κ(β −α)x
2Nθ + N − 2

+α+
κ(β −α)x

2Nθ + N − 2

�Nθ

κ
− 1

�

.

Analogously, from a simple, but long computation (see [5]), we have that
∫

ΩN

η(x)η(y)dµss = βρ
N
ss (x) + (N − y + Nθ − 1)

α− β
2Nθ + N − 2

ρN−1
ss (x),

and from (2.4.10), we obtain
∫

ΩN

η(x)η(y)dµss = β

�

β(x + Nθ − 1) +α(N − x + Nθ − 1)
2Nθ + N − 2

�

+
(N − y + Nθ − 1)(α− β)

2Nθ + N − 2

�

β(x + Nθ − 1) +α(N − x + Nθ − 2)
2Nθ + N − 3

�

.

Putting together last expresssions and doing simple, but long, computations we
conclude that

ϕN
ss (x , y) = −

(α− β)2(x + Nθ − 1)(N − y + Nθ − 1)
(2Nθ + N − 2)2(2Nθ + N − 3)

. (2.4.11)

From the previous identity it follows that

max
x<y
|ϕN

ss (x , y)|=

(

O
�

Nθ

N2

�

, θ < 1,

O
�

1
Nθ

�

, θ ≥ 1,
→N→∞ 0. (2.4.12)
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This means that as the size of the bulk tens to infinity, the two point correlation
function vanishes. In the next subsection we analyse the empirical profile and
the two point correlation function for more general initial measures.

2.5 Empirical profile and correlations

Before stating the hydrodynamic limit result we explain here how to have a
guess on the form of the hydrodynamic equations by using the empirical profile.
which was defined above in the case of the measure µss. Now we generalize its
definition. For a measure µN in ΩN and for each x ∈ ΛN we denote by ρN

t (x)
the empirical profile at the site x , given by

ρN
t (x) = EµN

[ηtN2(x)] .

We extend this definition to the boundary by setting

ρN
t (0) = α and ρN

t (N) = β , for all t ≥ 0 .

Note that since µss is a stationary measure the profile ρN
ss (·) does not depend

on time, but now since µN is a general measure the empirical profile ρN
t (·)

depends on time. From Kolmogorov’s backward equation we know that ρN
t (·)

is a solution of
∂tρ

N
t (x) = EµN

[LNηtN2(x)].

A simple computation shows that

LNη(x) = jx−1,x(η)− jx ,x+1(η)

where for x ∈ ΛN , the quantity jx ,x+1(η) denotes the microscopic current at the
bond {x , x +1}, which is given by the difference between the jump rate from x
to x+1 and the jump rate from x+1 to x . Note that for x = 0 (resp. x = N−1)
jx ,x+1 is equal to the creation rate minus the annihilation rate at the site x = 1
(resp. x = N − 1). Therefore

j0,1(η) =
κ

2Nθ
(α−η(1)),

jx ,x+1(η) =
1
2
(η(x)−η(x + 1)),

jN−1,N (η) =
κ

2Nθ
(η(N − 1)− β).

(2.5.1)

A simple computation shows that ρN
t (·) is a solution of

�

∂tρ
N
t (x) =

�

N2Bθ
Nρ

N
t

�

(x) , x ∈ ΛN , t ≥ 0 ,
ρN

t (0) = α ,ρN
t (N) = β , t ≥ 0 ,

(2.5.2)
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where the operatorBθ
N acts on functions f : ΛN ∪ {0, N} → R as







N2(Bθ
N f )(x) = 1

2∆N f (x) , for x ∈ {2, · · · , N − 2} ,
N2(Bθ

N f )(1) = N2

2 ( f (2)− f (1)) + κN2

2Nθ ( f (0)− f (1)) ,
N2(Bθ

N f )(N − 1) = N2

2 ( f (N − 2)− f (N − 1)) + κN2

2Nθ ( f (N)− f (N − 1)).

Above ∆N f denotes the discrete Laplacian of f which is given on x ∈ ΛN by

∆N f (x) = f (x + 1) + f (x − 1)− 2 f (x). (2.5.3)

The stationary solution of (2.5.2) is given by

ρN
ss (x) = Eµss

[ηtN2(x)] = aN x + bN

where

aN =
κ(β −α)

2Nθ +κ(N − 2)
and bN = aN

�Nθ

κ
− 1

�

+α.

From this we get that

lim
N→∞

max
x∈ΛN

�

�ρN
ss (x)− ρ̄(

x
N )
�

�= 0, (2.5.4)

where for q ∈ (0,1)

ρ̄(q) =







(β −α)q+α ; θ < 1,
κ(β−α)

2+κ q+α+ β−α
2+κ ; θ = 1,

β+α
2 ; θ > 1.

(2.5.5)

Note that this will be a stationary solution of the hydrodynamic equation that
we are looking for.

Now we obtain information about the two point correlation function. Let

VN = {(x , y) ∈ {0, · · · , N}2 : 0< x < y < N},

and its boundary ∂ VN = {(x , y) ∈ {0, · · · , N}2 : x = 0 or y = N}.
For x < y ∈ VN , let ϕN

t (x , y) denote the two point correlation function
between the occupation sites at x < y ∈ VN which is defined by

ϕN
t (x , y) = EµN

[(ηtN2(x)−ρN
t (x))(ηtN2(y)−ρN

t (y))]. (2.5.6)

Doing some simple, but long, computations we see that ϕN
t is a solution of











∂tϕ
N
t (x , y) = n2A θ

Nϕ
n
t (x , y) + gN

t (x , y), for (x , y) ∈ VN , t > 0,

ϕN
t (x , y) = 0, for (x , y) ∈ ∂ VN , t > 0,

ϕN
0 (x , y) = EµN

[η0(x)η0(y)]−ρN
0 (x)ρ

N
0 (y), for (x , y) ∈ VN ∪ ∂ VN ,

(2.5.7)
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x

y

0 1 2 N − 1

1

2

N − 1

N

whereA θ
N is the linear operator that acts on functions f : VN ∪ ∂ VN → R as

(A θ
N f )(u) =

∑

v∈VN

cθN (u, v)
�

f (v)− f (u)
�

,

with

cθN (u, v) =











1, if ‖u− v‖= 1 and u, v ∈ VN ,

N−θ , if ‖u− v‖= 1 and u ∈ VN , v ∈ ∂ VN ,

0, otherwise,

for θ ≥ 0. Note that A θ
N is the generator of a random walk in VN ∪ ∂ VN with

jump rates given by cθN (u, v), which is absorbed at ∂ VN . Above ‖ · ‖ denotes the
supremum norm,

gN
t (x , y) = −(∇+Nρ

N
t (x))

2δy=x+1

and
∇+Nρ

N
t (x) = N(ρN

t (x + 1)−ρN
t (x)).

In this case, contrarily to the empirical profile, is is quite complicated to obtain
an expression for the stationary solution of (2.5.7). Nevertheless, we note that
a simple, but long, computation shows that the solution obtained in (2.4.11),
in the case where the starting measure is the stationary state µss, is in fact the
stationary solution of (2.5.7). We also observe that in [10] it was obtained the
following bound on the case θ = 1 for a general initial measure µN . There it
was proved that there exists a constant C > 0 such that

sup
t≥0

max
(x ,y)∈VN

|ϕN
t (x , y)| ≤

C
N

, (2.5.8)
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but we note that the bounds on the other regimes of θ are still open, apart the
case θ = 0 where the bound above is given by C/N2, see [17].

2.6 Hydrodynamic equations

From now on up to the rest of these notes we fix a finite time horizon [0, T].
We denote by 〈·, ·〉µ the inner product in L2([0,1]) with respect to a measure µ
defined in [0, 1] and ‖ · ‖L2(µ) is the corresponding norm. We note that when µ
is the Lebesgue measure we write 〈·, ·〉 and ‖ · ‖L2 for the corresponding norm.

We denote by Cm,n([0, T]× [0,1]) the set of functions defined on [0, T]×
[0, 1] that are m times differentiable on the first variable and n times differen-
tiable on the second variable. For a function G := G(s, q) ∈ Cm,n([0, T]×[0,1])
we denote by ∂sG its derivative with respect to the time variable s and and by
∂qG its derivative with respect to the space variable q. For simplicity of notation
we set∆G := ∂ 2

q G. We will also make use of the set Cm,n
c ([0, T]×[0, 1]) of func-

tions G ∈ Cm,n([0, T]×[0, 1]) such that for any time s the function Gs has a com-
pact support included in (0, 1) and we denote by Cm

c (0, 1) (resp. C∞c (0,1)) the
set of all m continuously differentiable (resp. smooth) real-valued functions de-
fined on (0,1)with compact support. The supremum norm is denoted by ‖·‖∞.
Finally, Cm,n

0 ([0, T] × [0,1]) is the set of functions G ∈ Cm,n([0, T] × [0,1])
such that for any time s the function Gs vanishes at the boundary, that is,
Gs(0) = Gs(1) = 0.

Now we want to define the space where the solutions of the hydrodynamic
equations will live on, namely the Sobolev spaceH1 on [0, 1]. For that purpose,
we define the semi inner-product 〈·, ·〉1 on the set C∞([0,1]) by

〈G, H〉1 =
∫ 1

0

(∂qG)(q) (∂qH)(q) dq, (2.6.1)

for G, H ∈ C∞([0, 1]) and the corresponding semi-norm is denoted by ‖ · ‖1.

Definition 2.6.1. The Sobolev space H 1 on [0, 1] is the Hilbert space defined as
the completion of C∞([0, 1]) for the norm

‖ · ‖2H 1 := ‖ · ‖2L2 + ‖ · ‖21.

Its elements elements coincide a.e. with continuous functions. The space L2(0, T ;H 1)
is the set of measurable functions f : [0, T]→H 1 such that

∫ T

0

‖ fs‖2H 1 ds <∞.
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We can now give the definition of the weak solutions of the hydrodynamic
equations that will be derived for the symmetric simple exclusion process in con-
tact with stochastic reservoirs. We start by giving the notion of a weak solution
to the heat equation with Dirichlet boundary conditions which will be the notion
that we will derive in the regime θ ∈ [0,1). In what follows g : [0, 1]→ [0,1] is
a measurable function and it is the initial condition of all the partial differential
equations that we define below, that is ρ0(q) = g(q), for all q ∈ (0,1).

Definition 2.6.2. We say that ρ : [0, T]× [0,1] → [0,1] is a weak solution of
the heat equation with Dirichlet boundary conditions

¨

∂tρt(q) =
1
2∆ρt(q), (t, q) ∈ [0, T]× (0, 1),

ρt(0) = α, ρt(1) = β , t ∈ [0, T],
(2.6.2)

if the following two conditions hold:

1. ρ ∈ L2(0, T ;H 1);

2. ρ satisfies the weak formulation:

FDir :=

∫ 1

0

ρt(q)Gt(q) dq−
∫ 1

0

g(q)G0(q) dq

−
∫ t

0

∫ 1

0

ρs(q)
�1

2
∆+ ∂s

�

Gs(q) dq ds

+

∫ t

0

¦β

2
∂qGs(1)−

α

2
∂qGs(0)

©

ds = 0,

(2.6.3)

for all t ∈ [0, T] and any function G ∈ C1,2
0 ([0, T]× [0,1]).

In the regime θ < 0 we will make use of another notion of weak solution
to the heat equation with Dirichlet boundary conditions which uses as input for
test functions elements in the set C1,2

c ([0, T]× [0, 1]). Since functions in that
space have compact support, in order to get a proper notion of weak solution we
need to add an extra condition to Definition 2.6.2 (see 3. in Definition 2.6.3).

Definition 2.6.3. We say that ρ : [0, T]×[0,1]→ [0,1] is a weak solution of the
heat equation with Dirichlet boundary conditions given in (2.6.2) if the following
three conditions hold:

1. ρ ∈ L2(0, T ;H 1),
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2. ρ satisfies the weak formulation:

F c
Dir :=

∫ 1

0

ρt(q)Gt(q) dq−
∫ 1

0

g(q)G0(q) dq

−
∫ t

0

∫ 1

0

ρs(q)
�1

2
∆+ ∂s

�

Gs(q) dq ds = 0,

(2.6.4)

for all t ∈ [0, T] and any function G ∈ C1,2
c ([0, T]× [0, 1]),

3. ρt(0) = α, ρt(1) = β for all t ∈ (0, T].

Remark 2.6.4. We note that (2.6.4) coincides with (2.6.3) by taking as input a
test function G ∈ C1,2

c ([0, T]× [0, 1]), since in this case ∂qGs(0) = ∂sGs(1) = 0,
so that the last term in (2.6.3) vanishes.

Now we introduce the notion of weak solution of the hydrodynamic equa-
tion that we will derive in the case θ = 1. In this regime the boundary reservoirs
are so slow and as a consequence, a different boundary condition appears. In
the case of Dirichlet boundary conditions, the value of the profile ρt is fixed to
be equal to α at 0 and β at 1. This is no longer the case when θ ≥ 1 as we will
see later on.

Definition 2.6.5. We say that ρ : [0, T]× [0,1] → [0,1] is a weak solution of
the heat equation with Robin boundary conditions
¨

∂tρt(q) =
1
2∆ρt(q), (t, q) ∈ [0, T]× (0, 1),

∂qρt(0) = κ(ρt(0)−α), ∂qρt(1) = κ(β −ρt(1)), t ∈ [0, T],
(2.6.5)

if the following two conditions hold:

1. ρ ∈ L2(0, T ;H 1),

2. ρ satisfies the weak formulation:

FRob :=

∫ 1

0

ρt(q)Gt(q) dq−
∫ 1

0

g(q)G0(q) dq

−
∫ t

0

∫ 1

0

ρs(q)
�1

2
∆+ ∂s

�

Gs(q) ds dq+
1
2

∫ t

0

{ρs(1)∂qGs(1)−ρs(0)∂qGs(0)} ds

−
κ

2

∫ t

0

{Gs(0)(α−ρs(0)) + Gs(1)(β −ρs(1))} ds = 0,

(2.6.6)

for all t ∈ [0, T] and any function G ∈ C1,2([0, T]× [0, 1]).
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In the regime θ = 1 the boundary reservoirs are so slow so that a type of
Robin boundary condition appears. In this case it fixes the value of the flux
through the system as being proportional to the difference of concentration.
Note that, for example at q = 0, the value ∂qρt(0) corresponds to the flux of
particles through the left boundary and κ(ρt(0)−α) corresponds to the differ-
ence of the concentration, since in this case, contrarily to what happens in the
case of Dirichlet boundary conditions, it is not true that ρt(0) = α (the value of
the profile at the boundaries is not fixed!)

Remark 2.6.6. Observe that in the case κ = 0 the equation above is the heat
equation with Neumann boundary conditions and it is the hydrodynamic equation
that we will derive in the case θ > 1.

Remark 2.6.7. We observe that all the partial differential equations defined above
have a unique weak solution in the sense given above. We do not include the proof
of this result in these notes but we refer the interested reader to [2] for the proof
of the uniqueness in the case of Dirichlet boundary conditions and to [1] for the
proof of the uniqueness in the case of Robin boundary conditions.

- Deriving the weak formulation

We note that the weak formulation given in all the regimes above can be ob-
tained from the formal expression of the corresponding partial differential equa-
tion in the following way. Take a test function G ∈ C1,2([0, T] × [0,1]) and
multiply both sides of the equality

∂sρs(q) =
1
2
∆ρs(q)

by G and then integrate both in time and space to get
∫ 1

0

∫ t

0

∂sρs(q)Gs(q) ds dq =

∫ 1

0

∫ t

0

1
2
∆ρs(q)Gs(q) ds dq. (2.6.7)

To treat the term at the left hand side of last display, we perform an integration
by parts in the time integral and we get to
∫ 1

0

ρt(q)Gt(q) dq−
∫ 1

0

g(q)G0(q) dq−
∫ t

0

∫ 1

0

ρs(q)∂sGs(q) ds dq. (2.6.8)

The term at the right hand side of (2.6.7) can be treated by doing an integration
by parts in the space integral and we get to

1
2

∫ t

0

∂qρs(1)Gs(1)− ∂qρs(0)Gs(0) ds−
1
2

∫ t

0

∫ 1

0

∂qρs(q)∂qGs(q) ds dq.
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Now, we do another integration by parts in the integral in space at the term on
the right hand side of last expression and we write the previous display as

1
2

∫ t

0

∂qρs(1)Gs(1)− ∂qρs(0)Gs(0) ds

−
1
2

∫ t

0

ρs(1)∂qGs(1)−ρs(0)∂qGs(0) +
1
2

∫ t

0

∫ 1

0

ρs(q)∆Gs(q) ds dq.

(2.6.9)

Putting together (2.6.9) and (2.6.8) we obtain
∫ 1

0

ρt(q)Gt(q) dq−
∫ 1

0

g(q)G0(q) dq =

∫ t

0

∫ 1

0

ρs(q)
�1

2
∆+ ∂s

�

Gs(q) ds dq

+
1
2

∫ t

0

∂qρs(1)Gs(1)− ∂qρs(0)Gs(0) ds

−
1
2

∫ t

0

ρs(1)∂qGs(1)−ρs(0)∂qGs(0) ds.

Now we obtain each one of the weak formulations given above. We start with
the case where G ∈ C1,2

0 ([0, T]×[0, 1]) and we will derive (2.6.3). For that pur-
pose note that since G vanishes at the boundary of [0, 1] and since ρs(0) = α
and ρs(1) = β , the expression in the previous display becomes equivalent to
FDir = 0. On the other hand if G ∈ C1,2

c ([0, T]× [0, 1]), then G vanishes at the
boundary of [0, 1] and ∂qG also vanishes at the boundary of [0,1], so that for ρ
satisfying the Dirichlet boundary conditions in (2.6.2) the expression in the dis-
play above becomes equivalent to F c

Dir = 0. Finally for G ∈ C1,2([0, T]× [0,1])
and for ρ satisfying the Robin boundary conditions in (2.6.5), the expression in
the previous display becomes equivalent to FRob = 0.

-Stationary solutions

Now we deduce the stationary solutions for each one of the equations given
above. We start with (2.6.2). For that purpose note that, denoting by ρ̄ the
stationary solution we have that ∆ρ̄(t, q) = 0 implies that ρ̄(t, q) = aq+ b for
a, b ∈ R. Imposing the Dirichlet boundary conditions we arrive at a = (β − α)
and b = β , so that

ρ̄Dir(q) = (β −α)q+α. (2.6.10)

On the other hand, imposing the Robin boundary conditions we arrive at

a =
κ(β −α)

2+κ
and b = α+

β −α
2+ κ

,
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so that

ρ̄Rob(q) =
κ(β −α)

2+κ
q+α+

β −α
2+κ

. (2.6.11)

Finally, if we impose the Neumann boundary conditions, any constant solution is
a stationary solution of (2.6.5) with κ= 0 (which corresponds to the Neumann
regime). In this case we note that the stationary solution is not unique. Below
we draw the graph of these stationary solutions for a choice of α = 0.2 and
β = 0.8.

θ > 1

θ = 1

θ < 1

1
20 1

β

α

α+β
2

(α+β)+ακ
κ+2

(α+β)+βκ
κ+2

Figure 2.3: Stationary solutions of the hydrodynamic equations.

Now we give the explicit expression for the solution of each hydrodynamic
equation.

Proposition 2.6.8. We have that:

1. The solution of (2.6.2) with initial condition g is equal to

ρt(q) = ρ̄Dir(q) +
∞
∑

n=1

e−
(nπ)2

2 t2 sin(nπq).

2. The solution of (2.6.5) with initial condition g is equal to

ρt(q) = ρ̄Rob(q) +
∞
∑

n=1

Cne−
λn
2 t Xn(q),
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where
Xn(q) = An sin(

Æ

λn q) + Anκ
Æ

λn cos(
Æ

λn q), (2.6.12)

An is a normalizing constant in such a way that Xn has unitary L2([0, 1])-norm
and

Cn =

∫ 1

0

(g(q)− ρ̄(q))Xn(q)dq.

Proof. The solution ρ to (2.6.2) starting from a profile g is such that u= ρ− ρ̄
is solution to (2.6.2) with homogeneous boundary conditions α= β = 0, i.e.

¨

∂tut(q) =
1
2∆ut(q), (t, q) ∈ [0, T]× (0, 1),

ut(0) = 0= ut(1), t ∈ [0, T].
(2.6.13)

It is well known that u is given by

ut(q) =
∞
∑

n=1

e−
(nπ)2

2 t2sin(nπq).

From the previous computations we conclude that the solution ρ of (2.6.2)
starting from g is given by

ρt(q) = (β −α)q+α+
∞
∑

n=1

e−
(nπ)2

2 t2 sin(nπq).

On the other hand, the solution ρ of (2.6.5) starting from g is such that
u= ρ − ρ̄ is solution to (2.6.5) with α= β = 0, i.e.

¨

∂tut(q) =
1
2∆ut(q), (t, q) ∈ [0, T]× (0, 1),

∂qut(0) = κut(0), ∂qut(1) = −κut(1), t ∈ [0, T].
(2.6.14)

It is well known that u is given by

u(t, q) =
∞
∑

n=1

Cne−
λn
2 t Xn(q),

where Xn(q) writes as

Xn(q) = An sin(
Æ

λnq) + Bn cos(
Æ

λnq),

for some constants An and Bn. Then, the first boundary condition in (2.6.14)
gives Bn =

p

λnκAn. To avoid the null solution we consider An 6= 0. The second
boundary condition in (2.6.14) gives

tan(
Æ

λn) =
2κ
p

λn

λnκ2 − 1
, (2.6.15)
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whose solution λn satisfying (n − 1)π ≤
p

λn ≤ nπ is such that λn ∼ n2π2

as n → ∞. From the previous computations we get that Xn(q) is given by
(2.6.12) and there An is a normalizing constant in such a way that Xn has unitary
L2([0,1])-norm. Moreover

Cn =

∫ 1

0

(g(q)− ρ̄(q))Xn(q)dq.

From the previous computations we conclude that the solution ρ of (2.6.5)
starting from g is given by

ρt(q) =
κ(β −α)

2+ κ
q+α+

β −α
2+κ

+
∞
∑

n=1

Cne−
λn
2 t Xn(q).

2.7 Hydrodynamic Limit

In this section we want to state the hydrodynamic limit of the process {ηtN2 :
t ≥ 0} with state space ΩN and with infinitesimal generator N2LN defined in
(2.3.1). Note that here we are going to take Θ(N) = N2. LetM+ be the space
of positive measures on [0,1] with total mass bounded by 1 equipped with the
weak topology. For any configuration η ∈ ΩN we define the empirical measure
πN (η, dq) on [0,1] by

πN (η, dq) =
1

N − 1

∑

x∈ΛN

η(x)δ x
N
(dq) , (2.7.1)

where δa is a Dirac mass on a ∈ [0,1], and

πN
t (η, dq) := πN (ηtN2 , dq).

This measure gives weight 1
N to each occupied site of the configuration η.

Fix T > 0 and θ ∈ R. Recall that PµN
is the probability measure in the

Skorohod space D([0, T],ΩN ) induced by the Markov process {ηtN2 : t ≥ 0}
and the initial probability measure µN and we denote by EµN

the expectation
with respect to PµN

. Now let {QN}N≥1 be the sequence of probability measures
on D([0, T],M+) induced by the Markov process {πN

t : t ≥ 0} and by PµN
.

At this point we need to fix an initial profile ρ0 : [0,1] → [0,1] which
is measurable and an initial probability measure µN ∈ ΩN . We are going to
consider the following set of initial measures:



34 Symmetric simple exclusion

Definition 2.7.1. A sequence of probability measures {µN}N≥1 inΩN is associated
to the profile ρ0 if for any continuous function G : [0, 1]→ R and any δ > 0

lim
N→∞

µN

�

η ∈ ΩN :
�

�

�

1
N − 1

∑

x∈ΛN

G
� x

N

�

η(x)−
∫ 1

0

G(q)ρ0(q)dq
�

�

�> δ
�

= 0.

(2.7.2)

Note that (2.7.2) states that

∫

ΩN

G(q)πN (η, dq) −→N→∞

∫ 1

0

G(q)ρ0(q)dq wrt µN , (2.7.3)

which means that the empirical measure at time t = 0 converges, in probability
with respect to µN , as N →∞, to the deterministic measure ρ0(q)dq, which is
absolutely continuous with respect to the Lebesgue measure and the density is
the profile ρ0(·).

The hydrodynamic limit that we want to derive states that the previous re-
sult is also true for any t ∈ [0, T], that is, the empirical measure at time t
converges in probability with respect to the distribution of the system at time
t, as N →∞, to the deterministic measure ρt(q)dq, where ρt(·) is a solution
(here in the weak sense) to some partial differential equation, the hydrodynamic
equation.

The first main result of these notes is summarized in the following theorem
(see also Figure 2.4).

Theorem 2.7.2. Let g : [0, 1]→ [0, 1] be a measurable function and let {µN}N≥1
be a sequence of probability measures in ΩN associated to g. Then, for any t ∈
[0, T],

lim
N→∞
PµN

�

η· :

�

�

�

�

�

1
N − 1

∑

x∈ΛN

G
� x

N

�

ηtN2(x)−
∫ 1

0

G(q)ρt(q)dq

�

�

�

�

�

> δ
�

= 0,

where ρt(·) is the unique weak solution of :

• (2.6.3) as given in Definition 2.6.3, if θ < 0;

• (2.6.2) as given in Definition 2.6.2, if θ ∈ [0, 1);

• (2.6.5), if θ = 1;

• (2.6.5) with κ= 0, if θ > 1.
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θ

θ = 0

θ = 1
Heat eq. & Robin b.c.

Heat eq. & Neumann b.c.

Heat eq. & Dirichlet b.c.

Figure 2.4: The three hydrodynamic equations depending on θ .

The proof of Theorem 2.7.2 proceeds as follows. We split the proof into
showing first tightness of the sequence {QN}N≥1 and then we characterize uniquely
the limiting point Q. These two results combined together, imply the conver-
gence of {QN}N≥1 to Q as N →∞. The next section is dedicated to the pre-
sentation of an heuristic argument to deduce the hydrodynamic equations from
the interacting particle system by means of the Dynkin’s formula; in Section 2.9
we present the proof of tightness and in Section 2.10 we characterize the limit
pointQ. We note that in order to characterize the limit pointQ, we prove in Sec-
tion 2.10.1 that all limiting points of the sequence {QN}N≥1 are concentrated
on trajectories of measures that are absolutely continuous with respect to the
Lebesgue measure and in Sections 2.10.2 and 2.10.3 we prove that the density
ρt(·) is a weak solution of the corresponding hydrodynamic equation. From
the uniqueness of weak solutions of the hydrodynamic equations, see Remark
2.6.7, we conclude that {QN}N≥1 has a unique limit point Q, and therefore we
conclude the convergence of the sequence to this limit point.

2.8 Heuristics for hydrodynamic equations

In this section we give the main ideas which are behind the identification of limit
points as weak solutions of the partial differential equations given in Section 2.6.
Now we argue that the density ρt(·) is a weak solution of the corresponding
hydrodynamic equation for each regime of θ . We remark that we are not going
to prove here that the solution ρt(·) belongs to the space L2(0, T ;H 1) but we
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refer the reader to [1, 2] for a complete proof of this fact. In order to prove that
ρt(·) satisfies the weak formulation we use auxiliary martingales associated to
the Markov process {ηt : t ≥ 0}. For that purpose, and to make the exposition
simpler, we fix a function G : [0, 1] → R which does not depend on time and
which is two times continuously differentiable. If θ < 0 we will assume further
that it has a compact support included in (0, 1). First we recall Dynkin’s formula.

Theorem 2.8.1. Let {ηt : t ≥ 0} be a Markov process with generator L and
with countable state space E. Let F : R+× E→ R be a bounded function such that

• ∀η ∈ E, F(·,η) ∈ C2(R+),

• there exists a finite constant C, such that for j = 1, 2

sup
(s,η)
|∂ j

s F(s,η)| ≤ C .

For t ≥ 0, let

M F
t =F(t,ηt)− F(0,η0)−

∫ t

0

(∂s +L )F(s,ηs)ds,

N F
t =(M

F
t )

2 −
∫ t

0

{L F(s,ηs)
2 − 2F(s,ηs)L F(s,ηs)}ds.

Then, {M F
t }t≥0 and {N F

t }t≥0 are martingales with respect to Fs = σ(ηs ; s ≤ t).

Let us fix a test function G : [0, 1]→ R and apply Dynkin’s formula with

F(t,ηt) = 〈πN
t , G〉=

1
N − 1

∑

x∈ΛN

ηtN2(x)G
�

x
N

�

. (2.8.1)

Above



πN
t , G

�

represents the integral of G with respect the measure πN
t . Note

that F does not depend on time, only through ηt . A simple computation shows
that

N2LN 〈πN
s , G〉= 〈πN

s ,
1
2
∆N G〉

+
1
2

�

∇+N G(0)ηsN2(1)−∇−N G(1)ηsN2(N − 1)
�

+
κ

2
N2−θ

N − 1
G
�

1
N

�

(α−ηsN2(1))

+
κ

2
N2−θ

N − 1
G
�

N−1
N

�

(β −ηsN2(N − 1)),

(2.8.2)
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from where we obtain that

M N
t (G) = 〈π

N
t , G〉 − 〈πN

0 , G〉 −
∫ t

0

〈πN
s ,

1
2
∆N G〉 ds

−
1
2

∫ t

0

∇+N G(0)ηsN2(1)−∇−N G(1)ηsN2(N − 1) ds

−
κ

2

∫ t

0

N2−θ

N − 1
G
�

1
N

�

(α−ηsN2(1)) ds

−
κ

2

∫ t

0

N2−θ

N − 1
G
�

N−1
N

�

(β −ηsN2(N − 1)) ds,

(2.8.3)

is a martingale with respect to the natural filtration {Ft}t≥0, where for each
t ≥ 0, Ft := σ(ηs : s < t). Now we look at the integral terms in (2.8.3).

- The case θ ∈ [0,1):

In this regime, we take a test function G : [0,1] → R two times continuously
differentiable such that G(0) = G(1) = 0. Then, we can subtract G(0) (resp.
G(1)) in the fifth term (resp. sixth term) at the right hand side of (2.8.3) and
then doing a Taylor expansion on G we get that

M N
t (G) = 〈π

N
t , G〉 − 〈πN

0 , G〉 −
∫ t

0

〈πN
s ,

1
2
∆N G〉ds

−
1
2

∫ t

0

∇+N G(0)ηsN2(1)−∇−N G(1)ηsN2(N − 1)ds+O(N−θ ).

If we can replaceηsN2(1) byα andηsN2(N−1) by β , which will be a consequence
of Lemma A.4.2 (see Remark A.4.3), then above we have

M N
t (G) = 〈π

N
t , G〉 − 〈πN

0 , G〉 −
∫ t

0

〈πN
s ,

1
2
∆N G〉ds

−
1
2

∫ t

0

∇+N G(0)α−∇−N G(1)βds+O(N−θ )

plus a term that vanishes as N → +∞.
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Taking the expectation with respect to µN in the expression above we get

1
N − 1

N−1
∑

x=1

G
�

x
N

��

ρN
t (x)−ρ

N
0 (x)

�

−
∫ t

0

1
N − 1

N−1
∑

x=1

1
2
∆N G

�

x
N

�

ρN
s (x)ds

−
1
2

∫ t

0

∇+N G(0)α−∇−N G(1)βds+O(N−θ ) = 0.

Note that above we used the fact that the average of martingales is constant in
time and that M N

0 (G) = 0. Now, assuming that ρN
t (x) ∼ ρt(

x
N ) and taking the

limit as N →∞ we get that

∫ 1

0

ρt(q)G(q)−ρ0(q)G(q)dq−
∫ t

0

∫ 1

0

1
2
∆G(q)ρs(q)dqds

−
1
2

∫ t

0

∂qG(0)α− ∂qG(1)βds = 0.

Note that the restriction θ ≥ 0 comes from the fact that the errors, which
arise from the Taylor expansion in G, have to vanish as N →∞ and the restric-
tion θ < 1 comes from the replacement of the occupation variables η(1) and
η(N − 1) by α and β , respectively, see Lemma A.4.2. At this point compare the
previous expression with the weak formulation given in (2.6.3) and note that
the test function G does not depend on time.

- The case θ < 0:

In this regime we take a function G : [0, 1]→ R with compact support and we
note that the last three terms at the right hand side of (2.8.3) vanish in this
case. From this and the same arguments as above we get that

M N
t (G) = 〈π

N
t , G〉 − 〈πN

0 , G〉 −
∫ t

0

〈πN
s ,

1
2
∆N G〉ds.

Taking the expectation with respect to µN in the expression above and assuming
that ρN

t (x)∼ ρt(
x
N ), and then taking the limit as N →∞ we get that

∫ 1

0

ρt(q)G(q)−ρ0(q)G(q)dq−
∫ t

0

∫ 1

0

1
2
∆G(q)ρs(q)dqds = 0.

Again compare with the weak formulation given in (2.6.4) and note that the
test function G does not depend on time.
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Remark 2.8.2. We remark here that in this particular case there is an extra con-
dition in Definition 2.6.3 with respect to the other notions of weak solutions where
we only have to check the weak formulation and to show that the solution belongs
to a Sobolev space. In this case we need also to show that the value of the profile
ρt(·) is fixed at the boundary. We leave this issue to Section A.4.

- The case θ = 1:

In this case we consider an arbitrary function G : [0, 1]→ R which is two times
continuously differentiable and we get

M N
t (G) = 〈π

N
t , G〉 − 〈πN

0 , G〉 −
∫ t

0

〈πN
s ,

1
2
∆N G〉ds

−
1
2

∫ t

0

∇+N G(0)ηsN2(1)−∇−N G(1)ηsN2(N − 1)ds

−
κ

2
N

N − 1

∫ t

0

G
�

1
N

�

(α−ηsN2(1)) + G
�

N−1
N

�

(β −ηsN2(N − 1))ds.

In this regime Lemma A.4.2 is no longer valid. Nevertheless, by Remark
A.3.4 we can replace ηsN2(1) (resp. ηsN2(N−1)) by the average in a box around
1 (resp. N − 1):

−→η εNsN2(1) :=
1
εN

1+εN
∑

x=1

ηsN2(x), ←−η εNsN2(N − 1) :=
1
εN

N−1−εN
∑

x=N−1

ηsN2(x). (2.8.4)

Here we note that the sum above goes from 1 to 1+ bεNc but for sake of sim-
plicity we write 1+ εN . By noting that −→η εNsN2(1)∼ ρs(0) (resp. −→η εNsN2(N − 1)∼
ρs(1)) - for details on this approximation see for example [1, 2] - and repeating
the same arguments as above, we get to

∫ 1

0

ρt(q)G(q)−ρ0(q)G(q)dq−
∫ t

0

∫ 1

0

1
2
∆G(q)ρs(q)dqds

−
1
2

∫ t

0

∂qG(0)ρs(0)− ∂qG(1)ρs(1)ds

+
κ

2

∫ t

0

G(0)(α−ρs(0))− G(1)(β −ρs(1))ds = 0.

Again compare with the weak formulation given in (2.6.4) and note that the
test function G does not depend on time.
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- The case θ > 1:

This regime is quite similar to the previous one. We consider again an arbitrary
function G : [0,1]→ R which is two times continuously differentiable and we
note that the last two terms at the right hand side of (2.8.3) vanish since θ > 1.
Then, repeating the same arguments as in the previous section and noting that
Remark A.3.4 also applies to θ > 1 we obtain at the end that

∫ 1

0

ρt(q)G(q)−ρ0(q)G(q)dq−
∫ t

0

∫ 1

0

1
2
∆G(q)ρs(q)dqds

−
1
2

∫ t

0

∂qG(0)ρs(0)− ∂qG(1)ρs(1)ds = 0.

Again compare with the weak formulation given in (2.6.4) and note that the
test function G does not depend on time.

Remark 2.8.3. Note that the parameter κ that appears in the boundary dynamics
is only seen at the macroscopic level in the case θ = 1 which corresponds to the
heat equation with Robin boundary conditions.

2.9 Tightness

In this section we show that the sequence of probability measures {QN}N≥1, de-
fined in the beginning of Section 2.7, is tight in the Skorohod spaceD([0, T],M+).
In order to do that, we invoke the Aldous’s criterium which says that

Lemma 2.9.1. A sequence {PN}N≥1 of probability measures defined onD([0, T],M+)
is tight if these two conditions hold:

a. For every t ∈ [0, T] and every ε > 0, there exists K t
ε ⊂M+ compact, such that

sup
N≥1

PN

�

πt /∈ K t
ε

�

≤ ε,

b. For every ε > 0

lim
γ→0

lim sup
N→∞

sup
τ∈TT
θ≤γ

PN

�

d(πτ+θ ,πτ)> ε
�

= 0,

where TT denotes the set of stopping times with respect to the canonical filtration,
bounded by T and d is the metric in the spaceM+.
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By Proposition 1.7 of Chapter 4 in [16] it is enough to show that for every
function G in a dense subset of C([0, 1]), with respect to the uniform topology,
the sequence of measures that corresponds to the real processes 〈πN

t , G〉 is tight.
In our setting case, the first condition a. above translates by saying that:

lim
A→+∞

lim
N→+∞

Pµ
�

|〈πN
t , G〉|> A

�

= 0.

This is a consequence of Chebychev’s inequality and the fact that for the exclu-
sion type dynamics, the number of particles per site is at most one, we leave the
details on this to the reader. So, it remains to show condition b. In this context
and since we are considering the real process 〈πN

t , G〉, the distance d above is
the usual distance in R. Then, we must show that for all ε > 0 and any function
G in a dense subset of C([0, 1]), with respect to the uniform topology, it holds
that

lim
δ→0

lim sup
N→∞

sup
τ∈TT ,τ̄≤δ

PµN

�

η· :
�

�〈πN
τ+τ̄, G〉 − 〈πN

τ , G〉
�

�> ε
�

= 0. (2.9.1)

Above we assume that all the stopping times are bounded by T , thus, τ + τ̄
should be understood as (τ+ τ̄)∧ T .

Recall that it is enough to prove the assertion for functions G in a dense
subset of C([0,1]) with respect to the uniform topology. We will use two dif-
ferent dense sets, namely the space C1([0, 1]) in the case θ < 1 and the space
C2([0, 1]) in the case θ ≥ 1, which are both dense in C([0,1]) with respect to
the uniform topology. For that purpose, we split the proof according to θ ≥ 1
and θ < 1. When θ ≥ 1 we prove (2.9.1) directly for functions G ∈ C2([0, 1])
and we conclude that the sequence is tight. For θ < 1, we prove (2.9.1) first for
functions G ∈ C2

c (0,1) and then we extend it, by a L1 approximation procedure
which is explained below, to functions G ∈ C1([0, 1]).

Recall from (2.8.3) that M N
t (G) is a martingale with respect to the natural

filtration {Ft}t≥0. Then

PµN

�

η· :
�

�〈πN
τ+τ̄, G〉 − 〈πN

τ , G〉
�

�> ε
�

=PµN

�

η· :
�

�

�M N
τ (G)−M N

τ+τ̄(G) +

∫ τ+τ̄

τ

N2LN 〈πN
s , G〉ds

�

�

�> ε
�

≤PµN

�

η· :
�

�

�M N
τ (G)−M N

τ+τ̄(G)
�

�

�>
ε

2

�

+PµN

�

η· :
�

�

�

∫ τ+τ̄

τ

N2LN 〈πN
s , G〉ds

�

�

�>
ε

2

�

.
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Applying Chebychev’s inequality (resp. Markov’s inequality) in the first (resp.
second) term on the right hand side of last inequality, we can bound the previous
expression from above by

2
ε2
EµN

��

M N
τ (G)−M N

τ+τ̄(G)
�2�
+

2
ε
EµN

�

�

�

�

∫ τ+τ̄

τ

N2LN 〈πN
s , G〉ds

�

�

�

�

.

Therefore, in order to prove (2.9.1) it is enough to show that

lim
δ→0

lim sup
N→∞

sup
τ∈TT ,τ̄≤δ

EµN

�

�

�

�

∫ τ+τ̄

τ

N2LN 〈πN
s , G〉ds

�

�

�

�

= 0 (2.9.2)

and
lim
δ→0

lim sup
N→∞

sup
τ∈TT ,τ̄≤δ

EµN

�

�

M N
τ (G)−M N

τ+τ̄(G)
�2�
= 0. (2.9.3)

Let us start by proving (2.9.2). Given a test function G, we will show that
there exists a contant C such that

N2LN (〈πN
s , G〉)≤ C (2.9.4)

for any s ≤ T . We start with the case θ ≥ 1. For that purpose, recall (2.8.2).
Note that, since |ηsN2(x)| ≤ 1 for all s ∈ [0, t] and since G ∈ C2([0,1]), we have
that
�

�

�〈πN
s ,∆N G〉+∇+N G(0)ηsN2(1)−∇−N G(1)ηsN2(N − 1)

�

�

�≤ 2‖G′′‖∞ + 2‖G‖∞

and
�

�

�κN1−θG
�

1
N

�

(α−ηsN2(1)) + κN1−θG
�

N−1
N

�

(β −ηsN2(N − 1))
�

�

�≤ 4κN1−θ‖G‖∞

≤ 4κ‖G‖∞.

This proves (2.9.4) for the case θ ≥ 1. In the case θ < 1, we take G ∈ C2
c ([0,1])

and we see that in this case (2.8.2) reduces to 〈πN
s , 1

2∆N G〉 whose absolute
value is bounded from above by ‖G′′‖∞ and this proves (2.9.4) for the case
θ < 1.

Let us now prove (2.9.3). Applying Dynkin’s formula with F given by (2.8.1)
we get that

�

M N
t (G)

�2 −
∫ t

0

N2
�

LN 〈πN
s , G〉2 − 2〈πN

s , G〉LN 〈πN
s , G〉

�

ds, (2.9.5)
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is a martingale with respect to the natural filtration {Ft}t≥0. A simple compu-
tation shows that

N2
�

LN ,0〈πN
s , G〉2 − 2〈πN

s , G〉LN ,0〈πN
s , G〉

�

=
1

2N2

N−2
∑

x=1

(ηsN2(x)−ηsN2(x + 1))2(∇N G( x
N ))

2

and by using the fact that |ηsN2(x)| ≤ 1 for all s ∈ [0, t] last expression is
bounded from above by 2

N ‖G
′‖∞. On the other hand, we also have that

N2
�

LN ,b〈πN
s , G〉2 − 2〈πN

s , G〉LN ,b〈πN
s , G〉

�

=
κ

2Nθ

�

c1(ηsN2 ,α)G( 1
N )

2 + cN−1(ηsN2 ,β)G(N−1
N )

2
�

and by using the fact that |ηsN2(x)| ≤ 1 for all s ∈ [0, t] last expression is
bounded from above by 4κ

Nθ ‖G‖
2
∞.

This ends the proof of tightness in the case θ ≥ 1, since C2([0, 1]) is a
dense subset of C([0,1]) with respect to the uniform topology. Nevertheless,
for θ < 1, since we considered functions G ∈ C2

c (0,1), last display is equal to
zero. Therefore, we have proved (2.9.2) and (2.9.3), and thus (2.9.1), but for
functions G ∈ C2

c (0,1) and, as mentioned above, we need to extend this result to
functions in C1([0,1]). To accomplish that, we take a function G ∈ C1([0, 1]) ⊂
L1([0,1]), and we take a sequence of functions {Gk}k≥0 ∈ C2

c (0,1) converging
to G, with respect to the L1-norm, as k → ∞. Now, since the probability in
(2.9.1) is less or equal than

PµN

�

η· :
�

�〈πN
τ+τ̄, Gk〉 − 〈πN

τ , Gk〉
�

�>
ε

2

�

+ PµN

�

η· :
�

�〈πN
τ+τ̄, G − Gk〉 − 〈πN

τ , G − Gk〉
�

�>
ε

2

�

and since Gk has compact support, from the computation above, it remains only
to check that the last probability vanishes as N →∞ and then k →∞. For
that purpose, we use the fact that

�

�〈πN
τ+τ̄, G − Gk〉 − 〈πN

τ , G − Gk〉
�

�≤
2
N

∑

x∈ΛN

�

�(G − Gk)(
x
N )
�

� , (2.9.6)
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and we use the estimate

1
N

∑

x∈ΛN

�

�(G − Gk)(
x
N )
�

�≤
∑

x∈ΛN

∫
x+1
N

x
N

�

�(G − Gk)(
x
N )− (G − Gk)(q)

�

� dq

+

∫ 1

0

|(G − Gk)(q)|dq

≤
1

N
‖(G − Gk)

′‖∞ +
∫ 1

0

|(G − Gk)(q)|dq.

The result follows by first taking N →∞ and then k→∞.

2.10 The limit point

Here, we prove at first that all limit points Q of the sequence {QN}N≥1 are
concentrated on measures absolutely continuous with respect to the Lebesgue
measure, that are equal to g(q)dq at the initial time and finally that Q is con-
centrated on trajectories of measures satisfying πt(dq) = ρt(q)dq, where ρt(·)
is the weak solution of the corresponding hydrodynamic equation. Let Q be a
limit point of {QN}N≥1.

2.10.1 Characterization of absolutely continuity

We start by showing that Q is concentrated on measures which are absolutely
continuous with respect to the Lebesgue measure. Fix a continuous function
G : [0,1]→ R. Since

sup
t∈[0,T]

|〈πN
t , G〉| ≤

1
N

∑

x∈ΛN

|G( x
N )|,

which is a consequence of the fact of having at most one particle per site, the
function that associates to each trajectory π., supt∈[0,T] |〈πt , G〉| is continuous.
As a consequence, all limit points are concentrated in trajectories πt such that

|〈πt , G〉| ≤
∫ 1

0

|G(q)|dq.

In order to show that the measure πt is absolutely continuous with respect to
the Lebesgue measure, that we denote by Leb, we have to show that for each
set A such that Leb(A) = 0, then πt(A) = 0. With this purpose, we use last
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estimate for a sequence of continuous functions {GN}N≥1 that converge to the
indicator function over the set A and the result follows. Concluding, we have
just proved that

Q
�

π· : πt(dq) = π(t, q)dq,∀t ∈ [0, T]
�

= 1

i.e. πt(dq) is absolutely continuous with respect to the Lebesgue measure with
density π(t, q).

2.10.2 Characterization of the initial measure

Here we show that Q is concentrated on a Dirac measure equal to g(q)dq at
time 0. For that purpose, fix ε > 0. From the results of Section 2.9, we know,
from the weak convergence over a subsequence and Portmanteau’s Theorem,
that:

Q
�

�

�

�

1
N

∑

x∈ΛN

G( x
N )η0(x)−

∫ 1

0

G(q)g(q)dq
�

�

�> ε
�

≤ lim inf
K→+∞

QNk

�

�

�

�

1
N

∑

x∈ΛN

G( x
N )η0(x)−

∫ 1

0

G(q)g(q)dq
�

�

�> ε
�

= lim inf
K→+∞

µNk

�

�

�

�

1
N

∑

x∈ΛN

G( x
N )η(x)−

∫ 1

0

G(q)g(q)dq
�

�

�> ε
�

.

This last limit is equal to zero, by the hypothesis of µN being associated to the
profile g(·), see Definition 2.7.1. This shows that

Q
�

π· : π0(dq) = g(q)dq
�

= 1.

2.10.3 Characterization of the density π(t, q)

From Section 2.10.1 we know that all limit points Q of the sequence sequence
{QN}N∈N are concentrated on trajectories πt(dq) which are absolutely contin-
uous with respect to the Lebesgue measure, that is, πt(dq) = π(t, q)dq. More-
over, from the previous section we also know that all limit points Q of the se-
quence {QN}N∈N are such that the initial trajectory is a Dirac measure equal to
g(q)dq. Now we prove that all limit points are concentrated on trajectories of
measures of the form ρt(q)dq, that is we are going to show that π(t, q) = ρt(q)
and that ρt(·) is a weak solution of the corresponding hydrodynamic equation.
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For that purpose, let Q be a limit point of the sequence {QN}N≥1, whose exis-
tence follows from the computations of Section 2.9 and assume, without lost of
generality, that {QN}N≥1 converges to Q, as N → +∞.

Proposition 2.10.1. If Q is a limit point of {QN}N∈N then

Q
�

π· : Fθ = 0,∀t ∈ [0, T], ∀G ∈ Cθ
�

= 1,

where

Fθ =











F c
Dir , if θ < 0,

FDir , if θ ∈ [0,1),
FRob, if θ ≥ 1,

and Cθ =











C1,2
c ([0, T]× [0,1]), if θ < 0,

C1,2
0 ([0, T]× [0,1]), if θ ∈ [0, 1),

C1,2([0, T]× [0,1]), if θ ≥ 1.

Proof. We consider the case θ ≥ 1. Note that we need to verify, for δ > 0 and
G ∈ C1,2([0, T]× [0, 1]), that

Q
�

π· ∈ D([0, T],M+) : sup
0≤t≤T

|FRob|> δ
�

= 0, (2.10.1)

Recall FRob from (2.6.6) and note that, due to the terms that involve ρs(1) and
ρs(0) and that appear in FRob, the set inside the probability in (2.10.1) is not an
open set in the Skorohod space, and as a consequence we cannot use directly
Portmanteau’s Theorem. To avoid this difficulty, we fix ε > 0 and we consider
two approximations of the identity given by

ι0ε (q) =
1
ε

1(0,ε)(q) and ι1ε (q) =
1
ε

1(1−ε,1)(q) (2.10.2)

and we sum and subtract to ρs(0) and to ρs(1) the mean

〈πs, ι
0
ε 〉=

1
ε

∫ ε

0

ρs(q)dq and 〈πs, ι
1
ε 〉=

1
ε

∫ ε

1−ε
ρs(q)dq, (2.10.3)

respectively. Above we used the fact that Q is concentrated on trajectories
πt(dq) which are absolutely continuous with respect to the Lebesgue measure:
πt(dq) = ρt(q)dq. Thus, we bound the probability in (2.10.1) from above by
the sum of the following terms

Q

�

sup
0≤t≤T

�

�

�

∫ 1

0

ρt(q)Gt(q) dq−
∫ 1

0

ρ0(q)G0(q) dq

−
∫ t

0

∫ 1

0

ρs(q)
�1

2
∆+ ∂s

�

Gs(q) dqds−
1
2

∫ t

0

Gs(0)α+ Gs(1)β ds

+
1
2

∫ t

0

〈πs, ι
1
ε 〉
�

∂qGs(1) + Gs(1)
�

ds−
1
2

∫ t

0

〈πs, ι
0
ε 〉
�

∂qGs(0)− Gs(0
�

ds
�

�

�>
δ

4

�

,

(2.10.4)
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Q

�

�

�

�

∫ 1

0

(ρ0(q)− g(q))G0(q) dq
�

�

�>
δ

4

�

, (2.10.5)

∑

k∈{0,1}

Q
�

sup
0≤t≤T

�

�

�

1
2

∫ t

0

(ρs(k)− 〈πs, ι
k
ε 〉)
�

Gs(k)− ∂qGs(k)
�

ds
�

�

�>
δ

4

�

. (2.10.6)

and we note that the terms in (2.10.6) converge to 0 as ε→ 0 since we are com-
paring ρs(0) and ρs(1) with the averages (2.10.3) around 0 and 1, respectively.
Moreover, (2.10.5) is equal to zero since Q is a limit point of {QN}N∈N and
QN is induced by a measure µN which is associated to the profile g(·). Note
that in (2.10.4) we still cannot use Portmanteau’s Theorem, since the func-
tions ι0ε and ι1ε are not continuous. Nevertheless, by approximating each one of
these functions by continuous functions in such a way that the error vanishes
as ε→ 0 then, from Proposition A.3 of [11] we can use Portmanteau’s Theorem
and bound (2.10.4) from above by

lim inf
N→∞

QN

�

sup
0≤t≤T

�

�

�

∫ 1

0

ρt(q)Gt(q) dq−
∫ 1

0

ρ0(q)G0(q) dq

−
∫ t

0

∫ 1

0

ρs(q)
�1

2
∆+ ∂s

�

Gs(q) dqdsv −
1
2

∫ t

0

Gs(0)α+ Gs(1)β ds

−
1
2

∫ t

0

〈πs, ι
0
ε 〉
�

∂qGs(0)− Gs(0
�

ds+
1
2

∫ t

0

〈πs, ι
1
ε 〉
�

∂qGs(1) + Gs(1)
�

ds
�

�

�>
δ

24

�

.

(2.10.7)

Summing and subtracting

∫ t

0

N2LN 〈πN
s , Gs〉ds to the term inside the supre-

mum in (2.10.7), recalling (2.8.3) and (2.8.4), the definition of QN , we bound
(2.10.7) from above by the sum of the next two terms

lim inf
N→∞

PµN

�

sup
0≤t≤T

�

�M N
t (G)

�

�>
δ

25

�

, (2.10.8)

and

lim inf
N→∞

PµN

�

sup
0≤t≤T

�

�

�

∫ t

0

N2LN 〈πN
s , Gs〉 ds−

∫ t

0

∫ 1

0

ρs(q)
1
2
∆Gs(q) dqds

−
1
2

∫ t

0

−→η εNsN2(1)
�

∂qGs(0)− Gs(0
�

ds+
1
2

∫ t

0

←−η εNsN2(N − 1)
�

∂qGs(1) + Gs(1)
�

ds

−
1
2

∫ t

0

Gs(0)α+ Gs(1)β ds
�

�

�>
δ

25

�

.

(2.10.9)
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Doob’s inequality together with the computations right below (2.9.5) show that
(2.10.8) goes to 0 as N →∞. Finally, (2.10.9) can be rewritten as

lim inf
N→∞

PµN

�

sup
0≤t≤T

�

�

�

∫ t

0

N2LN 〈πN
s , Gs〉 ds−

∫ t

0

〈πN
s ,

1
2
∆Gs〉 ds

−
1
2

∫ t

0

−→η εNsN2(1)
�

∂qGs(0)− Gs(0
�

ds+
1
2

∫ t

0

←−η εNsN2(N − 1)
�

∂qGs(1) + Gs(1)
�

ds

−
1
2

∫ t

0

Gs(0)α+ Gs(1)β ds
�

�

�>
δ

25

�

.

(2.10.10)

Now, from (2.8.2) we can bound from above the probability in (2.10.10) by the
sum of the following terms

PµN

 

sup
0≤t≤T

�

�

�

1

N

∫ t

0

∑

x∈ΛN

1
2
∆N Gs(

x
N )ηsN2(x)ds−

∫ t

0

­

πN
s ,

1
2
∆Gs

·

ds
�

�

�>
δ

26

!

,

(2.10.11)

PµN

�

sup
0≤t≤T

�

�

�

1
2

∫ t

0

∇+N Gs(0)ηsN2(1)−−→η εNsN2(1)∂qGs(0) ds
�

�

�>
δ

26

�

, (2.10.12)

and

PµN

�

sup
0≤t≤T

�

�

�

1
2

∫ t

0

κN1−θGs

�

1
N

�

(α−ηsN2(1))− Gs(0)(α−
−→η εNsN2(1))ds

�

�

�>
δ

26

�

(2.10.13)

and two other terms which are very similar to the two previous ones but related
to the action of the right boundary dynamics given byL N−1

N ,b . Applying a Taylor
expansion on the test function G it is easy to show that (2.10.11) goes to 0 as
N →∞. Also by Taylor expansion, (2.10.12) can be bounded from above by

PµN

�

sup
0≤t≤T

�

�

�

∫ t

0

∂qGs(0)(ηsN2(1)−−→η εNsN2(1))ds
�

�

�>
δ

28

�

. (2.10.14)

plus a term that vanishes as N →∞. Using Lemma A.3.2 we see that (2.10.14)
vanishes as N →∞. The term (2.10.13) can be estimated using exactly the
same argument that we just used, that is: Taylor expansion on G plus Lemma
A.3.2. For the terms related to the right boundary the argument is the same and
with this we finish the proof.

We leave the other cases, namely θ < 1 for the reader. These cases are
even simpler than the previous one and for the interested reader we refer to,
for example, [1, 2].
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2.11 Hydrostatic limit

In this section we prove that the hydrodynamic limit holds when we start the
system from the stationary measure µss, see Section 2.4. By looking at the
statement of Theorem 2.7.2 we see that in fact to conclude we only need to
show the next result.

Proposition 2.11.1. Let µss be the stationary measure for the Markov process
{ηtN2 : t ≥ 0} with generator N2LN . Then, µss is associated to the profile ρ̄ :
[0, 1]→ [0, 1] given on q ∈ (0,1) by (2.5.5), which is a stationary solution of the
corresponding hydrodynamic equation, see (2.6.10) and (2.6.11).

Proof. Recall from (2.7.2), that we need to prove:

lim
N→∞

µss

�

η ∈ ΩN :
�

�

�

1
N

∑

x∈ΛN

G
� x

N

�

η(x)−
∫ 1

0

G(q)ρ0(q)dq
�

�

�> δ
�

= 0.

By Markov’s and triangular inequalities, we bound the previous probability from
above by

1
δ

Eµss

�

�

�

�

1
N

∑

x∈ΛN

G
� x

N

�

�

η(x)−ρN
ss (x)

�

�

�

�

+
�

�

�

1
N

∑

x∈ΛN

G
� x

N

�

ρN
ss (x)−

∫ 1

0

G(q)ρ̄(q)dq
�

�

�

�

≤
1
δ

Eµss

�

�

�

�

1
N

∑

x∈ΛN

G
� x

N

�

�

η(x)−ρN
ss (x)

�

�

�

�

�

+
1
δ

�

�

�

1
N

∑

x∈ΛN

G
� x

N

�

ρN
ss (x)−

∫ 1

0

G(q)ρ̄(q)dq
�

�

�.

(2.11.1)

The last term can be bounded from above by

1
δ

�

�

�

1
N

∑

x∈ΛN

G
� x

N

�

�

ρN
ss (x)− ρ̄

�

x
N

��

�

�

�+
1
δ

�

�

�

1
N

∑

x∈ΛN

G
� x

N

�

ρ̄
�

x
N

�

−
∫ 1

0

G(q)ρ̄(q)dq
�

�

�.

The term at the left hand side of last expression is bounded from above by

1
δ

1
N

∑

x∈ΛN

�

�

�G
� x

N

�

�

�

�

�

�

�ρN
ss (x)− ρ̄

�

x
N

�

�

�

�≤
‖G‖∞
δ

max
x∈ΛN

�

�

�ρN
ss (x)− ρ̄

�

x
N

�

�

�

�

where from (2.5.4) it vanishes as N → ∞, while the term at the right hand
side also vanishes as N → ∞ since we compare the Riemann sum with the
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corresponding converging integral. To finish the proof it remains to analyse
the third term in (2.11.1). By the Cauchy-Schwarz’s inequality the expectation
appearing in that term can bounded from above by

�

�

�

�

1
N2

∑

x∈ΛN

G
� x

N

�

Eµss

�

(η(x)−ρN
ss (x))

2
�

+
2
N

∑

x<y

G
� x

N

�

G
� y

N

�

Eµss

�

(η(x)−ρN
ss (x))(η(y)−ρ

N
ss (y))

��
1
2

≤
�C‖G‖∞

N
+ 2‖G‖∞max

x<y
ϕN

ss (x , y)
�

1
2
.

From (2.4.12) the previous expression vanishes as N →∞. This finishes the
proof.



Chapter 3

Symmetric exclusion with long
jumps in contact with reservoirs

3.1 The model

In this chapter we want to generalize the results of the previous chapter to the
case where particles can give jumps arbitrarily large. As in the previous chapter,
the bulk consists in the set of points ΛN = {1, · · · , N − 1} and we artificially
add two end points x = 0 and x = N . Now, we explain the dynamics of the
models we consider and we start by describing the conditions on the jump rate.
For that purpose, let p : Z × Z → [0, 1] be a transition probability such that
p(x , y) = p(y − x) and which is symmetric. We are going to discuss two cases:
the first one, when p(·) has finite variance and the second one when p(·) has
infinite variance. Note that since p(·) is symmetric it has mean zero, that is:
∑

z∈Z zp(z) = 0. We denote m =
∑

z≥1 zp(z). As an example we consider p(·)
given by p(0) = 0 and

p(z) =
cγ
|z|γ+1

, (3.1.1)

for z 6= 0, where cγ is a normalizing constant. For simplicity of the presentation
we stick to this choice of p(·) along this chapter but we note that many of our
results are true, in the case where p(·) has finite variance, in a more general
setting where we only assume p(·) to be translation invariant and mean zero.

We consider the process in contact with stochastic reservoirs at the left and
the right of the bulk. We fix four parameters α,β ∈ [0, 1], κ > 0 and θ ∈ R, so
that particles can get in the bulk of the system from the site x = 0 to any site
y ∈ ΛN at rate ακN−θ p(y) or leave the bulk from any site y ∈ ΛN to the site
x = 0 at rate (1 − α)κN−θ p(y); and particles can get in the bulk to any site

51
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y ∈ ΛN from the site x = N at rate βκN−θ p(N − y) or leave the bulk from any
site y ∈ ΛN to the site x = N at rate (1− β)κN−θ p(N − y).

We define the dynamics of the process in the following way. We start with
the bulk dynamics. Each pair of sites of the bulk {x , y} ⊂ ΛN carries a Poisson
process of intensity p(y− x)/2. Poisson processes associated to different bonds
are independent. If for the configuration η, the clock associated to the bound
{x , y} rings, then we exchange the value of the occupation variables η(x) and
η(y) at rate p(y − x)/2. Now we explain the dynamics at the boundary. Each
pair of sites {0, x} with x ∈ ΛN carries two Poisson processes, all of them being
independent. If for the configuration η, the clock associated to the Poisson
process of the bond {0, x} rings, then we change the value η(x) into 1− η(x)
with rate κN−θ p(x) [(1 − α)η(x) + α(1 − η(x))]. At the right boundary the
dynamics is similar but instead of α the intensity is given by β . Observe that
the reservoirs (x = 0 and x = N) add and remove particles on all the sites of the
bulk ΛN , and not only at the boundaries x = 1 and x = N − 1 as happened in
the model of Chapter 2, but with a rate that decreases as the distance from the
corresponding reservoir increases. We remark that as in the previous chapter,
we could do another interpretation of the previous dynamics at the boundary,
as follows. Particles can either be created or annihilated at any site x ∈ ΛN
according to the following rates:

• from the left reservoir, from x = 0 to y ∈ ΛN :

– creation rate: ακN−θ p(y),
– annihilation rate: (1−α)κN−θ p(y).

• from the right reservoir, from x = N − 1 to y ∈ ΛN :

– creation rate: βκN−θ p(N − y),
– annihilation rate: (1− β)κN−θ p(N − y).

Let us see an illustration of the dynamics just described with N = 11 and
the configuration η= (1,1, 0,0, 0,0, 1,0, 1,1):

κN−θβp(5)

κN−θ (1− β)p(1)
κN−θ (1−α)p(2)

κN−θαp(8)
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The infinitesimal generator of the process is given by

LN =LN ,0 +LN ,b, (3.1.2)

where LN ,0 and LN ,b act on functions f : ΩN → R as

(LN ,0 f )(η) =
1

2

∑

x ,y∈ΛN

p(x − y)[ f (ηx ,y)− f (η)],

(LN ,b f )(η) =
κ

Nθ

∑

y∈{0,N}

∑

x∈ΛN

p(y − x)cx(η, r(y))[ f (ηx)− f (η)]
(3.1.3)

where the configurations ηx ,y and ηx have been defined in (2.3.3), the rates
cx(η, r(y)) have been defined in (2.3.4) and r(0) = α and r(N) = β .

We consider the Markov process speeded up in the time scale tΘ(N) and
note that {ηtΘ(N) : t ≥ 0} has infinitesimal generator given by Θ(N)LN . Al-
though ηtθ (N) depends on α, β and θ , we shall omit these index in order to
simplify notation.

As in Section 2.4 we can prove that the Bernoulli product measures νN
ρ as

defined in (2.4.1) are reversible when we consider α = β = ρ. The proof is
quite similar to the one given in Lemma 2.4.1 and for that reason it is omitted.

In the next section we analyse the case where p(·) has finite variance and
we denote it by σ2, so that

σ2 :=
∑

z∈Z
z2p(z)<∞.

As an example we consider p(·) as in (3.1.1), that is p(0) = 0 and

p(z) =
cγ
|z|γ+1

,

for z 6= 0, where cγ is a normalizing constant and we take γ > 2, so that p(·)
has finite variance. For simplicity of the presentation we stick to this choice of
p(·) whenever we mention to the case where p(·) has finite variance but we
note that many of our results are true in the more general setting where we just
assume p(·) to be translation invariant, mean zero and with finite variance.

Remark 3.1.1. We note that for the choice of p with p(1) = 1
2 = p(−1) the

dynamics described above coincides with the one of the first chapter. In that sense
many of the results that we will derive here are a generalization of those obtained
before.

In Section 3.3 we analyse the case where p(·) is as in (3.1.1) but we consider
γ ∈ (1,2) so that p(·) is mean zero but with infinite variance.
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3.2 The finite variance case

3.2.1 Hydrodynamic equations: finite variance

Recall the notation introduced in Section 2.6. We can now give the definition
of the weak solutions of the hydrodynamic equations that will be derived in
this chapter when p(·) is assumed to have finite variance. In what follows g :
[0,1]→ [0, 1] is a measurable function and it is the initial condition of all the
partial differential equations that we define below, that is ρ0(q) = g(q), for all
q ∈ (0,1).

Definition 3.2.1. Let σ̂ ≥ 0 and κ̂ ≥ 0 be some parameters. We say that ρ :
[0, T]× [0,1]→ [0, 1] is a weak solution of the reaction-diffusion equation with
Dirichlet boundary conditions

¨

∂tρt(q) =
σ̂2

2 ∆ρt(q) + κ̂
¦

α−ρt (q)
qγ+1 + β−ρt (q)

(1−q)γ+1

©

, (t, q) ∈ (0, T]× (0, 1),

ρt(0) = α, ρt(1) = β , t ∈ (0, T],
(3.2.1)

if the following three conditions hold:

1. ρ ∈ L2(0, T ;H 1) if σ̂ > 0,
∫ T

0

∫ 1
0

¦

(α−ρt (q))2

qγ+1 + (β−ρt (q))2

(1−q)γ+1

©

dq d t <∞ if κ̂ > 0,

2. ρ satisfies the weak formulation:

FRD :=

∫ 1

0

ρt(q)Gt(q) dq−
∫ 1

0

g(q)G0(q) dq

−
∫ t

0

∫ 1

0

ρs(q)
� σ̂2

2
∆+ ∂s

�

Gs(q) dq ds

− κ̂
∫ t

0

∫ 1

0

Gs(q)
�

α−ρs(q)
qγ+1

+
β −ρs(q)
(1− q)γ+1

�

dq ds = 0,

(3.2.2)

for all t ∈ [0, T] and any function G ∈ C1,2
c ([0, T]× [0, 1]),

3. if σ̂ > 0 then ρt(0) = α, ρt(1) = β for all t ∈ [0, T].

Remark 3.2.2. Observe that in the case σ̂ > 0 and κ̂ = 0 we recover the heat
equation with Dirichlet boundary conditions. If σ̂ = 0 the equation does not have
the diffusion term.
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Definition 3.2.3. Let σ̂ > 0 and m̂ ≥ 0 be some parameters. We say that ρ :
[0, T]×[0,1]→ [0,1] is a weak solution of the heat equation with Robin boundary
conditions

¨

∂tρt(q) =
σ̂2

2 ∆ρt(q), (t, q) ∈ [0, T]× (0, 1),
∂qρt(0) =

2m̂
σ̂2 (ρt(0)−α), ∂qρt(1) =

2m̂
σ̂2 (β −ρt(1)), t ∈ [0, T],

(3.2.3)
if the following two conditions hold:

1. ρ ∈ L2(0, T ;H 1),

2. ρ satisfies the weak formulation:

FRob :=

∫ 1

0

ρt(q)Gt(q) dq−
∫ 1

0

g(q)G0(q) dq

−
∫ t

0

∫ 1

0

ρs(q)
� σ̂2

2
∆+ ∂s

�

Gs(q) dq ds

+
σ̂2

2

∫ t

0

{ρs(1)∂qGs(1)−ρs(0)∂qGs(0)} ds

− m̂

∫ t

0

{Gs(0)(α−ρs(0)) + Gs(1)(β −ρs(1))} ds = 0,

(3.2.4)

for all t ∈ [0, T], any function G ∈ C1,2([0, T]× [0, 1]).

Remark 3.2.4. Observe that in the case m̂ = 0 the equation above is the heat
equation with Neumann boundary conditions.

3.2.2 Hydrodynamic Limit: finite variance

Recall the notion of the empirical measure given in Section 2.6 and note that in
this case we have

πN
t (η, dq) := πN (ηtθ (N), dq)

and we note that, in this case, the time scale θ (N) will change with the range
of θ , contrarily to what happens in the model of Chapter 2. As before, let
PµN

be the probability measure in the Skorohod space D([0, T],ΩN ) induced
by the Markov process {ηtθ (N) : t ≥ 0} and the initial probability measure µN
and we denote by EµN

the expectation with respect to PµN
and let {QN}N≥1 be

the sequence of probability measures on D([0, T],M+) induced by the Markov
process {πN

t ; t ≥ 0} and by PµN
.
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Remark 3.2.5. We note that due to the presence of long jumps in the system, we
cannot obtain information about the empirical profile nor the two point correlation
function in a simple way as we did in Section 2.5. We also note that the matrix
ansatz method described in Section 2.4 in this case does not give us any information
about the stationary measures for this model. This study is left for a future work.

Let g : [0,1] → [0,1] be a measurable function and let {µN}N≥1 be a se-
quence of probability measures in ΩN associated to g(·), see (2.7.2). The first
result in this chapter is stated in the following theorem (see Figure 3.1).

Theorem 3.2.6. Let g : [0, 1]→ [0, 1] be a measurable function and let {µN}N≥1
be a sequence of probability measures in ΩN associated to g(·). Then, for any
0≤ t ≤ T,

lim
N→∞
PµN

�

η· :

�

�

�

�

�

1
N − 1

∑

x∈ΛN

G
� x

N

�

ηtθ (N)(x)−
∫ 1

0

G(q)ρt(q)dq

�

�

�

�

�

> δ
�

= 0,

where the time scale is given by

Θ(N) =

¨

N2, if θ ≥ 1− γ,

Nγ+θ+1, if θ < 1− γ,
(3.2.5)

and ρt(·) is the unique weak solution of :

• (3.2.1) with σ̂ = 0 and κ̂= κcγ, if θ < 1− γ;

• (3.2.1) with σ̂ = σ and κ̂= κcγ, if θ = 1− γ;

• (3.2.1) with σ̂ = σ and κ̂= 0, if θ ∈ (1− γ, 1);

• (3.2.3) with σ̂ = σ and m̂= κ
2 , if θ = 1;

• (3.2.3) with σ̂ = σ and m̂= 0, if θ > 1.

Remark 3.2.7. We note that for a probability transition p(·) which is symmetric
and with finite variance the last three regimes obtained above are in force (however
(3.2.1) with κ̂ = 0 is obtained for θ ∈ [0,1)). We note that the two first regimes
depend on the specific choice of the transition probability p(·) that we have assumed
in (3.1.1). We also note that if we impose that the higher moments of p(·) are
finite then the regime (3.2.1) with κ̂ = 0 can be reached for θ ∈ [v, 1) where
v < 0 depends on the finiteness of the moments of p(·).

Remark 3.2.8. We note that the solution of the hydrodynamic equation depends
on the parameter κ which appears at the boundary dynamics in two different
regimes of θ , namely θ = 1− γ and θ = 1.
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θ

γθ = −1,γ= 2

θ = 1,γ= 2

Heat eq. with reaction term
&

Dirichlet b.c.

Heat eq. & Robin b.c.

Heat eq. & Neumann b.c.

Heat eq. & Dirichlet b.c.

Reaction eq. & Dirichlet b.c.

θ = 1− γ

Figure 3.1: The five different hydrodynamic regimes in terms of γ and θ .

Now note that as before, the stationary solutions of the hydrodynamic limits
in the case θ > 1− γ are standard and for that reason they are ommited. On
the other hand, the form and properties of the stationary solutions in the case
θ ≤ 1−γ are more complicated to obtain in the case θ = 1−γ. This problem is
studied in more details in [15] for a slighlty different dynamics. Here we only
present some graphs of the stationary solutions and refer the interested reader
to [15] for a complete description on the behavior of those solutions. Below
we draw the graph of these stationary solutions for a choice of α = 0.2 and
β = 0.8.

The proof of Theorem 3.2.6 is described in Section 2.7 below Figure 2.4
and for that reason many steps now are omitted. The proof of tightness of the
sequence {QN}N≥1 is quite similar to the one given in Section 2.9. The char-
acterization of limit points is also close to the one given in Section 2.10, the
only difference comes at the level of the identification of the density as a weak
solution of the corresponding partial differential equation. For that purpose,
the next section is dedicated to the presentation of an heuristic argument to de-
duce the weak formulation for the solution of the corresponding hydrodynamic
equation. The adaptation of the rest of the arguments to this new dynamics is
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θ > 1

θ = 1

1− γ < θ < 1

θ = 1− γ

θ < 1− γ

1
20 1

β

α

α+β
2

(α+β)σ2+ακ
(κ+2σ2)

(α+β)σ2+βκ
(κ+2σ2)

Figure 3.2: Stationary solutions of the hydrodynamic equations.

left to the reader.

3.2.3 Heuristics for hydrodynamic equations: finite variance

As in Section 2.8, the identification of the density ρt(·) as a weak solution of
the corresponding hydrodynamic equation is obtained by using auxiliary mar-
tingales. Fix then a function G : [0,1] → R which does not depend on time
and which is two times continuously differentiable. As in Section 2.8, we use
Dynkin’s formula and we note that

∫ t

0

Θ(N)LN (〈πN
s , G〉) ds =

Θ(N)

N − 1

∫ t

0

∑

x∈ΛN

L̃N G( x
N )ηsθ (N)(x) ds

+
κΘ(N)

(N − 1)Nθ

∫ t

0

∑

y∈{0,N}

∑

x∈ΛN

G( x
N )p(y − x)(r(y)−ηsθ (N)(x)) ds,

(3.2.6)

where for all x ∈ ΛN

(L̃N G)( x
N ) =

∑

y∈ΛN

p(y − x)
�

G( y
N )− G( x

N )
�

. (3.2.7)
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Now, we extend the first sum in (3.2.6) to all the integers so that we extend the
function G to R in such a way that it remains two times continuously differen-
tiable. By the definition of L̃N , we get that

Θ(N)

N − 1

∫ t

0

∑

x∈ΛN

L̃N G( x
N )ηsθ (N)(x) ds

=
Θ(N)

N − 1

∫ t

0

∑

x∈ΛN

(KN G)( x
N )ηsθ (N)(x) ds

−
Θ(N)

N − 1

∫ t

0

∑

x∈ΛN

∑

y≤0

�

G( y
N )− G( x

N )
�

p(x − y)ηsθ (N)(x) ds

−
Θ(N)

N − 1

∫ t

0

∑

x∈ΛN

∑

y≥N

�

G( y
N )− G( x

N )
�

p(x − y)ηsθ (N)(x) ds,

(3.2.8)

where
(KN G)( x

N ) =
∑

y∈Z
p(y − x)

�

G( y
N )− G( x

N )
�

. (3.2.9)

Now, we are going to analyse how the different boundary conditions appear on
the hydrodynamic equations given in Section 3.2.1 from this dynamics.

.The case θ < 1− γ

Take a function G : (0,1)→ R two times continuously differentiable and with
compact support in (0, 1), so that we can choose an extension by 0 outside of
the support of G. Since Θ(N) = Nγ+θ+1 (see the statement of Theorem 3.2.6) a
simple computation shows that the first term in (3.2.8) vanishes for θ < 1− γ.
Indeed, by a Taylor expansion on G and the fact that p(·) is mean zero, we have
that

Nγ+θ+1
∑

y∈Z
(G( y+x

N )− G( x
N ))p(y)

is of same order as
Nγ+θ−1G′′( x

N )
∑

y∈Z
y2p(y)

and since θ < 1− γ last expression vanishes as N →∞.
Now, the second and third terms in (3.2.8) vanish as N →∞, since Θ(N) =

Nγ+θ+1 and θ < 1− γ. Note that since G vanishes outside (0, 1), those terms
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can be rewritten as

Θ(N)

N − 1

∫ t

0

∑

x∈ΛN

G( x
N )r

−
N (

x
N )ηsθ (N)(x) ds+

Θ(N)

N − 1

∫ t

0

∑

x∈ΛN

G( x
N )r

+
N (

x
N )ηsθ (N)(x) ds,

(3.2.10)

where

r−N (
x
N ) =

∑

y≥x

p(y), r+N (
x
N ) =

∑

y≤x−N

p(y). (3.2.11)

We observe that, for any a ∈ (0, 1), uniformly in u ∈ (a, 1− a), as N →∞:

Nγr−N ([uN])→ cγγ
−1u−γ := r−(u), Nγr+N ([uN])→ cγγ

−1(1− u)−γ := r+(u).
(3.2.12)

Now we note that we can bound from above, for example the term at the
left hand side in (3.2.10) by Nθ+1 times

1

N − 1

∫ t

0

∑

x∈ΛN

Nγr−N (
x
N ) |G(

x
N )|

because |ηsNγ+θ (x)| ≤ 1 for all s > 0. Since θ < −1 and since the previous sum
converges to the (finite) integral of |G|r− on (0, 1), by (3.2.12), the previous
display vanishes as N →∞. Now we look at the boundary terms in (3.2.6),
which can be written, for the choice of Θ(N) = Nγ+θ+1, as:

κNγ+1

N − 1

∫ t

0

∑

y∈{0,N}

∑

x∈ΛN

G
� x

N

�

p(y − x)(r(y)−ηsNγ+θ (x)) ds

which is equal to

κ

∫ t

0

〈α−πN
s , Gp〉+ 〈β −πN

s , Gp̃〉 ds,

where p̃(q) = p(1 − q), and can be replaced, thanks to the fact that G has
compact support, by

κ

∫ 1

0

G(q)
�

p(q)(α−ρs(q)) + p̃(q)(β −ρs(q))
�

dq

as N → ∞. The last convergence holds because G has compact support in-
cluded in (0,1) so that Gp and Gp̃ are continuous function. From the previous
computations we recognize the terms in (3.2.2) with κ̂= κcγ and σ̂ = 0.
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.The case θ = 1− γ

In this case we also take a function G : (0, 1) → R two times continuously
differentiable and with compact support in (0,1), so that we can choose an
extension by 0 outside of its support. In this case, since Θ(N) = N2, by Lemma
3.2.10, which we state below, the first term in (3.2.8) can be replaced, for N
sufficiently big, by

1

N − 1

∫ t

0

∑

x∈ΛN

σ2

2 ∆G( x
N )ηsN2(x) ds =

∫ t

0

〈πN
s , σ

2

2 ∆G〉 ds.

Moreover, a similar computation to the one above shows that the second and
third terms in (3.2.8) vanish as N →∞ (recall that Θ(N) = N2 and γ > 2).
Finally, the second term in (3.2.6) can be rewritten as

κNγ+1

(N − 1)

∫ t

0

∑

y∈{0,N}

∑

x∈ΛN

G( x
N )p(y − x) (r(y)−ηsN2(x)) ds

and repeating the analysis we did in the previous case it converges, as N →∞
to

κ

∫ t

0

∫ 1

0

G(q)
�

p(q)(α−ρs(q)) + p̃(q)(β −ρs(q))
�

dq ds.

As above, from the previous computations we recognize the terms in (3.2.2)
with κ̂= κcγ and σ̂ = σ.

.The case θ ∈ (1− γ, 1)

Take again a function G : (0, 1)→ R two times continuously differentiable and
with compact support in (0, 1) and extend it by 0 outside (0,1). As above, since
Θ(N) = N2, by Lemma 3.2.10, which we prove below, the first term in (3.2.8)
can be replaced, for N sufficiently big, by

∫ t

0

〈πN
s , σ

2

2 ∆G〉 ds.

Now, the second term in (3.2.3) equals to

κN2−θ

N − 1

∫ t

0

∑

y∈{0,N}

∑

x∈ΛN

G( x
N )p(y − x)(r(y)−ηsN2(x)) ds
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and vanishes as N →∞ since θ > 1 − γ. Now, the last two terms in (3.2.8)
also vanish because, for example, the second term in (3.2.8) can be written as

∫ t

0

N2

N − 1

∑

x∈ΛN

G( x
N )r

−
N (

x
N )ηsN2(x) ds

which can be bounded from above by a constant times tN2−γ times a sum con-
verging to the integral of |G|r− on (0, 1), and since γ > 2 this term vanishes.
From this, we see the terms in (3.2.2) with κ̂= 0 and σ̂ = σ.

Remark 3.2.9. We remark here that in the last three cases, similarly to what we
have seen in the case θ < 0 for the models of Chapter 2 (see Remark 2.8.2), there
is an extra condition in the definition of the weak solution of (3.2.1). In this
notion of solution we need to show that the value of the profile ρt(·) is fixed at the
boundary. This issue is analysed in Section A.4.

.The case θ = 1

In this case we consider a function G : [0, 1]→ R which is two times continu-
ously differentiable and we extend it on R in a two times continuously differ-
entiable function with compact support which strictly contains [0,1]. Note that
in this case G can take non-zero values at 0 and 1. As above, since Θ(N) = N2,
by Lemma 3.2.10, which we state below and which holds for this new space of
test functions, the first term in (3.2.8) can be replaced, for N sufficiently big,
by

∫ t

0

〈πN
s , σ

2

2 ∆G〉 ds.

Now we look at the terms coming from the boundary, namely the last term in
(3.2.6). Then, in the term for y = 0 of (3.2.6)(resp. for y = N) we do at first
a Taylor expansion on G and then we replace η(x) by the average −→η εN (1) =
1
εN

∑1+εN
x=1 η(x) (resp. η(x) by←−η εN (N − 1) = 1

εN

∑N−1
x=N−1−εN η(x)), which can

be done as a consequence of Lemma A.3.2 as pointed out in Remark A.3.3.
Moreover, note that for y = 0 and y = N it holds that

∑

x∈ΛN

p(y − x) −−−→
N↑∞

1
2

. (3.2.13)

Therefore, we can write the last term in (3.2.6) as

κ

2

∫ t

0

{(α−−→η εNsN2(1))G(0) + (β −
←−η εNsN2(N − 1))G(1)} ds,
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plus terms that vanish as N → +∞. Since −→η εNsN2(1)∼ ρs(0) and←−η εNsN2(N−1)∼
ρs(1) last term writes as

κ

2

∫ t

0

{(α−ρs(0))G(0) + (β −ρs(1))G(1)} ds. (3.2.14)

Now, we analyse the two last terms in (3.2.8). Since the function G has been
extended into a two times continuously differentiable function onR, by a Taylor
expansion on G we can write those terms as

N

N − 1

∫ t

0

∑

x∈ΛN

G′( x
N )Θ

−
x ηsN2(x) ds−

N

N − 1

∫ t

0

∑

x∈ΛN

G′( x
N )Θ

+
x ηsN2(x) ds

(3.2.15)
plus terms that vanish as N → +∞. Above for x ∈ ΛN ,

Θ−x =
∑

y≤0

(x − y)p(x − y) and Θ+x =
∑

y≥N

(y − x)p(x − y).

Note that

1
N

∑

x∈ΛN

xΘ−x −−−−→N→∞
0 and

1
N

∑

x∈ΛN

xΘ+x −−−−→N→∞
0. (3.2.16)

Moreover, note that
∑

x∈ΛN

Θ−x =
∑

x∈ΛN

∑

y≥x

yp(y) −−−→
N↑∞

σ2

2 ,

∑

x∈ΛN

Θ+x =
∑

x∈ΛN

∑

y≥N−x

yp(y) −−−→
N↑∞

σ2

2 .
(3.2.17)

In order to prove the convergence of
∑

x∈ΛN
Θ−x (or of

∑

x∈ΛN
Θ+x in (3.2.17))

we use Fubini’s theorem to get that

∑

x∈ΛN

Θ−x =
∑

y∈ΛN

y
∑

x=1

yp(y) +
∑

y≥N

∑

x∈ΛN

yp(y)

=
∑

y∈ΛN

y2p(y) + (N − 1)
∑

y≥N

yp(y),

and since γ > 2 the result follows. By another Taylor expansion on G we can
write (3.2.15) as

N

N − 1
G′(0)

∫ t

0

∑

x∈ΛN

Θ−x ηsN2(x) ds−
N

N − 1
G′(1)

∫ t

s

∑

x∈ΛN

Θ+x ηsN2(x) ds

(3.2.18)
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plus terms that vanish as N → +∞. From Lemma A.3.2 we can replace in the
term on the left (resp. right) hand side of last expression ηsN2(x) by −→η εNsN2(1)
(resp. ←−η εNsN2(N −1)). Therefore, (3.2.18) can be replaced, for N sufficiently big
and for ε sufficiently small, by

∫ t

0

G′(0)σ
2

2
−→η εNsN2(1)− G′(1)σ

2

2
←−η εNsN2(N − 1) ds.

Since −→η εNsN2(1)∼ ρs(0) and←−η εNsN2(N − 1)∼ ρs(1), last term tends to

∫ t

0

G′(0)σ
2

2 ρs(0)− G′(1)σ
2

2 ρs(1) ds, (3.2.19)

as N →∞.
Putting together (3.2.14) and (3.2.19) we see the boundary terms that ap-

pear at the right hand side of (3.2.4).

.The case θ > 1

In this case we consider an arbitrary function G : [0,1]→ R which is two times
continuously differentiable and we extend it on R in a two times continuously
differentiable function with compact support. Its support strictly contains [0,1]
since G can take non-zero values at 0 and 1. As in the last case, sinceΘ(N) = N2,
by Lemma 3.2.10, the first term in (3.2.8) can be replaced, for N sufficiently
big, by

∫ t

0

〈πN
s , σ

2

2 ∆G〉 ds.

The last term in (3.2.6) vanishes, as N →∞ since, we can bound it by a con-
stant times

N1−θ
∑

x∈ΛN

p(x).

Since γ > 2 last display vanishes if θ > 1, as N → +∞. Thus, we only need to
look at the expression (3.2.8). Therefore, in order to see the boundary terms
that appear in (3.2.4), we can use exactly the computations already done in the
case θ = 1 from which we obtain (3.2.19).

We finish this section with the statement of the lemma which is used above in
order to obtain the diffusion term in the equations above in the cases θ ≥ 1−γ.
Its proof can be seen in [2].
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Lemma 3.2.10. Let G : R→ R be a two times continuously differentiable function
with compact support. We have

limsup
N→∞

sup
x∈ΛN

�

�

�

�

�

N2
∑

y∈Z
(G( y+x

N )− G( x
N ))p(y)−

σ2

2
∆G( x

N )

�

�

�

�

�

= 0.

3.3 The infinite variance case

In this section we analyse the case in which p(·) is as in (3.1.1) but now γ ∈ (1,2)
so that p(·) has mean zero but infinite variance. We also consider only the
case where θ = −1, but we note that in the regime θ < −1 the behavior of
the system, when we take the time scale Θ(N) = Nγ+θ+1 is the same as when
θ < 1 − γ and when p(·) has finite variance, that is, it is given by the weak
solution of (3.2.1) with σ̂ = 0 and κ̂ = κcγ. The other regimes are open and
seem to be quite challenging. Recall the infinitesimal generator given in (3.1.2)
and (3.1.3) and since we are restricted to the case θ = −1, we consider the
Markov process speeded up in the time scale Θ(N) = Nγ, so that {ηtNγ : t ≥ 0}
has infinitesimal generator given by NγLN . As in Section 2.4 we can prove that
the Bernoulli product measures νN

ρ as defined in (2.4.1) are reversible when we
consider α= β = ρ. The proof is quite similar to the one given in Lemma 2.4.1
and for that reason it is omitted.

3.3.1 Hydrodynamic equations: infinite variance

We can now give the definition of the weak solution of the hydrodynamic equa-
tion that will be derived in this section when p(·) is assumed to have infinite
variance.

Recall the notations introduced in the beginning of Section 2.6. The frac-
tional Laplacian operator of exponent γ/2 denoted by (−∆)γ/2 is defined on the
set of functions G : R→ R such that

∫ ∞

−∞

|G(q)|
(1+ |q|)1+γ

dq <∞ (3.3.1)

by

(−∆)γ/2G (q) = cγ lim
ε→0

∫ ∞

−∞
1|q−v|≥ε

G(q)− G(v)

|q− v|1+γ
dv (3.3.2)

provided the limit exists, which is the case, for example, if G is in the Schwartz
space S(R) and where cγ is fixed in (3.1.1). Up to a multiplicative constant,
−(−∆)γ/2 is the generator of a γ-Lévy stable process.
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We define the operator L by its action on functions G ∈ C∞c ((0, 1)), by

∀q ∈ (0, 1), (LG)(q) = cγ lim
ε→0

∫ 1

0

1|q−v|≥ε
G(v)− G(q)

|q− v|1+γ
dv.

The operator L is called the regional fractional Laplacian on (0, 1). The semi
inner-product 〈·, ·〉γ/2 is defined on the set C∞c ((0, 1)) by

〈G, H〉γ/2 =
cγ
2

∫∫

[0,1]2

(H(q)−H(v))(G(q)− G(v))

|q− v|1+γ
dqdv. (3.3.3)

The corresponding semi-norm is denoted by ‖·‖γ/2. Observe that for any G, H ∈
C∞c ((0, 1)) we have that

−
∫ 1

0

G(q)LH(q) dq = −
∫ 1

0

LG(q)H(q) dq = 〈G, H〉γ/2

and note that for all q ∈ (0,1),

(LG)(q) = −(−∆)γ/2G (q) + V1(q)G(q) (3.3.4)

where V1(q) = r−(q) + r+(q), see (3.2.12), that is, V1(·) is given on q ∈ (0, 1)
by:

V1(q) = cγγ
−1
� 1

qγ
+

1
(1− q)γ

�

. (3.3.5)

Definition 3.3.1. The Sobolev space H γ/2 consists of all square integrable func-
tions g : (0,1)→ R such that ‖g‖γ/2 <∞. This is a Hilbert space for the norm
‖ · ‖H γ/2 defined by

‖g‖2H γ/2 := ‖g‖2 + ‖g‖2
γ/2.

Its elements elements coincide a.e. with continuous functions. The space L2(0, T ;H γ/2)
is the set of measurable functions f : [0, T]→H γ/2 such that

∫ T

0

‖ ft‖2H γ/2 d t <∞.

We now extend the definition of the regional fractional Laplacian on (0, 1)
to the spaceH γ/2.

Definition 3.3.2. For ρ ∈H γ/2 we define the distribution Lρ by
∫

0

Lρ(u)G(u) du=

∫ 1

0

ρ(u)LG(u) du, G ∈ C∞c ((0,1)).
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Let Lκ be the regional fractional Laplacian on [0,1] with zero Dirichlet
boundary conditions, indexed by κ, and taking the form

Lκ = L− κṼ1, (3.3.6)

where

Ṽ1(q) = p(q) + p̃(q) = cγ
� 1

qγ+1
+

1
(1− q)γ+1

�

. (3.3.7)

Above p̃(q) = p(1−q). Below g : [0,1]→ [0,1] is a measurable function and it
is the initial condition of the partial differential equation that we obtain in this
section.

Definition 3.3.3. Let κ > 0 be some parameter. We say that ρκ : [0, T]×[0,1]→
[0, 1] is a weak solution of the regional fractional reaction-diffusion equation with
Dirichlet boundary conditions given by

¨

∂tρ
κ
t (q) = Lκρ

κ
t (q) + κṼ0(q), (t, q) ∈ [0, T]× (0,1),

ρκt (0) = α, ρκt (1) = β , t ∈ [0, T],
(3.3.8)

where

Ṽ0(q) = αp(q) + β p̃(q) = cγ
� α

q1+γ
+

β

(1− q)1+γ
�

,

if :

i) ρκ ∈ L2(0, T ;H γ/2).

ii)
∫ T

0

∫ 1
0

¦ (α−ρκt (q))
2

q1+γ +
(β−ρκt (q))

2

(1−q)1+γ

©

dq d t <∞ .

iii) For all t ∈ [0, T] and all functions G ∈ C1,∞
c ([0, T]× (0,1)) we have that

FκDir :=

∫ 1

0

ρκt (q)Gt(q) dq−
∫ 1

0

g(q)G0(q) dq

−
∫ t

0

∫ 1

0

ρκs (q)
�

∂s +Lκ
�

Gs(q) dqds

− κ
∫ t

0

∫ 1

0

Gs(q)Ṽ0(q) dq ds = 0.

(3.3.9)

Remark 3.3.4. We observe that the partial differential equation above has a
unique weak solution in the sense defined above. We do not include the proof
of this result in these notes but we refer the interested reader to [2] for the proof
of the uniqueness for a very similar equation. The same proof gives uniqueness in
this case.
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3.3.2 Hydrodynamic Limit: infinite variance case

Recall the notion of the empirical measure given in Section 2.6 and note that in
this case we have

πN
t (η, dq) := πN (ηtNγ , dq)

since the time scale now is equal to θ (N) = Nγ.
The second result of this chapter is stated in the following theorem.

Theorem 3.3.5. Let g : [0, 1]→ [0, 1] be a measurable function and let {µN}N≥1
be a sequence of probability measures in ΩN associated to g(·). Then, for any
0≤ t ≤ T,

lim
N→∞
PµN

 

η· :

�

�

�

�

�

1
N − 1

∑

x∈ΛN

G
� x

N

�

ηtNγ(x)−
∫ 1

0

G(q)ρκt (q)dq

�

�

�

�

�

> δ

!

= 0,

where ρκt is the unique weak solution of (3.3.8) in the sense of Definition 3.3.3.

3.3.3 Heuristics for hydrodynamic equations: infinite variance

Fix G : [0, 1] → R which does not depend on time and has compact support
included in (0, 1). Recall (3.2.6) and (3.2.8) and recall that we assumed θ =
−1, so that (3.2.3) now writes as

∫ t

0

NγLN (〈πN
s , G〉) ds =

Nγ

N − 1

∫ t

0

∑

x∈ΛN

(L̃N G)( x
N )ηsNγ(x)

+
κNγ+1

(N − 1)

∫ t

0

∑

y∈{0,N}

∑

x∈ΛN

G( x
N )p(y − x)(r(y)−ηsNγ(x)) ds.

(3.3.10)

Note that the first term on the right hand side in last display is equal to
∫ t

0

〈πN
s , L̃N G〉 ds.

Since from Lemma 3.3 in [4], we can deduce that

lim
N→∞

Nγ(L̃N G)(q) = (LG)(q) (3.3.11)

uniformly in [a, 1 − a], for all functions G with compact support included in
[a, 1− a], that term can be replaced by

∫ t

0

∫ 1

0

(LG)(q)ρκs (q) dq ds, (3.3.12)



The infinite variance case 69

as N goes to ∞. Now, the second term on the right hand side in (3.3.10) is
equal to

κ

∫ t

0

〈α−πN
s , Gp〉 ds+κ

∫ t

0

〈β −πN
s , Gp̃〉 ds

and converges as N →∞ to

κ

∫ t

0

∫ 1

0

(α−ρκt (q))G(q)p(q)du+ κ

∫ t

0

∫ 1

0

(β −ρκt (q))G(q)p̃(q)dq

= −κ
∫ t

0

∫ 1

0

ρκt (q)G(q)Ṽ1(q)dq+ κ

∫ t

0

∫ 1

0

G(q)Ṽ0(q)dq.

(3.3.13)

Putting together (3.3.12) and (3.3.13) and using (3.3.6) we recognize the cor-
responding terms in (3.3.9).

Remark 3.3.6. We finish this chapter by noting that in [3] it was studied a similar
dynamics to the one described above. There we considered the same bulk dynam-
ics with long jumps given by p(·) with the choice (3.1.1) and γ ∈ (1,2) but the
boundary dynamics was different. In that paper instead of considering just one
boundary at each end point of the bulk, it was added infinitely many reservoirs at
the left and at the right of the bullk. As in the dynamics described above, particles
can be injected and removed from the system at any point of the bulk by any of
the reservoirs located at y ≤ 0 or y ≥ N. We note that in the case of this new dy-
namics the results obtained in [3] are similar to those presented here, except that
the transitions occur for a different value of θ and for that reason, the potential
that appear in the reaction diffusion equation has a different power than the one
that appears in the hydrodynamic equation in [3]. It would be very interesting to
analyse other types of boundary dynamics superposed to the bulk dynamics that we
defined above in order to see if we can come up with new fractional reaction diffu-
sion equations with more tricky boundary conditions than the Dirichlet boundary
conditions that we obtained here. And it would be very interesting to look at the
case where θ > −1, the slow boundary regime, when p(·) is given as above in the
case of infinite variance. This is a subject to pursue in the near future.
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Appendix A

Auxiliary results

In this section we establish some technical results that are needed in order to
prove the hydrodynamic limit for the models discussed in the previous chapters.

A.1 Entropy bound

From now on, we suppose that α≤ β . Let ρ : [0,1]→ [0,1] be a function such
that α≤ ρ(q)≤ β , for all q ∈ [0, 1]. Let νN

ρ(·) be the Bernoulli product measure
on ΩN with marginals given by

νN
ρ(·){η : ηx = 1}= ρ

� x
N

�

. (A.1.1)

Given two functions f , g : ΩN → R and a probability measure µ on ΩN , we
denote here by 〈 f , g〉µ the scalar product between f and g in L2(ΩN ,µ), that
is,

〈 f , g〉µ =
∫

ΩN

f (η)g(η) dµ.

Let HN (µ|νN
ρ(·)) be the relative entropy of a probability measure µ on ΩN with

respect to the probability measure νN
ρ(·) on ΩN . We claim that there exists a

constant C0 := C(α,β), such that

HN (µ|νN
ρ(·))≤ C0N . (A.1.2)

For that purpose note that, since νN
ρ(·) is product we have that

νN
ρ(·)(η) =

N−1
∏

x=1

ρ( x
N )
η(x)(1−ρ( x

N ))
1−η(x) ≥ (α∧ (1− β))N

71
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from where we obtain that

H(µ|νN
ρ(·)) =

∑

η∈ΩN

µ(η) log

�

µ(η)
νN
ρ(·)(η)

�

≤
∑

η∈ΩN

µ(η) log

�

1

νN
ρ(·)(η)

�

≤ log

�

�

1
α∧ (1− β)

�N� ∑

η∈ΩN

µ(η)≤ N log
�

1
α∧ (1− β)

�

≤ C0N .

We remark here that below when we use as reference measure the Bernoulli
product measure given in (A.1.1) we have to restrict to α 6= 0 and β 6= 1 since
in last estimate the constant C0 = − log(α∧(1−β)). We also note that when we
use the Bernoulli product measure with a constant parameter we do not need
to impose that restriction.

A.2 Estimates on Dirichlet forms

In this section we consider the model described in Chapter 3 since the results for
the model of Chapter 2 can be obtained easily from the ones we derive below.
In any case we present some remarks along the text about the corresponding
results for the model of Chapter 2.

For a probability measure µ on ΩN , x , y ∈ ΛN and a density function f :
ΩN → [0,∞) with respect to µ we introduce

Ix ,y(
p

f ,µ) :=

∫

ΩN

�
Æ

f (ηx ,y)−
Æ

f (η)
�2

dµ,

I r(y)
x (

p

f ,µ) :=

∫

ΩN

cx(η; r(y))
�
Æ

f (ηx)−
Æ

f (η)
�2

dµ.

In last identity y ∈ {0, N} and r(0) = α and r(N) = β . We define

DN (
p

f ,µ) := (DN ,0 +DN ,b)(
p

f ,µ)

where

DN ,0(
p

f ,µ) :=
1

2

∑

x ,y∈ΛN

p(y − x) Ix ,y(
p

f ,µ), (A.2.1)

DN ,b(
p

f ,µ) :=
κ

Nθ

∑

y∈{0,N}

∑

x∈ΛN

p(y − x) I r(y)
x (

p

f ,µ). (A.2.2)
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Note that for the models of Chapter 2 the expressions above simplify to

DNN
N ,0(

p

f ,µ) :=
∑

x∈ΛN

Ix ,x+1(
p

f ,µ), (A.2.3)

DNN
N ,b(

p

f ,µ) :=
κ

Nθ

�

Iα1 (
p

f ,µ) + IβN−1(
p

f ,µ)
�

. (A.2.4)

Our first goal is to express, for the measure µ = νN
ρ(·), a relation between

the Dirichlet form defined by −〈LN
p

f ,
p

f 〉νN
ρ(·)

and DN (
p

f ,νN
ρ(·)). We claim

that for any positive constant B, there exists a constant C > 0 such that

1
BN
〈LN

p

f ,
p

f 〉νN
ρ(·)
≤ −

1
4BN

DN (
p

f ,νN
ρ(·)) +

C
BN

∑

x ,y∈ΛN

p(y − x)
�

ρ( x
N )−ρ(

y
N )
�2

+
Cκ

BN1+θ

∑

y∈{0,N}

∑

x∈ΛN

�

ρ( x
N )− r(y)

�2
p(y − x).

(A.2.5)

Our aim is then to choose ρ(·) in order to minimize the error term, i.e. the two
last terms at the right hand side of the previous inequality.

Remark A.2.1.

1. If p(·) has finite variance σ2, then:

• for ρ(·) Lipschitz and such that ρ(0) = α and ρ(1) = β , we get

1
BN
〈LN

p

f ,
p

f 〉νN
ρ(·)
≤ −

1
4BN

DN (
p

f ,νN
ρ(·)) +

C
BN2

σ2

+
Cκ

BN3+θ

∑

y∈{0,N}

∑

x∈ΛN

�

y − x
�2

p(y − x)

≤ −
1

4BN
DN (

p

f ,νN
ρ(·)) +

C
BN2

σ2 +
Cκ

BN3+θ
.

(A.2.6)

• for ρ(·) such that ρ(0) = α, ρ(1) = β , Hölder of parameter γ2 at the
boundaries and Lipschitz inside, we get

1
BN
〈LN

p

f ,
p

f 〉νN
ρ(·)
≤−

1
4BN

DN (
p

f ,νN
ρ(·)) +

C
BN2

σ2 +
Cκ log(N)
BNγ+θ+1

.

(A.2.7)
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• for ρ(·) such that ρ(0) = α, ρ(1) = β , Hölder of parameter 1+γ
2 at

the boundaries and Lipschitz inside, we get

1
BN
〈LN

p

f ,
p

f 〉νN
ρ(·)
≤−

1
4BN

DN (
p

f ,νN
ρ(·)) +

C
BN2

σ2 +
Cκ

BNγ+θ+1
.

(A.2.8)

• for ρ(·) constant, equal to α or to β , we have

1
BN
〈LN

p

f ,
p

f 〉νN
α
≤ −

1
4BN

DN (
p

f ,να) +
Cκ

BNθ+1
. (A.2.9)

2. If p(·) is such that p(1) = p(−1) = 1
2 , then:

• for ρ(·) Lipschitz and such that ρ(0) = α, ρ(1) = β and locally con-
stant at 0 and 1, we get

1
BN
〈LN

p

f ,
p

f 〉νN
ρ(·)
≤ −

1
4BN

DNN
N (

p

f ,νN
ρ(·)) +

C
BN2

. (A.2.10)

Note that the choice of asking ρ(·) to be locally constant at 0 and 1
turns the errors coming from the boundary dynamics to vanish.

• for ρ(·) constant, equal to α or to β , then we have exactly the same
error as in (A.2.9).

3. If p(·) has infinite variance, then:

• for ρ(·) Lipschitz and such that ρ(0) = α and ρ(1) = β , we get

1
BN
〈LN

p

f ,
p

f 〉νN
ρ(·)
≤ −

1
4BN

DN (
p

f ,νN
ρ(·))

+
C

BN3

∑

x ,y∈ΛN

1
|x − y|γ−1

+
Cκ

BN3+θ

∑

y∈{0,N}

∑

x∈ΛN

�

y − x
�2

p(y − x)

≤ −
1

4BN
DN (

p

f ,νN
ρ(·)) +

C
BNγ

σ2 +
Cκ

BNγ+θ+1
.

(A.2.11)

In order to prove (A.2.5) we need some intermediate results. For that pur-
pose we recall from [2] the following two lemmas.
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Lemma A.2.2. Let T : η ∈ ΩN → T (η) ∈ ΩN be a transformation in the configu-
ration space and c : η ∈ ΩN → c(η) be a positive local function. Let f be a density
with respect to a probability measure µ on ΩN . Then, we have that
¬

c(η)[
Æ

f (T (η))−
Æ

f (η)] ,
Æ

f (η)
¶

µ

≤ −
1
4

∫

c(η)
��
Æ

f (T (η))
�

−
�
Æ

f (η)
��2

dµ

+
1
16

∫

1
c(η)

�

c(η)− c(T (η))
µ(T (η))
µ(η)

�2
��
Æ

f (T (η))
�

+
�
Æ

f (η)
��2

dµ.

(A.2.12)

Lemma A.2.3. There exists a constant C := C(ρ) such that for any N ≥ 1 and
density f be a density with respect to νN

ρ(·)

sup
x 6=y∈ΛN

∫

ΩN

f (ηx ,y) dνN
ρ(·)(η) ≤ C , sup

x∈ΛN

∫

ΩN

f (ηx) dνN
ρ(·)(η) ≤ C .

A simple consequence of the previous lemmas is the next two corollaries.
Recall the bulk generator LN ,0 given in (3.1.3).

Corollary A.2.4. There exists a constant C > 0 (independent of f and N) such
that
¬

LN ,0

p

f ,
p

f
¶

νN
ρ(·)

≤ −
1
4
DN ,0(

p

f ,νN
ρ(·)) + C

∑

x ,y∈ΛN

p(y − x)
�

ρ( x
N )−ρ(

y
N )
�2

for any density f with respect to νN
ρ(·).

Now we look at the generator of the boundary dynamics given in (3.1.3).

Corollary A.2.5. Let θ ∈ R be fixed. There exists a constant C > 0 (independent
of f and N) such that

〈LN ,b

p

f ,
p

f 〉νN
ρ(·)
≤ −

1
4
DN ,b(

p

f ,νN
ρ(·))

+
Cκ
Nθ

∑

x∈ΛN

�

ρ( x
N )−α

�2
p(x) +

Cκ
Nθ

∑

x∈ΛN

�

ρ( x
N )− β

�2
p(N − x)

(A.2.13)

for any density f with respect to νN
ρ(·).

To prove the first corollary take c ≡ 1, T (η) = ηx ,y and note that |θ x ,y(η)−
1|2 ≤ C(ρ(x/N)−ρ(y/N))2. To prove the second corollary we take for each y ∈
{0, N}, c(η) = cx(η; r(y)) and T (η) = ηx . From the two previous corollaries
the claim (A.2.5) follows.
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A.3 Replacement Lemmas

In this section we prove rigorously all the replacements that were mentioned
along the Sections 2.8 and 3.2.3. We first recall Lemma 5.5 of [2] adapted to
our situation (with just one reservoirs at each end point of the bulk).

Lemma A.3.1. For any density f with respect to νN
ρ(·), any x ∈ ΛN , any y ∈ {0, N}

and any positive constant Ax , there exists a constant C such that

�

�

�〈η(x)− r(y), f 〉νN
ρ(·)

�

�

� ≤
C
Ax

Iαx (
p

f ,νN
ρ(·)) + CAx + C

�

�

�ρ( x
N )− r(y)

�

�

�.

The first replacement lemma that we prove is the one that is needed for the
model of Chapter 3 when p(·) has finite variance for the case θ ≥ 1.

Lemma A.3.2. For any t > 0, for γ > 2 and for any θ ≥ 1 we have that

lim
ε→0

lim
N→∞
EµN





�

�

�

∫ t

0

∑

x∈ΛN

Θ−x (ηsN2(x)−−→η εNsN2(1)) ds
�

�

�



= 0,

lim
ε→0

lim
N→∞
EµN





�

�

�

∫ t

0

∑

x∈ΛN

Θ+x (ηsN2(x)−←−η εNsN2(N − 1)) ds
�

�

�



= 0.

Proof. Below C is a constant than can change from line to line. Note that since
θ ≥ 1 we have θ (N) = N2. We present the proof for the first term, but we
note that the proof for the second one is analogous. Here we take as reference
measure the Bernoulli product measure with constant parameter (for example
α) and we recall (A.2.9), from where we see that

N
B
〈LN

p

f ,
p

f 〉να ≤ −
N
4B
DN (

p

f ,νN
α ) +

Cκ
B

N1−θ (A.3.1)

so that the error to change Dirichlet forms vanishes as N →∞ for θ > 1 and
for θ = 1 it vanishes when B→ +∞.

By the entropy and Jensen’s inequalities, the first expectation in the state-
ment of the lemma is bounded from above, for any constant B > 0, by

H(µN |νN
α )

BN
+

1
BN

logEνN
α



e
BN

�

�

�

∫ t
0

∑

x∈ΛN
Θ−x (ηsN2 (x)−−→η εNsN2 (1)) ds

�

�

�



.



The infinite variance case 77

We can remove the absolute value inside the exponential since e|x | ≤ ex + e−x

and

lim sup
N→∞

N−1 log(aN + bN )≤max
§

lim sup
N→∞

N−1 log(aN ), limsup
N→∞

N−1 log(bN )
ª

.

(A.3.2)
By (A.1.2), the Feynman-Kac’s formula and (A.2.9), last expression can be esti-
mated from above by C0

B

C0

B
+ t sup

f

¦ ∑

x∈ΛN

Θ−x 〈η(x)−
−→η εN (1), f 〉νN

α
−

N
4B
DN (

p

f ,να) +
Cκ
B

N1−θ
©

,

(A.3.3)
where the supremum is carried over all the densities f with respect to νN

α .
Now we have to split the sum in x , depending on whether N − 1≥ x ≥ εN

or x ≤ εN − 1. We start by the first case and we have

〈η(x)−−→η εN (1), f 〉νN
α
=

1
εN

1+εN
∑

y=1

∫

(η(x)−η(y)) f (η) dνN
α

=
1

1+ εN

εN
∑

y=1

x−1
∑

z=y

∫

(η(z + 1)−η(z)) f (η) dνN
α .

By writing the previous term as its half plus its half and by performing in one
of the terms the change of variables η into ηz,z+1, for which the measure νN

α is
invariant, we write it as

1
2εN

1+εN
∑

y=1

x−1
∑

z=y

∫

( f (η)− f (ηz,z+1))(η(z + 1)−η(z)) dνN
α .

By using the fact that (a− b) = (
p

a−
p

b)(
p

a+
p

b) for any a, b ≥ 0 and since

ab ≤
Aa2

2
+

b2

2A
for all A> 0, we have that
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2
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+
1

2A

N−1
∑

x=εN

Θ−x
1
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(
Æ

f (η) +
Æ

f (ηz,z+1))2(η(z + 1)−η(z))2dνN
α .

(A.3.4)
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By neglecting the jumps of size bigger than one, we see that

∑

z∈ΛN

∫

�
Æ

f (η)−
Æ

f (etaz,z+1)
�2

dνN
α ≤ C DN ,0(

p

f ,νN
α ).

Therefore, by using also (3.2.16), the first term at the right hand side of (A.3.4)
can be bounded from above by

A

4

N−1
∑

x=εN

Θ−x

∑

z∈ΛN

∫

�
Æ

f (η)−
Æ

f (ηz,z+1)
�2
≤ CADN ,0(

p

f ,νN
α ). (A.3.5)

Recall (A.2.9) and observe that DN (
p

f ,νN
α )≥ DN ,0(

p

f ,νN
α ). Then we choose

the constant A in the form A = CN/B for some constant C . Moreover, for this
choice of A, we can bound from above the last term at the right hand side of
(A.3.4) by (use Lemma A.2.3)

B
N

N−1
∑

x=εN

Θ−x
1

2εN

εN
∑
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x−1
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∫

(
Æ

f (η) +
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f (ηz,z+1))2(η(z + 1)−η(z))2dνN
α

≤ C
B
N

∑

x∈ΛN

xΘ−x

(A.3.6)

which vanishes as N →∞ by (A.2.9). Note that the previous result holds for
any ε > 0. Now we analyse the case when x ≤ εN − 1. In that case, we write

〈η(x)−−→η εN (1), f 〉νN
α
=

1
1+ εN

εN
∑

y=1

∫

(η(x)−η(y)) f (η) dνN
α

=
1
εN

x−1
∑

y=1

x−1
∑

z=y

∫

(η(z + 1)−η(z)) f (η) dνN
α

−
1
εN

1+εN
∑

y=x+1

y−1
∑

z=x

∫

(η(z + 1)−η(z)) f (η) dνN
α .

and the same estimates as before give that there exists a constant C > 0 such
that for any A> 0,

εN−1
∑

x=1

Θ−x 〈η(x)−
−→η εN (1), f 〉νN

α
≤ C

�

ADN (
p

f ,νN
α ) +

εN

A

εN−1
∑

x=1

Θ−x

�

.

Recall (A.2.9) and (3.2.16). Then, we choose A = N/8CB and the result fol-
lows.
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Remark A.3.3. We note that above, if we change in the statement of the lemma
Θ−x by r−N (resp. Θ+x by r+N ) then the same result holds by performing exactly the
same estimates as above, because what we need is that

∑

x∈ΛN

Θ±x < +∞ and
1
N

∑

x∈ΛN

xΘ±x → 0 (A.3.7)

which also holds for r±N instead of Θ±x since γ > 2.

Remark A.3.4. Let us see now what the previous lemma says when p(1) = p(−1) =
1
2 . In this case we note that we have the same estimate as in (A.3.1), see 2. in Re-
mark A.2.1 and also note that Θ−x 6= 0 for x = 1 and Θ−x = 0 for x 6= 1. Moreover,
Θ−1 = p(1) = 1

2 , so that the result above reads as

lim
ε→0

lim
N→∞
EµN

�

�

�

�

∫ t

0

(ηsN2(1)−−→η εNsN2(1)) ds
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(ηsN2(N − 1)−←−η εNsN2(N − 1)) ds
�

�

�

�

= 0.

A.4 Fixing the profile at the boundary

Let Q be a limit point of the sequence {QN}N≥1 and assume, without lost of
generality, that {QN}N≥1 converges to Q, as N → +∞. In this section we prove
that for the model of Chapter 3 if θ ∈ [1 − γ, 1) (and also for the model of
Chapter 2 when θ < 0) that the profile satisfies ρt(0) = α and ρt(1) = β
for t ∈ (0, T] a.e. We present the proof for ρt(0) = α but the other case is
completely analogous.

Recall (2.8.4). Observe that

EµN

�

�

�

�
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(−→η εNsN2(1)−α) ds
�
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= EQN
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where ι0ε (·) = ε
−1 1(0,ε)(·). Therefore we have that for any δ > 0,

QN

�

�

�

�
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(〈πs, ι
0
ε 〉 −α) ds
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�> δ
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≤ δ−1EµN
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�
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(−→η εNsN2(1)−α) ds
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.

Note that ι0ε is not a continuous function so the set
¦

π ;
�

�

�

∫ t
0 (〈πs, ι

0
ε 〉−α) ds

�

�

�> δ
©

is not an open set in the Skorohod topology, but, a simple argument as we did in
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Section 2.10.3 allows to overcome the problem. Therefore, by Portemanteau’s
Theorem we conclude that

Q
�

�

�

�

∫ t

0

(〈πs, ι
0
ε 〉 −α) ds

�

�

�> δ

�

≤ δ−1 lim inf
N→∞

EµN

�

�

�

�

∫ t

0

(−→η εNsN2(1)−α) ds
�

�

�

�

.

Now, if we are able to prove that the right hand side of the previous inequality is
zero, since we have thatQ a.s. πs(dq) = ρs(q)dq with ρs a continuous function
in 0 for a.e. s, by taking the limit ε → 0, we can deduce that Q a.s. ρs(0) = α
for s a.e. The result follows from the next lemma.

Lemma A.4.1. For any t ∈ [0, T] we have that

lim
ε→0

lim
N→∞
EµN

�

�

�
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∫ t
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(−→η εNsN2(1)−α) ds
�

�

�

�

= 0,
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�

�

�
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∫ t

0

(←−η εNsN2(N − 1)− β) ds
�

�

�

�

= 0.

To prove last lemma we use a two step procedure. First we replace, when
integrated in time, ηsN2(1) by α and then we replace ηsN2(1) by ηεNsN2(1). This
is the content of the next two lemmas.

Lemma A.4.2. For γ > 1, for 1− γ≤ θ < 1 and for t ∈ [0, T] we have that

lim
N→∞
EµN

�

�

�
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∫ t
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(ηsN2(1)−α) ds
�

�

�
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= 0,
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∫ t

0

(ηsN2(N − 1)− β) ds
�

�

�

�

= 0.

Proof. We give the proof for the first display, but we note that for the other one
it is similar. Fix a Lipschitz profile ρ(·) such that α = ρ(0) ≤ ρ(·) ≤ ρ(1) = β
and ρ(·) is γ2 -Hölder at the boundary. From (A.2.7) that we know that

N
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f ,
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f 〉νN
ρ(·)
≤−

N
4B
DN (

p

f ,νN
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C
B
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Cκ log(N)
BNγ+θ+1

. (A.4.1)

By the entropy inequality, for any B > 0, the previous expectation is bounded
from above by

H(µN |νN
ρ(·))

BN
+

1
BN

logEνN
ρ(·)

�

e
BN

�

�

�

∫ t
0 (ηsN2 (1)−α) ds

�

�

�

�

.
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By (A.1.2), Jensen’s inequality and the Feynman-Kac’s formula and noting, as
we did in the last proof, that we can remove the absolute value inside the ex-
ponential, last display can be estimated from above by

C0

B
+ t sup

f

§

〈η(1)−α, f 〉νN
ρ(·)
−

N
4B
DN (

p

f ,νN
ρ(·)) +

C
B
σ2 +

Cκ
BNγ+θ−1

ª

,

(A.4.2)
where the supremum is carried over all the densities f with respect to νN

ρ(·). By
Lemma A.3.1, since ρ(·) is γ/2-Hölder at the boundaries, for any A> 0, the first
term in the supremum in (A.4.2) is bounded from above by

C
�

1
A

Iα1 (
p

f ,νN
ρ(·)) + A+

1
Nγ/2

�

for some constant C > 0 independent of f and A. Moreover from (A.2.7), since

DN (
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f ,νN
ρ(·))≥ DN ,b(

p

f ,νN
ρ(·))

and γ + θ − 1 > 0, by choosing A = 4C(p(1))−1BNθ−1, we get then that the
expression inside the brackets in (A.4.2) is bounded from above by

4C2 BNθ−1

p(1)
+

C

Nγ/2
+

C
B

.

Now if p(1) 6= 0, then the proof follows by sending first N → ∞ and then
B→∞. For γ+θ −1= 0 the same proof as above holds, the only difference is
that we use a Lipschitz profile ρ(·) such that α = ρ(0) ≤ ρ(·) ≤ ρ(1) = β and
ρ(·) is γ+1

2 -Hölder at the boundaries. From (A.2.8) that we know that
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f 〉νN
ρ(·)
≤−

N
4B
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p

f ,νN
ρ(·)) +

C
B
σ2 +

Cκ
B

, (A.4.3)

and with last bound and the previous argument the proof ends.

Remark A.4.3. The previous lemma tells us that for the model of Chapter 2 and
for θ < 1 and t ∈ [0, T] we have that

lim
N→∞
EµN

�

�

�

�

∫ t

0

(ηsN2(1)−α) ds
�

�

�

�

= 0,

lim
N→∞
EµN

�

�

�

�

∫ t

0

(ηsN2(N − 1)− β) ds
�

�

�

�

= 0.

Note that the previous proof follows since we have the bound (A.2.10) and in this
model p(1) = 1

2 .
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Remark A.4.4. We note that for the case where p(1) = 0 above what we have to
do is to use the two step procedure with a point z such that p(z) 6= 0, from where
we get that:

lim
N→∞
EµN

�

�

�

�

∫ t

0

(ηsN2(z)−α) ds
�

�

�

�

= 0

and the same result holds by changing α to β .

Now we prove the second part of the two step procedure.

Lemma A.4.5. For 1− γ≤ θ < 1 and t > 0 we have that
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= 0.

(A.4.4)

Proof. We present the proof of the first item, but we note that for the second it
is exactly the same. When γ + θ − 1 > 0, we fix a Lipcshitz profile ρ(·) such
that α= ρ(0)≤ ρ(·)≤ ρ(1) = β , and ρ(·) is γ2 -Hölder at the boundaries, when
γ+ θ − 1 = 0, the Holder regularity at the boundary is γ+1

2 . Since we imposed
the same conditions as in the previous lemma in the profile ρ(·) then in this
case (A.4.1) and (A.4.3) holds. From now on we suppose that γ+θ−1> 0, the
other case is completely analogous. By the entropy and Jensen’s inequalities,
for any B > 0, the previous expectation is bounded from above by

H(µN |νN
ρ(·))

BN
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1
BN

logEνN
ρ(·)
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e
BN
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.

By (A.1.2), the Feynman-Kac’s formula, and using the same argument as in the
proof of the previous lemma, the estimate of the previous expression can be
reduced to bound
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,

(A.4.5)

where ` = εN . Here the supremum is carried over all the densities f with
respect to νN

ρ(·). Note that since y ∈ ΛN we know that

η(y)−η(1) =
y−1
∑

z=1

(η(z + 1)−η(z)).
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Observe now that
∫
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Young’s inequality, we have, for any positive constant A, that
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(A.4.6)

Now, we neglect jumps of size bigger than one as we did below (A.3.4), from
where we get that the second term on the right hand side of (A.4.6) is bounded
from above by CADN (

p

f ,νN
ρ(·)) where C is a positive constant independent of

A,`, f . Then, for the choice A = N(4BC)−1 and since γ + θ − 1 ≥ 0, we can
bound from above (A.4.5) by

2BC
N`

`+1
∑

y=2

y−1
∑

z=1

∫

(η(z + 1)−η(z))2
�
Æ

f (η) +
Æ

f (ηz,z+1)
�2

dνN
ρ(·)

+
1
2`

`+1
∑

y=2

�

�

�

�

�

y−1
∑

z=1

∫

�

η(z + 1)−η(z)
�

�

f (η) + f (ηz,z+1)
�

dνN
ρ(·)

�

�

�

�

�

+
C ′

B

≤ C
�B`

N
+

1
B
+

1
2`

`+1
∑

y=2

�

�

�

y−1
∑

z=1

∫

�

η(z + 1)−η(z)
�

�

f (η) + f (ηz,z+1)
�

dνN
ρ(·)

�

�

�

�

(A.4.7)

for some constant C . For the last inequality we used Lemma A.2.3. Observe
that B`/N = Bε vanishes as ε → 0. It remains to estimate the third term on
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the right hand side of the last inequality. For that purpose we make a similar
computation to the one of Lemma A.3.1 from where we get that

y−1
∑

z=1

�

�

�

�

∫

(η(z + 1)−η(z))( f (η) + f (ηz,z+1))dνN
ρ(·)

�

�

�

�

≤ C
y−1
∑

z=1

�

�

�ρ
�

z+1
N

�

−ρ
�

z
N

��

�

�

�.

Since ρ(·) is Lipschitz, by (A.4.7), this estimate provides an upper bound for
(A.4.5) which is in the form of a constant times

B`
N
+

1
B
+

1
N`

`+1
∑

y=2

y ≤ Bε + B−1 + ε

which vanishes, as ε→ 0 and then B→∞. This ends the proof.
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