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Chapter 1

Measurable spaces

1.1 Set theory

Let Q be an abstract space and we shall denote its elements by w.

Definition 1.1.1 (Algebra).
An non-empty collection & of subsets of Q is an algebra if and only if:

e E€eF>E€F
L J El,E2€9:E1UE2€9

Note that we shall refer to the first (resp. second) property above as saying

that an algebra is stable for the complementary (resp. for finite unions).

Definition 1.1.2 (Monotone class).
An non-empty collection & of subsets of Q2 is a monotone class if and only if:

° Ejeﬂ,EjCEjH, ijujzlEjeg
® E{€F,EDEj,Vj=>NisE €

Remark 1.1.3. We will use the notation E; T for E; C Ej,, Vj and E; | for
E;DEj..

Definition 1.1.4 (o -algebra).
An non-empty collection & of subsets of Q is a o-algebra if and only if:

5
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e E€FE €T

Note that we shall refer to the first (resp. second) property above as saying
that a o-algebra is stable for the complementary (resp. for countable unions).

Theorem 1.1.5. An algebra is a o-algebra if and only if it is a monotone class.

Proof. Let us first prove that if & is an algebra and a monotone class, then &
is a o-algebra. For that it is enough to show that & is stable for the countable
?ZlEj. Since
& is an algebra then F,, € & and on the other hand F,, C F,,; and since & is a

union. Take a collection {E;};>; € # and foreachn>1let F, =U

monotone class, we have that U, F, =Uj>E; € .

Let us now prove that if & is an algebra and a o-algebra, then & is a monotone
class. For any collection {E;};>; € & it holds that U;>,E; € & because 7 is a
o-algebra. Now for a collection {E;};>; € & with E; | we have that

C
ﬂj21Ej == (UjZI E;) .

Since E; € Z, then EJC € Z, and since & is a o-algebra we conclude that

C
szlE]? € &. From this we get that (szl E}C) € & and we are done. |

Example 1. The collection & of all subsets of Q is a o-algebra and it is called
the total o-algebra. The collection {@, 2} is a o-algebra and is it called the trivial

o-algebra.

Remark 1.1.6.

1. IfAis anindex set and if for a € A, &%, is a o-algebra (or a monotone class),

then Ngea, is a o-algebra (or a monotone class).

2. Given a non empty collection of sets €, there exists a minimal o-algebra (or
algebra or monotone class) containing 6, which consists in the intersection
of all o-algebras (or algebras or monotone classes) containing 6. There is
at least one, namely the total o-algebra . This o-algebra (or algebra or

monotone class) is called the o-algebra generated by 6.
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Theorem 1.1.7. Let %, be an algebra, € the minimal monotone class containing
Fo and & the minimal o-algebra containing %,. Then & = 6.

Proof. To show the equality we will show first that ¥ C &% and second that
F € 6. Since a o-algebra is an algebra and a monotone class, then & is a
monotone class which contains %, and since ¥ is the minimal monotone class,
we conclude that ¥ ¢ &#. Now we will prove that & C %. For that purpose,
it is enough to show that ¥ is a o-algebra and from the previous theorem it is
enough to show that % is an algebra. We need to prove two things: ¥ is stable
for finite intersections and for the complementary. Let us define the following
subsets of %':

6, ={E€6:ENFe%, VFe%Z}

(1.1.1)
6y,:={E€€:ENFe%, VYFe%}

Note that from the definition of ¢; and %, above, we have that ¢, C ¢ for
i =1,2. Let us show first that ¢; and 6, are monotone classes. We start with
6. Therefore, we need to show that for a collection {E;} >, € 6; with E; T we
have that N;>,E; € 6. This means that VF € #, we need to have

(U1 E)nFes.
Let us check that this is indeed true. Well,

Since E; € 6, then E;NF € 6,VF € %,. But since E; C Ej, this implies that
E;NF C Ej;;NF and since ¢ is a monotone class, then U;>,(E;NF) € €. From
this we conclude that %; fulfils the first property for being a monotone class.
The second property is proved in a completely similar way, just by taking into
account that F N ( Ni>1 E j) =N;>1(F N E;). We can also do a similar argument
to show that %, is a monotone class. Now recall that % is an algebra so that
Fy C 6, C 6. But then € C %, since ¥ is the smallest monotone class that

contains %,. From here we conclude that

(glz(g.
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This means that VF € %, and E € 6 we have that FNE € ¢, which means that
Zo C 6,. But since %6, is a monotone class containing %, we have that 6, = 6.
This implies that VE € 6 and F € ¥ it holds that ENF € €, so that € is stable
for the intersection. Now let us prove that % is stable for the complementary.
Let

63:={E€ % :E° €<%}

By definition 653 C 4. Let us now prove that %3 is a monotone class. For that
purpose, let {E;};>; € 65 with E; T and we have to show that N;>,E; € ;.
For that purpose note that (Uj21 E]-)C = ﬂj21E]‘5. Now, since E; C Ej 4, then
EJC 1 C E]C and ﬂjzlEJ? € ¥, since ¥ is a monotone class. Analogously, we
have for {E;};>, € 65 with E; | that (ﬂjzl E]-)C = Uj21E]? € €. From this we
conclude that %5 is a monotone class. But since &, € 65 (because &, is an
algebra - so that it is stable for the complementary) and %, C 6, we conclude
that € C 43, from where it follows that ¢ = %5. This means that YE € € we
have that E¢ € €, so that € is stable for the complementary. This shows that
% is an algebra and we are done.

[

1.2 Probability measure

Definition 1.2.1. Let Q be an abstract space and & a o-algebra of subsets of Q.
A probability measure P(-) in & is a function P : & — [0, 1] which satisfies the

following properties:
1. YE€ F,P(E) > 0.
2. If {E;}j»1 is a countable collection of disjoint sets of Z, then

P(Uj>1E;j) = Z]P’(E ;) (countable additivity).
i>1

3. P(Q)=1

The triple (Q2, &, P) is called a probability space, Q2 is called the sample space
and its elements w are called the sample points.



TECNICO
LISBOA

Measurable spaces 9

ﬁ Exercise:
Prove, as a consequence of the previous definition, that

1. VE€ Z,P(E) < 1.

2. P(@)=0.

3. P(ES) = 1—P(E).

4. P(EUF)+P(ENF)=P(E) +P(F).

5. ECF = P(E) = P(F) —P(F\E) < P(F).

6. Monotone property: If E; T E or E; | E, then P(E;) — P(E).

7. Boole’s inequality P(Uj>1 E;) < Do P(E;).

Recall that

1. If {E;} >, is a countable collection of disjoint sets of #, then

P(Uj>1 Ej) = Z P(E;) (countable additivity).
i>1

2. When above we have a finite collection we say it is the finite additivity
property.
3. IfE; | @, then P(E;) — 0 (continuity).

Theorem 1.2.2. The finite additivity and the continuity together are equivalent
to countable additivity.

Proof. Let us first show that countable additivity implies finite additivity (which
is trivial) and continuity. Let {E;};»; € & such that E; | @. We have the
following equality:

Ep = Ugon(Ex|Exs1) U Mis1 Ex.

If E; | @ then My, By = &, from where we get that

P(E,) = P(Upsn By Exan) = D P(Eg|Egir)-

k>n
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Note that in the last equality we used the countable additivity and the fact that
the sets {Ey|Ej,1}r>1 are disjoint. Since the series above is convergent (since it
equals P(E,)) we have that

Jlim P(E) =0
and continuity holds. Let us now prove that continuity and finite additive imply
countable additivity. Let {E; };>1 be a collection of disjoint sets of #. Then

Fn+1 = Uk2n+1Ek l g,

since ... C F,.3 C F,,o C F,,; and from the continuity we have thatlim,,_, oo P(F,,;) =
0. Moreover, if finite additivity also holds, then

P(Ukz1Ex) = P(Up_ Ex) + P(Ugsn41Ex)
n

P(Ex) +P(Fp41)
=

. (1.2.1)

= Zn: P(Ey).
k=1

From this we conclude that the series Zk21 P(E, ) is convergent since it is bounded
from above by P(Uy>1E;). Sending n — oo we have that P(Uy>1E;) > Zk21 P(E;)
and from Boole’s inequality we also have that P(Uys1Ex) < D 3sq P(Ey), from

where we obtain that

P(Ugz1 B = D P(E)

k>1

and countable additivity is proved. |

Let A € Q. The trace of the o-algebra & in A is the collection of all the sets
of the form ANF, where F € . It is easy to see that this is a o-algebra that we
denote by AN . Suppose now that A € & and P(A) > 0. Then we can define
P, in ANZ in the following way: for any E € ANZ:

And P, is a probability measure in ANZ. The triple (A, ANZ,P,) is called the
trace of (2, Z,P) in A.
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Example 2. Discrete sample space

Let Q = {w}, j € N} and let F be the total c-algebra in &. Choose a sequence
of numbers {pj, j € N} such that for all j €N, p; > 0 and Zjeij =1 and let
P: % —[0,1] defined on E € & by

P(E)= > p;.

w;€E

Show that P is a probability measure and that all the probability measures on
(22, F) are of the form above.

Example 3. Continuous sample spaces

Let % = (0,1] and let € := {(a,b] : 0 < a < b < 1}, $B the minimal
o-algebra containing ¢, m the Lebesgue measure on 98. Then (%, %, m) is a
probability space. Analogously, consider in R the collection 6 of intervals of the
form (a,b], —00 < a < b < +00. The algebra B, generated by € consists of
finite unions of disjoint sets of the form (a, b], (—oo,a] or (b,+00). The Borel
o-algebra is the o-algebra, denoted hereafter by 98, generated by %, or by 6.

Not that the Lebesgue measure m in R is NOT a probability measure.

1.3 Distribution function

Definition 1.3.1. A distribution function F : R — R is increasing, right contin-

uous and satisfies lim,._,_, F(x) =0and lim,_,o, F(x)=1.

Example 4.
F1(x) =10 400)(x)-

F3(x) = x110,1)(x)+1[1 400)-

Pay attention to the graph of the functions.



TECNICO
LISBOA

12 Distribution function

Lemma 1.3.2. Each probability measure u in B defines a distribution function

F through the following correspondence:
Vx € R, u((—oo,x]) = F(x). (1.3.1)

Proof. First note that (—o0,x] € 4, since (—00,x] = N,51(—00,x + 1/n].
Now let us prove that F is increasing. take x; < x,. Then (—00,x;] C (—00, x5].
From property 5. of the probability measure u given in the previous exercise,

we have that

‘U,((—OO, xl]) < Au’((_oo7 x2]):

and this means that F(x;) < F(x,). Let us now prove that F is right continuous.
Let {x,},>1 be a sequence of real numbers such that x,, | x. Then (—o0,x,]|
(—o0, x] and from the monotone property 6. of a probability measure given in
the previous exercise, we have that

F(x) = p((=00,x,]) | u((=00,x]) = F(x).

Analogously, if x | —oo (resp. x T +00), then (—oo,x] | @ (resp. (—oo,x] T
R) and again it follows that

lim F(x)= lim wu((—oo,x])=uw(@)=0
X—>—00 X—>—00 13.2
(resp.  lim F(x)= lim p((—o0,x])=u(R)=1.) 2

Remark 1.3.3. As a consequence of the previous lemma we have for —oo0 < a <
b < oo that

e u((a,b]) =F(b)—F(a); u(la,b)) =F(b™)—F(a");
e u((a,b))=F(b™)—F(a); u(la,b]) =F(b)—F(a™);

To show the equalities above we need to write the sets that appear in each case in

terms of sets of the form (—oo, x]. For example,

ul(a, b]) = p((=00, b]l(—00,a]) = u((—o00, b]) — u((—00,al) = F(b) — F(a).
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For a dense subset D of R the correspondence given in (1.3.1) is determined

for x € D or if in the previous equalities we take a, b € D.

Theorem 1.3.4. Each distribution function F determines a probability measure

u in B through one of the correspondences given above.

Proof. Let us just give a sketch of the proof of this result. Let F be a given distri-
bution function and let us define for a, b € R with a < b the weight u((a, b]) =
F(b) —F(a). Let us see that u defined in this way is countable additive. For
that purpose take E; = (a;, b;] disjoint and check that u(U;>, E;) = 2121 u(E;).
Now increase the domain of u preserving the countable additivity, that is if S =
Ujs1(a;, b;] then define u(S) = 2121 u((a;, b;]) = ij F(b;) — F(a;). Here
we have to be careful because S can have several representations and we have
to check that the definition of u(S) does not depend on the chosen representa-
tion. We also note at this point that any open interval (a, b) is in the extended
domain, since (a, b) = Uj»;(a, b —1/n]. Now, since we are defining a measure
in £ plus the fact that any open set O can be written as the union of a countable
collection of disjoint open intervals, that is O = U;»(aj, b;) and this represen-
tation is unique, we define u(0) = ijl u((aj, b)) = ZjZI F(b;)—F(a;). The
notation F(b*) denotes the lateral limits from the right (+) or left (=) of b. Up
to now the measure u is defined on open subsets of R. For closed sets, we use
the definition with the complementary, that is, if C is a closed subset of R, then
u(C)=1—u(C*) and C° is open, so that u(C¢) is well defined. Now, for a € R,
we define u({a}) = u((—o0,a])—u((—oo,a)) = F(a)—F(a™). So, at this point
we also know the value of u in countable sets. But we still have work to do to
characterize the measure in 8. Now we make use of the exterior measure u*

and the interior measure u, defined on S € 4 by

u*(8)= inf u(0)
O open
sco
u(S) = ciﬁfed“(c)'
ccs
Note that u*(S) > u,(S), but the equality is not always true. When the values
coincide, we denote it by u(S) and say that S is measurable for F. We need to

check that this definition agrees with the previous one, where y had already
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been defined. The next tasks are: we need to verify that the measurable sets
form a o-algebra let us say ¢ and that in ¥ the measure yu is a probability
measure. If we have this, then since % is a o-algebra that contains all the sets
of the form (a, b], then 8 C ¥. Note that £ can be bigger than 98 but this
is fine, since then the restriction of u to 48 is a probability measure and this is

what we want to show. Cl

The question now is: Is this probability measure uy unique?

Theorem 1.3.5. Let u and v be two probability measures defined in the same
o-algebra F generated by the algebra Z,. If u(E) = v(E) for any E € &, then
U=

Proof. Let ¢ = {E € & : u(E) = v(E)}. By hypothesis we have that &%, C §.
On the other hand we claim that ¥ is a monotone class. To see that, take a
collection {E;};>; with E; € € such that E; 1 or E; |, the proof being the same
in each case. Now note that

u(Us1Ej) = Jl_lglo u(E;) = Jl_lglo WE;) = "(Ux1E)).

Above we used in the first and third equalities the monotone property of prob-
ability measures and in the second equality we used the fact that E; € . From
this we conclude that U, E; € ¢ and from a similar computation we also con-
clude that N, E; € 6. Since ¥ is also a algebra, from Theorem 1.1.5 we con-
clude that ¥ is a o-algebra form where it follows that ¢ = & and therefore u
and v coincide in & as we wanted to prove. |

Now we are able to conclude the following result:

Theorem 1.3.6. Given a probability measure u in 9B there exists a unique dis-
tribution function F which satisfies u((—oo,x]) = F(x) Vx € R. Conversely,
given a distribution function F, there exists a unique probability measure u in 5B
satisfying u((—oo,x]) = F(x) Vx € R.

We shall call u the probability measure of F and F the distribution function
of u.
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Example 5. Instead of (R, %) we can consider a restriction to a fixed interval
la,b]. As example take % = [0,1]. Let us see how to define the distribution
function F.

Let F be a distribution function such that F(x) =0, if x <0and F(x)=1, if
x > 1. The probability measure u will have support [0, 1] since u(—oo,0) =0 =
w(1,+00). The trace of (R, %B,u) in % can be denoted by (%, Ba,, m), where
By, is the trace of B in U and any probability measure in %4, can be seen as

that trace. As example, we have the uniform distribution given by F5 above.

Definition 1.3.7. An atom of a measure U defined in 9 is a singleton {x} such
that u({x}) > 0.

Definition 1.3.8. A measure is said to be atomic if and only if u is zero on any

set not containing any atom.

55 Exercise:
Prove that if F is the distribution function of u then

p({x}) =F(x)—F(x7).

Prove that u is atomless (that is 4 does not have atoms) if and only if F

is continuous.

Let us now go for a small digression in monotone functions. For that pur-
pose, let f be an increasing function defined on R. This means that forall x < y
it holds f(x) < f(y). Let us see some properties of these kind of functions.

1. Both lateral limits exist and are finite for any x € R:
imf(y)=f(x") and limf(y)=f(x").
yix yTx

2. When x = 00 the limits above exist but can be equal to +00.

3. The function is continuous (resp. right-continuous) at x if and only if the
limits above are both (resp. f(x™) is) equal to f(x).



TECNICO
LISBOA

16 Distribution function

4. We say that the function has a jump at x if the limits above exist but are
different. The value f(x) has to satisfy

JICESICIEFICN

5. When there is a jump at x, we say that x is a point of jump of f and
f(x*)— f(x7) is the size of the jump.

Lemma 1.3.9. The set of jumps of f is countable (can be finite).

Proof. To prove this, first associate to each point of jump x, the interval

L= (f(x7), f(x™)).

Then, if x’ is another point of jump of f and x < x’, then there exists ¥ such
that x < X < x” and

fFGNDSfER<FE).

As a consequence the intervals I, and I are disjoint and can be consecutive
if f(x*) = f(x’7). Therefore we associate to the set of points of jump of f a
collection of disjoint intervals in the range of . Now, this collection is, at most,
countable since each interval contains a rational number, so that the collection
of intervals is in one-to-one correspondence with a certain subset of the rational
numbers, being the latter countable. Since the set of points of jump of f is in
one-to-one correspondence with the set of intervals associated with it, then the
proof ends. |

Example 6. Let {a,},>1 be any given enumeration of the rational numbers and

let {b,},>1 be a sequence of non-negative real numbers such that
Z b, < +o0.
n>1

Consider

F(x)=> by, (x)

n>1
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where for each n > 1 we have 6, (x) = 1[4 4 00)(X), namely, the Heaviside func-
tion at a,. Since 0 < &, (x) < 1, the series above is absolutely and uniformly

convergent. Since 0, (x) is increasing, then if x; < x, we have that
FGe)— £ (1) = D by, (32) — 8, (x1)) 2 0,
n>1
so that f is increasing. Then
FOF) = F () = D b8, (") — 56, (x7)).
n>1

But for each n> 1, 6, (x*)— 8, (x7) is zero or one if x # a, or x = a,,.
From this we conclude that f is discontinuous (jumps) in the rational numbers

and nowhere else.

The previous example shows that the set of points of jump of an increasing

function may be dense.

1.4 Random variable
Let (2, Z,P) be a probability space, R* :=[—00, o0 ] and %* be the extended
Borel o-algebra, that is, its elements are sets in 9 with one or both +00, —0c0.

Definition 1.4.1. A function X with domain A € & taking values in R* is a
random variable if: VB € B* we have that

X'B)eAnZ, (1.4.1)
where AN is the trace of Z in A, X '(B) := {w € Q: X(w) € B}.

Remark 1.4.2. A random variable that takes values in the complex numbers is
a function from A € & to the complex plane whose real and imaginary parts are
random variables taking finite values.

From now on we assume that A = Q and that X is real and takes finite values
with probability one. The general case can be reduced to this one, considering
the trace of (Q, #,P) in the set

Ny :={we: [X(w)] < oo}
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and taking the real and imaginary parts of X.

Consider now the inverse application X! : R — € defined on A C R, by
X 1A) = {w € 2 : X(w) € A}. The condition (1.4.1) tells us that X! takes
elements of &8 into elements of Z#: X 1(%) € . A function which satisfies
this property is said to be measurable wrt & . Therefore a random variable is a

measurable function from Q to R (or R*).

Theorem 1.4.3. For each function X : Q — R (or R*), the inverse application
X! satisfies the following properties:

o X71(AY) = (XL(A)),
o XN(UA,) = U X HA),
o X71(NAL) = N X1 (Ay)

where a belongs to an index set not necessarily countable.

ﬁ Exercise:
| Prove last theorem.

Theorem 1.4.4. X is a random variable if and only if Yx € R (or x in a dense
subset of R) we have {w € Q: X(w) < x} € Z.

Proof. We note that last condition above, namely {w € Q : X(w) < x} € & can
be written as X !((—o0,x]) € Z. Let us also note that since X is a r.v. and
since (—o00, x] € 4, then trivially we have that X! ((—oo, x]) € Z. To prove
the theorem it then sufficient to show that the condition X' ((—o0, x]) € Z,
with x € R implies that for any Borelian B € 8 we have that X "!(B) € &. For
that purpose let

g :={ScR:X}S)e Z}.

Let us check that .«f is a o-algebra. We start by showing the stability for the
complementary. For that purpose, let S € .. Note that from the previous theo-
C
rem we have that X71(S°) = (X_l(S)) , and since X is ar.v. then X71(S) € .

Now, since & is a o-algebra we have that (X _1(8))C € . Now we prove the
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stability for the countable union. Take a collection {S;};>; € ./ and note that
from the previous theorem we have that X_l(Uj21Sj) = UJ-21X_1(S]~). Since X
is a r.v. we have that X~!(S j) € Z and since & is a o-algebra we conclude
that U;»1 X —1(s i) € Z. From this we conclude that .¢/ is a o-algebra which by
hypothesis contains the intervals of the form (—oo, x] which generate % (even
in the case where x is in a dense subset of R). Therefore 9 C .o/, which means
that VB € 48 it holds that X~ '(B) € Z.

In this case since P is defined in & we denote the probability wrt P of the
set {w € Q: X(w) € B} simply by P(X € B), for B € 2.

Theorem 1.4.5. Each random variable X defined on a probability space (2, Z,P)
induces a probability space (R, 9B, u) through the following correspondence

VB e #,u(B) =P(X'(B)) =P(X €B).

Proof. Let us now prove that u defined above is a probability measure. First
note that for B € 9 we have that u(B) = P(X € B) > 0, since P is a prob-
ability measure. Now let {B;};>; be a collection of disjoint sets in 9. Then
{X~1(B,)} j=1 are also disjoint. If not, suppose that there exists n,m such that
XY(B,)NnX"Y(B,,) # @. This means that there exists & € X }(B,) and w €
X~(B,,) so that X (w) € B,NB,,, which is absurd since B, NB,, = @. Therefore,

M( Un>1 Bn) = ]P’(X_l( Un>1 Bn)) = P( Un>1 X_I(Bn))
=D PX1(B)) = D u(By).

n>1 n=1

Finally we note that
uR)=PX(R) =1,

since P is a probability measure. This ends the proof. o

Remark 1.4.6.
1. The collection of sets {X~(S); S € R} is a o-algebra for any function X.
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2. In case X is a random variable, the collection {X~'(B); B € B} is the o-
algebra generated by X, which consists in the smallest sub o-algebra of & which
contains all the sets of the form {w € Q : X(w) < x} with x € R.

3. The measure u is going to be denoted by u := PoX~! and it is called
the probability distribution measure of X and its associated F is the distribution
function of X: F(x) = u((—o0,x]) =P(X < x).

Note that X determines u and u determines F, the converse is false. Two
random variables which have the same distribution are said to be identically
distributed.

Example 7. Consider the probability space (%, 3B,m), % = [0,1], & is the
Borel o-algebra in % and m is the Lebesgue measure; and the random variables
X;:U — U given by X1(w) = w and Xy(w) =1 — w.

We observe that X, # X5, but they are identically distributed since:

mwe : Xi(w)<x)=m(we¥:w<x)=m(0,x])=x

mwe U : Xy(w)<x)=m(we:1—w<x)
=mwe#:1—x < w)
=1-mlw<1—x)
=1-m([0,1—x])=1—-(1—x)=x.

Example 8. Let us now consider a r.v. X with Bernoulli distribution with pa-
rameter p € (0, 1). For that purpose consider Q := {w;, w4} and the probability
measure given by P({w4}) = p = 1—P({w,}). The random variable X : Q — R is
given by X(w;) =1 and X(w,) =0. Then P(X = 1) = p and P(X = 0) = w,. On
the other hand, the induced measure uy is atomic, with atoms {0} and {1} since:

p{O=p>0  p({1})=1-p>0.

A simple computation also shows that the distribution function is given by

Fx(x)=( =101+ 11 +00)
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gExercise:
Find uy and Fy for the rv. X : Q@ — R, where Q := {w,...,w,} and for
eachk=1,...,n P(X(w;) = k) = p; with p; = (Z)pk(l =)

Example 9. Given a distribution function F there exists ar.v. X such that Fx = F?
The answer is yes. We already know how to define the measure u associated to F,
through the following relation: F(x) = u((—oo,x]) for all x € R. Therefore,
defining X : R — R by X(w) = w we conclude that F,(x) = P(X(w) < x) =
P(w < x) = u((—o0, x]) = F(x). Note that we already know that such measure

U exists.
Now we give a way to construct random variables.

Theorem 1.4.7 (Constructing random variables).
If X is a random variable and f : R — R is a Borel measurable function (that
is f~Y(B) € B), then f(X) is a random variable.

Proof. To prove the theorem is is enough to note that for B € & it holds that
(foX)"Y(B) =X~ (f"1(B)), since f is Borel measurable then f ~(B) € 4, and
since X is a .v. we conclude that X~'(f~!(B)) € & and we are done. m|

We note that according to the previous theorem if we compose a r.v. X with
any continuous function f : R — R then f(X) isarv.

1.5 Types of distribution functions

Recall the definition of a distribution function F. Let {a;};>; be the countable
set of points of jump of F and let b; be the size of the jump at q;:

F(a;r) —F(a;)=F(aj)—F(a;)=b;.
Let

Fa(x) =) b;5,(x),

i1
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where 5a},(x) is the Heaviside function at a;. The function F4(x) represents
all the jumps of F in (—oo,x]. Note that F,; is increasing, right-continuous,
Fj(—o0)=0and

Fq(+00)= > b <1.

j=1

The function F; is the jumping part of F.

Theorem 1.5.1. The function F.(x) = F(x)— F4(x) is positive, increasing and
continuous.

Proof. Let us first prove that F is increasing. Let x < x’. Then, by the definition
of F; we have that

Fa(x)=Fy(x) = D b(6q (x)=8, ()= > Fla—F(a)) < F(x')—F(x).
J

., i /
Jjix<aj<x

Now since both F; and F are increasing we conclude that 0 < Fy(x’)—F4(x) <
F(x")—F(x) which is equivalent to saying that 0 < F,(x’) — F.(x), so that F, is
increasing. Note that taking x = —o0 in the first display above we can conclude
that F;(x") < F(x), so that F,(x") > 0. Let us now prove that F, is continuous.
Note that F; is right continuous since each 6 a is also right continuous and by the
Weierstrass test the series which defines F; is uniformly converging in x. Since
F is also right continuous, we conclude that F, is right continuous. Moreover,
Fi(x)—F4(x7) = bjl{x:aj} and the same holds for F, that is F(x)—F(x™) =
bjl{x:aj}, by the definition of b; and a;. Then

F(x) = Fo(x") = F(x) = F(x") — (Fq(x) — F4(x")) = 0.

From this we conclude that F is left continuous from where the continuity fol-
lows. |

Theorem 1.5.2. Let F be a distribution function. Suppose that there exists a
continuous function G, and a function G4 of the form Gy(x) = 221 b§5a§ (20),
where {a;.} j=1 Is a countable set of real numbers and Zj21 b; < 00, such that
F =G.+Gy. Then G, =F, and G; = F; where F,. and F; were defined above.
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Proof. Let us suppose that F; # G4. Then, or the sets {a;};>; and {a;.} j>1 are

j
b; # b;. for some j > 1. In any case, we should have, for at least one j and one

not equal or they are equal and then we can have a; = a;. for all j > 1 but

- we have

d;, that &; = a; or d; = a;. Then, for that d; = a;

j j
Fo(@) —Fq(@) = b; # b = Gg(d;) — Ga(@;)
(or the other way around). Since F = F, + F; and F = G, + Gy, then
F.(d;)+F4(d;) = G.(a;) + G4(a;)
F(a;)+Fq(a;) =Gc(a;)+Gq(a;).

From the previous equalities we conclude that
Fo(d)) — F(@) — Go(@)) + Go(@)) = Gal@)) — Gal@)) — Fa(@;) + Fa(@;) # 0.

But then F, — G, would not be a continuous function, which is absurd. From
this it follows that F; = G4 so that F. = G, and the proof ends. o

Definition 1.5.3. A distribution function that can be represented in the form
F= 2]21 b;6y,, where{a;};>1 is a countable (or finite) set of real numbers b; > 0
for every j and ' =1 b; = 1 is called a discrete distribution function. A distri-
bution function that is continuous everywhere is called a continuous distribution

function.

Suppose that for a distribution function F we have that F. # 0 and F; # 0.
Let a = Fy(4+00) such that 0 < a < 1 and let

1 1
F1=_Fd and F2= —FC'
a 1—a
Then

F=F;+F.=aF +(1—a)F,, (1.5.1)
where F; is a discrete distribution function and F, is a continuous distribution

function and F is a convex combination of F; and F,.

Remark 1.5.4. If F, = 0 then F is discrete and we take a = 1, so that F; = F and
F, =0; and if F; = 0, then F is continuous and we take a = 0 and F; = 0 and
F, = F and in both cases (1.5.1) holds.
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The two previous theorems can be combined in one:

Theorem 1.5.5 (Convex combination of distribution functions).
Every distribution function can be written as the convex combination of a dis-

crete and a continuous distribution function. Such decomposition is unique.
Now let us see another type of distribution function.
Definition 1.5.6. A function f is in L'(R) iff [, |f (¥)|dy < oo.

Definition 1.5.7. A function F is said to be absolutely continuous (in R wrt the
Lebesgue measure) iff there exists a function f € L' such that Yx < x’ we have
that

F(x")—F(x) =f f(y)dy.

There is a result in measure theory that says that such a function F has a
derivative equal to f almost everywhere (a.e.). This means that the derivative is
equal to zero on a set of full Lebesgue measure. In particular if F is a distribution

function then
f=0 ae. and J f(y)dy =1. (1.5.2)
R

Such function above is called a density.
Conversely, given any f € L! satisfying the previous conditions in (1.5.2),
the function F defined for all x € R as

F(X)=f f(y)dy

is a distribution function that is absolutely continuous.

Theorem 1.5.8. Let F : R — R such that for x < x’ and f a density function, we
have that

x/
F(x')—F(x)= J f(t)de.
X
Then, F is a.e. differentiable and F' = f a.e.

Definition 1.5.9. A function F is called singular if and only if it is not identically

zero and F’ exists and is equal to zero a.e.
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The next theorem can be seen in any book of measure theory and for that

reason the proof is omitted.

Theorem 1.5.10. Let F be bounded increasing with F(—oo) = 0 and let F’ denote
its derivative whenever it exists. Then:

1. If S is the set of points x for which F’(x) exists with 0 < F’(x) < + 00, then
m(s%) = 0.

2. The function F’ belongs to L' and we have for every x < x’ that

/

f F'(y)dy < F(x')—F(x).

X

3. Ifforall x e R

Fac(x)zf F’(y)dy and Fs(x) =F(x)_Fac(x):

—00
/! ! _ ot / .
then F,. = F’ a.e,, so that F; = F' —F; = 0 a.e. and consequently F; is

singular if it is not identically zero.

Definition 1.5.11. Any positive function f that is equal to F’ a.e. is called a
density of F. F,. is the absolutely continuous part of F and F; is its singular part.

Remark 1.5.12. Note that:

1. the discrete part F; defined above is part of the singular part F, defined
above;

2. F,. is increasing and F,. < F. (Check it!)

Moreover, if x < x’ then F,(x")— F,(x) = F(x') —F(x) — f;/f(y) dy >0,
(from (2) of the previous theorem) therefore F, is also increasing and F, < F.
(Check it!)

Theorem 1.5.13. Every distribution function F can be written as the convex com-
bination of a discrete, a singular and an absolutely continuous distribution func-

tion and such decomposition is unique.
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Proof. Note that if
B = f F'(t)dt =0,
R

then F’(t) = 0 for t a.e. so that F,.(x) = O for all x. Therefore, F, = F,, where
F, is the continuous part of F. If f = 1, then F,.(+00) = 1 and F,. = F, and
F. is absolutely continuous. Now, if[g €(0,1), thenif a € (0,1) and f € (0,1),

then F can be written as
F = OLF1 +/3F2 + '}/FB,

where

B=1-a)f, r=010—-a)(1-p)
1 1

F =F, F =7Fac, F =—~Fs-

TR T a-p

c

In the next section we are going to construct a singular distribution function.

It is called the Cantor distribution function.

1.5.1 The Cantor distribution function

Let us construct the ternary Cantor set. This is a construction which is done by
induction. It goes like this. From the closed interval [0, 1] remove the central
interval (%, %). Then in the two remaining intervals remove the central intervals

%, %) and (%, g). After the 1st step we remain with two intervals of size % In
the 2nd step we remain with four intervals of size 3% and so on. After n steps
we have removed 1+2+4+8+---+2"1 = 2"—1 disjoint intervals and remain
2" closed intervals of size 31—n Let us order these intervals, by order from left to
right and denote them by J;, ;, where 1 < k < 2" —1 and denote their union by
U,. Note that

2\n
m(U,) = 1—(5) .
As n increases the set U, increases to an open set U and let ¢ := U° (the
complementary wrt [0, 1]) be the Cantor set. Then

m(€)=1—-m(U)=1-— lim m(U,)=1—-1=0.
n—oo
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Now we define the Cantor distribution function. For each n,k, withn > 1

and k = 1,---,2" —1let ¢y = 25,1

way: if x € Jp,j then F(x) = ¢, . In each J,  the function F is constant and it

and let us define F in U in the following

is strictly greater on any J, - at the right of J, ;.. Therefore, F is increasing and
F(0*)=0and F(17) = 1. Now we complete the definition by setting F(x) =0
for x < 0 and F(x) =1 for x = 1. Up to here the function F is defined on the
domain

9 =(—00,0]UUU[1,+00)

and is increasing.
Now, since each J, ;. is at a distance which is greater or equal than 1/3" from
any other J,, ;- and since the total variation of F over each of the 2" disjoint

intervals that remain after removing J, ; is 2—1,1, it follows that

1 1
0<x'—x<—==0<F(x)—F(x)< —.

3n n
Then, the function F is uniformly continuous on 2. Note that it is known
that 2 is dense in R. Now, to define the function in the full space R we need

the following result.

Lemma 1.5.14. Let f be increasing on a dense subset 9 of R. If for any x € R
f)=inf f(0),
x<teg

then f is increasing and right continuous everywhere. If f uniformly continuous,

then f is uniformly continuous.

By Lemma 1.5.14 there exists a continuous and increasing function F de-
fined on R that coincides with F on 9. This function F is a continuous distri-
bution function that is constant on each J,  so that F’ =0 on U and also on
R\ %, which means that F is singular. Below we see the graph of F after some

steps of the induction procedure.

Definition 1.5.15. A random variable X is said to be discrete if it takes values in
a finite or countable set, that is, if there exists a finite or countable set B € R such
that P(X € B) = 1.
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1.5.2 Types of random variables

Definition 1.5.16. A random variable X whose distribution function F has a

density f is said to be absolutely continuous.
Note that,

1. If X is discrete, then P(X € B) = Y. P(X = x;);

i:x;€B

2. If X is absolutely continuous with density f, then P(X € A) = fA f(y)dy,
for any A € 4.

25 Exercise:
Let X be a r.v. with density given by

1
flx)= ml(o,wo)(x)-

Let Y = max (X, c), where c is a strictly positive constant.

a) Find the distribution of X and Y and do the graphical represen-
tation.

b) Decompose the distribution function of Y in its discrete, abso-
lutely continuous and singular parts.
Note that the distribution function of X is given by Fx(x) = ffoo f(t)dt,

that is

0, if x<O,
FX(X)={ 5

Tix» Otherwise.
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The distribution function of Y is given by:

0, if y<c,
FY(}’) = { y h .
Ty > otherwise.
The distribution function of Y decomposes into its discrete part
0, if y<c,
Fa(y)= { . .
1> Ootherwise.

and the absolutely continuous part:

0, if y<ec,

__1+1

5y T e otherwise.

Fac(.y):{

Since for all y € R we have that F;(y)+F,.(y) = Fy(y), then the singular
part fo F is null, that is F;(y) = 0. The random variable Y is of mixed type.

1.6 Random vectors

A random vector is just a vector whose components are random variables. We
focus on the case d = 2. Basically here we just rewrite what we have seen before
in a 2-dimensional setting. Note that the Borel o-algebra in R? is the o-algebra

generated by rectangles of the form
{(x,y) :a<x<b;c<y<d}
and it is also generated by products sets of the form
By xBy={(x,y) : x €By; y €By},

where By,B, € 9. A function f : R? — R is Borel measurable iff f (%) €
B2

Definition 1.6.1. Let X and Y be two random variables defined on the same prob-
ability space (2, % ,P). The random vector (X,Y) induces a probability measure
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v € B2 such that for A€ %>
vA)=P((X,Y)€A)=P(weN: (X(w),Y(w)) €A).

The measure v is called the distribution measure of (X,Y).

We also define the inverse application (X,Y)™! in the following way:
VAe B2 : (X,Y) A ={we: X(w),Y(w))ecA}.

We note that the results that we have seen above for X! are also true for
e, Y)h

Theorem 1.6.2. If X and Y are random variables and if f : R> — R is Borel
measurable, then f(X,Y) is a random variable.

The proof of last result is analogous to the proof of Theorem 1.4.7.

Example 10.

1. If X is a random variable and if f : R — R is continuous, then f(X) is a
random variable. Therefore:
e X": |X|" for positive real r; e X, for real A, e'X, for real t are random
variables;

2. If X and Y are random variables then all these are random variables:

e XxY; XY; X/Y; XAY :=min(X,Y); X VY :=max(X,Y);

Theorem 1.6.3. If {X;};> is a sequence of random variables, then

irjlej; 51]1_pXj; liIr}ian i limjsupX 3

are random variables not necessarily finite but a.e. defined and lim;_,, ., X; is a

random variable on the set where there is convergence or divergence to £00.

Proof. Note that for all x € R we have that

{SL}pXj < x}=U;{X; < x}.
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Since {X; < x} € #, because X is a r.v. then {sup; X; < x} € #. From Theorem
1.4.4 we conclude that sup; X; is a .v. Analogously, since all x € R we have
that

Since {X; > x} € Z, because X is a r.v. then {inf; X; > x} € #. From Theorem
1.4.4 we conclude that inf; X; is a .v. Now for the lim sup X; note that

limjsup = irnlf(suijHXj).

From the previous arguments we know that sup;-,X; is a r.v. and also that
inf, (sup i=nX j) is a r.v., from where the proof ends. o

Definition 1.6.4. The distribution function of a random vector (X,Y) is defined
on (x,y) € R? by

F(x,y)=PX <x,Y <y).
F is also called the joint distribution function of the rv. X and Y.
The distribution function just defined satisfies the following properties:
1. F is increasing in each variable.
2. F is right-continuous in each variable.
3. lim,,_ F(x,y) =0and lim,_,_o, F(x,y)=0.

4. 1imx—>+oo,y—>+oo F(x, )’) =1

fg Exercise:
| Prove the previous properties.
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Note that the distribution function of X (resp. Y) is obtained from the joint
distribution function by taking the limit:

lim F(x,y)=F(x)
y—o0

(resp. lim,_, oo F(x,y) =F(y)).
The properties above are not sufficient to guarantee that a function F : R? —
R is the distribution function of a random vector. Let us see an example.

Example 11. Let

F(x,¥) = 1{x50,y20,x+y>1}-
It is easy to see that F satisfies the properties above, nevertheless it is not the
distribution function of a random vector. Suppose it is. Then we would have, for
example, that: P(X € (0,1],Y € (0,1]) = —1, which cannot happen since P is a
probability measure.

We need to introduce some extra condition, in order to avoid what we have
seen in the previous example. That condition is the following: e For any a; < b,
and a, < b, we have

]P(X € (aln bl]: Ye (a2’ bZ]) =0.

A function F satisfying the properties above is the distribution function of a

random vector.

Definition 1.6.5. A random vector (X,Y) is discrete iff it takes a finite or count-

able number of values.

Definition 1.6.6. Let (X,Y) be a random vector and let F be its distribution
function. If there exists a function f : R?> — R such that f(x,y) > 0 and

[ [ fCx,¥)dx dy =1 and if for any (x,y) € R

x y
F(x,y)zJ f fu,v)dudv,

then f is called the density function of the random vector (X, Y ) or the joint density
of the rv. X and Y. In this case, we say that the random vector is absolutely

continuous.
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1.7 Stochastic Independence

Definition 1.7.1. The collection of random variables {X;};_; ... , are said to be
independent iff for any {B;};—; .. , with B; € %, for any j = 1,--- ,n, we have
that

PN, (X; €B))) ="_ P(X, €B)). (1.7.1)

Remark 1.7.2.

1. The rv. of an infinite family are said to be independent iff the rv. in any
finite subfamily are independent.

2. The rv. are said to be pairwise independent iff every two of them are inde-
pendent.

3. Note that (1.7.1) implies that any of its subfamilies is independent, since

k = = —k
P(ﬂjzl(Xj € Bj))—ﬁ”(ﬂ?:l(Xj € Bj))—Hj?zl]P’(Xj € Bj)=II\_,P(X; € B))
Remark 1.7.3. We note that (1.7.1) is equivalent to
P( Moy (X < xj)) =17_,P(X; < x;), (1.7.2)

for every set of real numbers {x; };.’:1. To prove this it is enough to check that the
set
n
€ ={B: P(X,,X,,....X,) € B) =] | P(x; € B)}
i=1
where B=By xBy x---x B, and B; € & foreachi=1,...,n, forms a o-algebra
that contains the sets of the form (—oo,x;] x (—00,x,] x ...(—00,x,]. This is

left as an exercise to the reader.

We can rewrite (1.7.1) in terms of the probability measure y, ... x,) in-
duced by the random vector (X,,---,X,) on (R", B™") as
n

H(X1,~~~,Xn)(31 X+ XBp)= H]zl.uj(Bj) = u1(B1) X -+ - X uy(By),

where u; 1= ux; is the probability measure induced by each random variable X

in (R, 8). Note that the induced measure in this case is the product measure!
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Remark 1.7.4. We can define the n-dimensional distribution function Fy, .. x )

as
F(le"',Xn)(xl’ LX) =PXG < xq,0- X S )
=U(x, - x,) (=00, X1 ] X -+ x (=00, x,]).
and the condition (1.7.2) is rewritten as F(x,- -+ ,x,) = H?Zle(xj).

Example 12. Let X; and X, be independent r.v. given by

1, 1/2 1, 1/2
X1 = and X, =
-1, 1/2 -1, 1/2.

Then, the three r.v. {X;,X,,XX,} are pairwise independent but they are not to-
tally independent. To prove the assertion check that the rv. XX, satisfies:

1, 1/2
-1, 1/2.

X1X2 ==

Then
P(Xl == ].,Xle == 1) == P(Xl == 1,X2 == 1) == P(Xl - 1)P(X2 == 1) == 1/4

and
P(X; =1)PX X, =1)=1/4.

Doing some similar computation we conclude that X; and XX, are independent.
Analogously we can conclude that X, and XX, are independent. Now note that

X4,X4,X,X, are not independent, since
]P(Xl = 1,X2 = _1,X1X2 = 1) = P(@) =0

but

Whenever a probability space (2, &, P) is fixed, the sets in # will be called
events. We have seen above the notion of independent r.v. but what about

independent events?
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Definition 1.7.5. We say that the events {E; };.1:1 are independent iff their indi-

cators are independent, that is, for any subset {ji,--- ,j,} of {1,---,n} we have
that

¢ _
P( Mk=1 Ejk) = I, P(Ej,).

Theorem 1.7.6. If {X; }j=1 are independent r.v. and {f; };'1=1 are Borel measurable

functions, then {f;(X j)};?zl are independent r.v.

Proof. <for j=1,---,nlet B; € 8. Then Fj_l(B]-) € A. Therefore
UL {f(X)) € B} = UL {X; € £ (B))}
and
n
BU, (X)) € B} = P(U'_, (x; € £ 8D = [ [PCx; € £7)(B)
j=1
=] [p¢ix)) €B))

j=1

and we are done. o

We have seen above that if X;,---,X,, are independent r.v. then
Fix, o x) (X1, X)) = T Py (x;).
Now let us see the reciprocal.
Proposition 1.7.7. If there exist functions Fy,-- -, F, such that
X}Lmoo Fi(x;)=1
forall j=1,--- ,nand if for all (xq,--- ,x,) €R"

F(Xl,"',Xn)(xl’ Ut 7xn) = H;l:],F](x])’

then {X,}! _ are independent and F; := Fx_ forall j=1,---,n.
ilj=1 J i
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Proof. To prove the proposition it is enough to see that Fy, = F;, then it follows
from the definition. Note that

FXi(xi) = XEElOO FXl,---,Xn(xa" XX, X )
= XEE}X) Fi(x)- - Fi(x;) - Fp(x)
= xl}floo Fl(x)"'Fi(xi)”'xlgnoo Fo(x)

= Fi(x;).

Finally the reader can check that the r.v. are independent. This ends the proof.

Cl

Proposition 1.7.8.

o If{X; };.1:1 are independent r.v. with densities fx.,---, fx,, then the function
f(xlz T an) = H?:lej(xj)

is the joint density of {X; };.lzl or the density of the random vector (X1, -+ ,X,,)

e On the other hand, if X4, -+ ,X, has a joint density f which satisfies
f(xl, e 3xn) = H?:lf](x])

forall (xq,---,x,) € R"with f;(x) = 0and fRfj(x)dx =1, thenXy,---
are independent and f; is the density of X;.

Proof. Since X;,---,X,, are independent, then

n n X;
Fixy e @ x) = [Fe ) =] | f Fr(t)d;
i=1 i=1 J—00

=f J ” fx, (&1) - fx (t)dty -+ - dty

so that fx (t1)--- fx (t,) is the joint density function of X; -+ -, X,,.
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Now note that

F(Xp"',Xn)(xl:" > X f J fty, -+, t)dty---dt,

f fl(tl) fn(tn)dtl'“dtn
ZHJ fi(ty)dt;.
i=1JXx;

taking F;(x;) = f;oo fi(t;)dt; we have that lim, ., F;(x;) = 1, so that by
the previous proposition X, -+, X, are independent and F; = Fy, and f; is the
density of X;. o

Constructing independent r.v.

Let (9, Z1,P1) and (Q,, #,,P,) be discrete probability spaces and where Z;
is the total o-algebra. We define the product space Q2 := £, x £, as the space
of points w = (w1, w,) with w; € Q; and w, € Q,. The product o-algebra Z?
is the collection of all the subsets of Q2. We know from the beginning of the
course that the probability measures P; and P, are determined by their values
in w;, w, respectively. Since Q2 is also countable we can define a probability
measure P? in Z2 as

PZ({(wl: wy)}) =P ({1 PPy ({w,})

which is the product measure of P; and P,. Check that it is a probability mea-
sure! It has the property that if S; € &, and S, € &,, then

P?(S; X Sp) =P (S1)Py(Sy).

Now, let X; be a r.v. on Q; and X, a r.v. on £,; B; and B, Borel sets and
Sl =X1_1(Bl) = {C()l S Ql :Xl S Bl} and SZ =X2_1(Bz). Note that Sl S 91 and
S, € Z,. Then

P2(X; € By x X, € B,)
=]P’2(51 X §3) = P1(S1)P5(Sy) = P1(X; € B1)Py(X, € By).



TECNICO
LISBOA

38 Stochastic independence

To X; on ©; and X, in Q,, we associate the function X; and X, defined on
w € N? as X;(w) = X;(w;) and X,(w) = X,(w,). Now we have
ﬂ]zzl{w e Q? :Xj(w) € B;}
= Ql X {Cl)z (S Qz :Xz((x)z) (S B2} n {Cl)l (S Ql :Xl(wl) (S Bl} X QZ
={w; €Qy : X1(w1) €B1} x {w,y € Qy 1 Xp(wy) € By}
From where we conclude that
IPZ(mf.Zl{Xj € B;}) =P*(X; € B))P*(X, € By),

so that the random variables X; and X, are independent!

Now we extend the construction to n discrete probability spaces. Let n > 2
and (Q2;, ;,P;) be n discrete probability spaces where Z; is the total o-algebra.
We define the product space Q" := Q; x Q, x --- x Q, as the space of points
w = (wq,"*+,w,) with w; € Q;. The product o-algebra #" is the collection of
all the subsets of Q". We know from the beginning of the course that for each
J, the probability measure P; is determined by its value in w;. Since Q" is also
countable we can define a probability measure P" in Z" as

P'({(wq,- -+, )P =TT P;({w;})
which is the product measure of the {Pj};?zl. Check that it is a probability

measure. It has the property that if S; € &, then

(S, X -+ x S,) = I Py(S)).

Now, let X; be a r.v. on Q}, B; a Borel set and S; = XJ._l(Bj) ={w; €Q;:

X; € B;} . Note that S; € ;. Then
P"(X, €Byx---xX, €B,)
:]Pn(sl X oo X Sn) = H;IZ].]P)](SJ) = H;lzl]:PJ(XJ (S B])'

To each function X jonQ;we associate the function X jon Q" defined on w € Q)
as X'j(w) = X;(w;). Now we have

ﬂ;.‘:l{w e Q" :Xj(w) € B}

=ﬂ;l:191 XX Qi x{w; €Q;: Xj(w;) €EBj} X Qjyq X+ X Qy
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From where we conclude that
P”(m;;l{)?j €B;}) = H;?:lIP”(Xj €B)),

so that the random variables {X i };.l:l are independent! Let ™ = {(x, -+ ,Xx,) :
0 < x; < 1,1 <j < n}. The trace on %" of (R", 88", m") is a probability
space. For j =1,---,n, let f; : R — R be a Borel measurable function and let
Xj(x1,- -+, x,) = fj(x;). Then, the r.v. {Xj};l:1 are independent. If f;(x;) = x;
then we get the n-coordinate variables in the cube.

Theorem 1.7.9 (Existence of product measures).

Let {u;}; be a finite or infinite sequence of probability measures on (R, 98) or
equivalently, let their distribution functions be given. There exists a probability
space (2, Z,P) and a sequence of independent r.v. {X;}; defined on it such that
for each j, the measure w; is the probability measure of X;.

The proof of this theorem is omitted since it can be found in any book on

measure theory.

1.8 Mathematical Expectation

Mathematical expectation is integration on a probability space (2, #,P) with
respect to the probability measure P. To avoid complications we assume that
the r.v. are finite everywhere.

Definition 1.8.1. A countable partition of Q is a countable family of disjoint sets
A; with A; € F and such that Q = U;A;. In this case we have that 1 = 1 =

Zi Ly

Definition 1.8.2. A rv. X is said to belong to the weighted partition {A;, bj} is
for all w € Q we have that X(w) = Zj bleJ_(co). Note that X is a discrete r.v.

Remark 1.8.3. Every discrete r.v. belongs to a weighted partition: take {b;}; as
the countable set of the possible values of X and A; = {w € Q; X(w) = b;}. If j

ranges over a finite set the r.v. is said to be simple.
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If X is a positive discrete r.v. belonging to the weighted partition {A;, bj},

then its expectation is defined as
E[X]= > b;P(A)).
J

Note that E[X ] is a number, in this case, since b; > 0, positive or +00. Suppose

now that X is a positive random variable and for each positive integers m, n, let

A ={0: 5 <X(@) < n2+ml} =X_1([21m’%nl])’

so thatA,,, € Z. For each m, let X, be the random variable that takes the value
o in Apyy,, that is
n+1

n . n
Xm(co)zz—m iff 2—mSX(a>)S2—m.

It is easy to see that for each m we have that for all w € Q, X,,(w) <
Xm+1(w). Now let w € 2 and note that if 55 < X(w) < "Z—J;l, then X, (w) = 3,
so that

1
0 <X(w)—Xp(w) < o

from where we get that lim,,,_, .o X,(w) = X(w). So the sequence of r.v. {X,,},
is increasing and converges pointwisely to X.
Note that

E[X ]—ilp(l<x<n+1)
ml Lhom\gm = 2m J’

If E[X,,] = +oo then we define E[X] = +00, otherwise, we define E[X] =
lim,,_, oo E[X,,,]. Note that the limit can be infinite.

For a general r.v. X we take X = X7 — X, where X" =XVOand X~ =
(—X) Vv 0. Both X*, X~ are positive, so their expectation is defined and unless
both expectations are +00 we define E[X] = E[X*]—E[X~]. We set that X has
finite or infinite expectation according to E[X] is finite or infinite.

When the expectation of X exists we use the notation

E[X] = J X(w)P(dw) = J X(w)dP.
Q Q
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For A € & we have

E[X1,]= J X(co)IP’(dco)=J 1, ()X (w)dP
A

Q

and it is called the integral of X wrt P over the set A. When the integral above
exists and is finite we say that X is integrable in A wrt PP,

Example 13 (Lebesgue-Stietjes integral).
For (R, $8,u) and X = f and w = x we have

f X(w)P(dw) =f f()uldx) =J f)dp.
A A A
When F is the distribution function of u we also write (for A = (a, b))
f(x)dF(x).
(a,b]

To distinguish the intervals (a, b],[a, b], (a, b) and [a, b) we use the notation
b+0 b+0 ,b—0 b—0
Ja+0 ,Ja—O ’Ja+0 ’Ja—O ‘
For (%, 98, m) the integral is fabf(x)m(dx) = fabf(x)dx. Since u is atomless
we do not need to distinguish the intervals.

Let us now see some properties of the mathematical expectation. We prove
some of them but the rest are left to the reader. In what follows X and Y are
rvanda,beRand A € Z.

(1) Absolute integrability: f A XdPis finite iff f A |X|dP is finite.
Note that [X| = X* + X~. Suppose that fA |X|dP < oco. Then fAXidIP <
oo. Therefore, fAXd]P’ = fAX+dIP’— J‘AX_dIE’> < ©00. On the other hand if

fAXdIP’ < o0, then fAXidIF’ < oo and this implies that fA IX|dP < oo.

(2) Linearity: fA(aX +bY)dP =a fAXdIP +b fA Y dP, as long as the right
hand side makes sense, that is, it is not + 00 — 00 nor —oo + 0.
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(3) Set additivity: If {A, },>; are disjoint, then

J XdP = ZJ XdP.
UnZlA n>1 A

(4) Positivity: If X > 0 a.e. on A (this means there is a subset of A with

weight one wrt P where X is positive), then

fXd]P’ZO.
A

(5) Monotonicity: If X; <X < X, a.e. in A, then
J X,dP < f XdP < f X,dP.
A A A
To prove it, apply the previous item for X —X; and for X, —X.
(6) Mean value Theorem: If a <X < b a.e. in A, then

aP(A) < J XdP < bP(A).
A

To prove it, apply the previous item for X; = a and for X, = b.

(7) Modulus inequality: ‘ fAXd]P’) < fA |X|dP.

To prove the result note that fAXdIF’ = fAX+—X_d]P’ = fAX+dIF’—fAX—dIF’.
Then

’fAXdIP’ = ‘fAX+dIP’+UAX_dIP>’ = [, X*dP+ [, Xx~dP= [, |X|dP.

(8) Dominated convergence Theorem: If lim,_,, X, = X a.e. on A and if
forn>1|X,| <Y a.e. on A and fAYdIP’ < o0, then

lim JXnlezfXlezf lim X, dP.
n—oo A A An—)OO
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To prove the result note that |X,| < Y implies that if X,, > 0, then X, <Y
and if X,, <0, then —X,, < Y. Then, from Fatou’s lemma we have that

f YdP+f XdIPZf Y-I—Xd]P’Slimian Y+Xnd]P’
A A A " A

= J YdP+ limian X,dP
A A
From here we conclude that

J XdP < liminff X,dP
A A

Now we repeat the argument with —X, and we conclude that

J —XdP < liminff —X,dP
A A

J XdP > limsupJ X,dP
A A

from where the equality follows.

so that

(9) Bounded convergence Theorem: If lim,_,., X,, =X a.e. on A and there
exists a constant M such thatn > 1 |X,,| < M a.e. on A, then the result of (8) is
true.

(10) Monotone convergence Theorem: If X,, > 0 and X,, T X a.e. on A, then
the previous equality is true if we allow +00 as a value.

To prove the theorem we note at first that since X, T X, then the limit
lim,,_, oo X,,(w) exists for each w, being possibly equal to infinity. Note that, by
a previous Theorem X is a r.v. On the other hand, by the monotonicity property
we have fAXndIP’ < fAXd]P’,Vn and note that {fAXnd]P’}neN is an increasing
sequence. Let & :=1lim, f A XndP, which exists and note that ¢ < fAX dP. Now
we have to prove the reversed inequality. Let a € (0,1) and let ¢ be a simple
function which is positive with ¢ < X. Let E, = {w : X,(w) = ap(w)}. Note
that {E, },en is an increasing sequence of sets in %, whose union is Q2. Moreover

andP > f X,dP > af @dP.
E E

n n
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Note that if I(-) = f _pdP, then I(-) is a measure and the limit lim,, I(E,) exists

and

limI(E,) = J @dP.
n

Then & > af @dP for all a € (0,1). Sending a to 1 we obtain that & > f pdP
for all ¢ simple and positive with ¢ < X and this implies that > fX dP, since

fXd]P’ = sup {f pdP : 0< ¢ <X; ¢ simple and positive};
so that the proof ends.

(11) Integration term by term: If ; -, fA IX,|dP < oo, then }; o IX,| <
oo a.e. on A, so that D, -, X, converges a.e. on A and

J > X, dP = ZJ X, dP.
An>1 n>1JA
(12) Fatou’s Lemma: If X, > 0 a.e. on A, then
(liminfX,)dP < lim ian X, dP.
A n—o0 n—oo

A
To prove Fatou’s lemma we do the following. For k € Z* if j > k then

inf,>; X, < X;. Then, from the monotonicity property we have for all j > k

that
J inf X, dP < J X;dP,
ANk A

f inf X,dP < mff deIP’.
Al >k j=k A

Since inf,5; X, T liminfX, when k — oo, then taking k — oo we have that

which implies that

f liminfX,dP = f lim inf X, dP= lim J inf X, dP
A A

n—oo k—o0 n>k k—oo n>k

k— oo n>k n—oo

< lim inff X,dP = 11m1an X, dP.
A A

Note that in the previous inequality we used the Monotone Convergence Theo-

rem.
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- Digression on the Riemann-Stieltjes integral

Let f be a continuous function defined on [a, b] and let F be a distribution
function. The Riemann-Stieltjes integral of f on [a, b] wrt F is defined as the
limit of the Riemann sums of the form

D FEIF () = F(x), (1.8.1)
i=1

where x; = a,x, = b, x; < x;4; and X; is an arbitrary point in [x;, x;;1]. The
limit is takes by making the norm of the partition {x;}; tending to 0, that is
max;— .. (x;11 — ;) — 0. The limit exists, when f is continuous, and it is
denoted by fab f(x)dF(x). Note that

b
f f(x)dF(x) = lim J £ (x)dF(x).
R a——00,b—+00 a

Example 14. Compute fR Fo(x)dFy(x), for Fo(x) = 6¢(x), the Heaviside func-
tion at 0.

Note that the integral above does not exist since the limit in (1.8.1) does not
exist. This is because if we take x; < 0 < x;,, for some i, then Fy(x;.1)—Fo(x;) =

1 and as a consequence, the value of the sum:

Z Fo(%;)(F (xi41) = F(x;)),

i=1

depends on whether X; € [x;, x;41] is such that Fy(X;) is O or 1.

To avoid the previous cases, in order to extend the definition to discontinu-
ous functions we do it like this. Let f be a Borel measurable function f : R — R.
We want to define f g J (X)dF(x) for a distribution function F. First we define
it for f(x) = 1p4)(x) as fRf(x)dF(x) = F(b) — F(a). Then we extend the
definition as we did before.

Remark 1.8.4.
e When F is the distribution function of a discrete random variable X taking

values {x;};>1 then

f FE)F(x) = > f (x)P(X = x;)
R

i>1
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and

FEIF() = D fO)P(X =x,).

(a,b] i:a<x;<b
e When F is the distribution function of an absolutely continuous random vari-
able X with density fy, then

Jf(x)dF(X)=J f)fx(x)dx
R R

and , .
J FOOAF(x) = f (0.

e When F = aF; + BF,. + vF,, then

J f)dF(x) = Olf f(x)dFq +/5J f(x)dFq +Yf f(x)dF,.
R R R R

e When F does not have singular part we have

b b
f FOUFE)= D FO)BX = x)+ f £ ()dx.

i:a<x;<b

Proposition 1.8.5. For a v. X with distribution function F we have that

+00 0
E[X] =J (1—F(x))dx—J F(x)dx.
0

—0Q

Proof. Note that E[X] = fR xdF(x).
First we claim that f0+o° xdF(x) = fOJroo(l — F(x))dx. Since d(xF(x)) =
xdF(x)+ F(x)dx we have, for b > 0, that

b b b
f d(xF(x))=f xdF(x)Jrf F(x)dx.
0

0 0

The term on the left hand side of last expression is equal to bF(b) so that we
obtain

b b b +00
J xdF(x)= J F(b)—F(x)dx < J (1—F(x))dx < f (1—F(x))dx.
0 0 0

0



TECNICO
LISBOA

Measurable spaces 47

From here it follows that

+00 b +00
J xdF(x)= , lim J xdF(x) < J (1—F(x))dx.
0 —+00 0 0

On the other hand let a > 0 and with b > a. Then

b a
J F(b)— F(x)dx > J F(b)—F(x)dx = J
0 0 0

:a(F(b)—1)+f 1—F(x)dx

0

a a

F(b)—ldx+J 1—F(x)dx
0

From here it follows that

+00 b b
J xdF(x)= limf xdF(x)= lim J F(b)—F(x)dx
0 b—oo 0 b—+o0 0

a a

1—F(x)dx = f 1—F(x)dx.

0

2a(F(b)—1)+f

0

Since last inequality holds for any a > 0 we get that

+00 a +00
J xdF(x)> lim J 1—F(x)dx = J 1—F(x)dx.
0 =t Jo 0

Putting together the previous two inequalities we prove the claim. Analogously
we can show that f i)oo xdF(x) = — f i)oo F(x)dx. This is left to the reader.
An alternative proof consists in first showing that for any non-negative r.v. we
have that E[X ] = O+oo 1—F(x)dx. Once this is proved we take X = XT — X~
and use the fact that both X* and X~ are positive to conclude that E[X] =
E[XT]—-E[X"] = f(;roo 1—Fyx+(x)dx — fo+oo 1— Fx-(x)dx. Then we need to
relate Fy+(x) and Fx-(x). This is left to the reader. |

Corollary 1.8.6. For a non-negative r.v. X, we have that
+00
E[X]= f P(X > x)dx.
0

Proof. It is enough to note that r.v. X we have that F(x) = 0 for x <0, since X
is non-negative. From this observation the result follows. o
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Theorem 1.8.7. Let k € N, then

E[x*] = k[J

0

0
(1— FX(x))xk_ldx —J FX(x)xk_ldx].

—0Q

+oo

Proof. We do the proof for k even but we note that for k odd it is completely
analogous. Since k is even we note that X is a non-negative r.v., therefore from
last corollary it follows that

+00o +00o +00
E[x*] = f P(X* > x)dx = f P(X > x /) dx +f P(X < —x®)dx
0

0 0
+00

:J 1—FX(x1/k)dx+f Fx((—x*)7)dx.
0

0

Now doing the change of variables x = y*, last expression writes as

+0o0

+00
f 1—Fx(yky*'dy + J Fx((—y)Dky*'dy.
0 0

Now note that Fyx(—y) and Fx((—y)™) are monotone functions which are equal
except in a set of points which are the jump points, therefore they are equal
except at most on a countable set of points, so that the last expression coincides
with

+00 +00
J 1—Fy(y)ky*1dy + J Fx(—y)ky*'dy,
0 0

and doing the change of variables —y = u last expression equals to

+00 0
f 1—Fy(y)ky*tdy —f Fy(wku*'du.
0 —00

This ends the proof. |

Theorem 1.8.8 (Integrability criterion). For a r.v. X we have that

> (X >n) <E[IX[]< 1+ > P(IX| > n),

n>1 n=1

so that E[|X|] < oo iff the series above converges.
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Proof. Let A, :={w :X(w) € [n,n+ 1)}. Note that A, are disjoint sets so that

E[|X|J=Zf X |dP.
n=0J A,

Applying the mean value theorem to each integral we obtain that

+00 +00 +00
D> nP(A,) <E[X[1< D (n+ DP(A) =1+ > nP(A,). (1.8.2)
n=0 n=0 n=0
To finish the proof it is enough to show that
+00 +00
D> nB(A,) = > P(IX| 2 n) (1.8.3)
n=0 n=0

being its value finite or infinite. For that purpose let us fix m. Then, truncating

the series at m we have that
m m

> nP(a,) = > n(B(X] > n)—P(IX| 2 n+1))
n=0 n=0
m m+1
= nP(IX| > n)—B(X| > n)— > (n— DP(X| > n)
n=0 n=1

= > P(X|=n)—mP(|X|=m+1)

Then, since mP(|X| > m + 1) > 0, we have that

m m

m
D> nP(A,) < > P(X| = 1) = Y nP(A,) + mP(|X| > m +1).
n=1 n=1 n=1

On the other hand mP(|X| > m+1) < f{|X|2m+1} |X|P, so that if E[X] < +00,
then the term on the right hand side of last equality vanishes as n — 0o. Then
(1.8.3) follows with both series finite. Now, if E[|X|] = +o0o, since (1.8.2)
holds, then

+00

> nB(A,) = +00.

n=1
From here it follows that anzo nP(|X| = n) = + oo diverges with m since

m

D nP(A) < D P(X[ 2 1) < > nP(A,) + mP(1X] > m+ 1),

n=1 n=1 n=1

This ends the proof. O
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Lemma 1.8.9. If X is a non-negative r.v. which takes only integer values, then
E[X]= ) P(X >n).
n>1

Proof. From Corollary 1.8.6 we have that

+00 +00 +00 +00
E[X]zJ P(X >x)= > (1—F(n)= Y P(X>n)= > P(X >n).
0 n=0 n=0 n=1

This result can also be seen as a corollary to the previous Theorem. To do that
note

+00 +00
E[X]=E[X[]<1+ > P(X|>n)= > P(X >n).

n=1 n=0

Now we write the term at the right hand side of last expression as

+00 +00

DD R =)

n=0 j=n

and we use Fubini’s Theorem to get that

+o0 j +00 +00
EX]< ), ) BX=))=) jBX =)= ) jB(X =)).
j=0n=0 j=0 j=1

Repeating these arguments and noting that
+00 +00
D BX =j)= Y BX =n),
j=1 n=1

we obtain from (1.8.2) that

+00 oo
D P(X=n)<E[X]< ) PX>n),

n=1 n=1

from where the result follows. Cl

There is a basic relation between an integral wrt P over sets of & and the

Lebesgue-Stieltjes integral wrt to u over sets of %3.
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Theorem 1.8.10. Let X be a r.v. defined on a probability space (2, & ,P) which
induces the probability space (R, B,u) and let f : R — R be a Borel measurable
function. Then,

J fX(w))P(dw) = J f(0)uldx)
Q R
as long as both sides exist.

Proof. To prove the result we use the classical argument as we used in the con-
struction of the integral. First we prove the result for a function f = 15 with
B € A. In this case we have that

f f()u(dx) = u(B) and J fX(w))P(dw) =P(X €B)
R Q

and the equality holds from the definition of u which was defined as the push-
forward of P. Now, from linearity the equality is going to be true for functions
of the form f = Zj blej where b; € R and B; € 4. In the case where f is
a general positive Borel-measurable function we take a sequence {f,,}en Of
functions of the form f,, = Zj b;” ].Bjm as above, in such a way that f,, T f and
for each f,, we have that

ffm(X(w))P(dw)=Jfm(X)u(dx)
Q R

and from the monotone convergence Theorem we conclude the result for posi-
tive functions. To prove it for general f we use the decomposition f = f*—f~
and the equality follows. O

In higher dimensions the result is the same. We state it for d = 2 as

Theorem 1.8.11. Let (X,Y) be a random vector defined on a probability space
(Q, Z,P) which induces the probability space (R?, 2, v) and let f : R> — R be

a Borel measurable function. Then,

ff(X(w),Y(w))P(dw)=ff f (e, y)v(dx,dy).
Q R2
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We do not show the previous theorem here since it is exactly the same proof
as in the one-dimensional case.
From the previous theorem, for a r.v. X with distribution function Fyx and

distribution measure uy, it holds that
E[X] =J xpx (dx) =f xdFy(x)
R R

and more generally E[f(X)] = fRf(x)uX(dx) = fRf(x)dFX(x).

Remark 1.8.12. An important consequence of the previous theorem is that for
f(x,y)=x+y we obtain that (linearity of the integral)

E[X +Y]=E[X]+E[Y].

To prove the previous equality we note that for f : R? — R defined by f(x,y) =
x + y we have that

]E[X+Y]:J

Q

X+YP(dw) = ff (x+ y)v(dx,dy).
R2

The integral at the right hand side of last equality is equal to

ff xv(dx,dy) + JJ yv(dx,dy).
R2 R2

On the other hand if f (x,y) = x we obtain that

E[X]= f XP(dw) = JJ xv(dx,dy)
Q R2

and the same is true when we take f (x,y) = y from where the result follows.

Definition 1.8.13. Let a € R and r > 0. The absolute moment of a .v. X of order
r about a is defined as E[|X —a|"].

Remark 1.8.14. If uy and Fx are the distribution measure and the distribution
function of X, then

]E[IX—aI’”]=f Ix—al’”u(dX)=f |x —al"dFx(x),
R R



TECNICO
LISBOA

Measurable spaces 53

E[(X—a)']= J (x —a) u(dx) = J (x —a) dFx(x).
R R

When r = 1 and a = 0, the previous moment is E[X ]. The moments about a =

E[X ] are called central moments and the one of order 2 is called the variance:
Var(X) = E[(X —E[X])*] = E[X*] - (E[X])*.

Definition 1.8.15 (The space L? = LP(Q,%,P)). For a positive number p, we
say that X € LP iff E[|X|P] < oo.

Theorem 1.8.16. Let X and Y be random variables and p,q such that1 < p < 00
and % + é =1 (p and q are said to be conjugate). Then

1. (Holder’s Inequality)

[E[XY]| < E[|XY|] < (E[|X[P])"/PE[|Y|9])"/9 (1.8.4)

2. (Minkowski’s inequality)

(E[IX +YIPDYP < (E[X[PDYP + (E[]Y[P])'/P

Remark 1.8.17. When p = 2, (1.8.4) is called the Cauchy-Schwarg’s inequality.

.4

| Do the proof of the previous result.

Theorem 1.8.18 (Jensen’s inequality). If ¢ : R — R is a convex function and X
and ¢(X) are integrable r.v. then

e(E[X]) < E[e(X)].

Proof. To prove the theorem first note that since ¢ is convex then it is contin-
uous. Then, we know that ¢(X) is a r.v. Now convexity means that there exist

{A;}j=1,.. n and {y;}j=1,.. n such that

@(Z%‘J’j) = Z)\jw(Yj)-
=1 =1
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We prove this theorem by using the classical argument that we used in the con-
struction of the integral. First, we prove it for a simple r.v. X, then we approx-
imate a positive r.v. X by a sequence of simple functions and use Monotone’s
convergence theorem and finally we use the equality X =X —X~. To prove it
for a simple r.v. suppose that X is a r.v. taking the values y; with probability A;
withj=1,---,n. Since E[X] = Z;.lzl ¥;A; and since E[p(X)] = Z?zl e(yA;,
then we result follows by convexity of . |

Example 15.
1. p(x)=I|x|;
2. p(x)=x%
3. p(x)=Ix|P,p=1.

Theorem 1.8.19 (Tchebychev’s Basic inequality). Let X be a non-negative r.v.

For any A >0,

E[X]
BX 2 2)< ——.

Proof. To prove the result note that

E[X]zf XdIF’:J XdIF’+J XdP.
Q (x=2} (X<A}

Since X is non-negative we obtain that
IE[X]ZJ XdP > AP(X > A).
{x=1}
c

Theorem 1.8.20 (Tchebychev’s Classic inequality). Let X be a r.v. with finite
variance. For any A > 0,

Var(X)

A2
Proof. To prove the result it is enough to note that |[X —E[X]| = A implies that
|X —E[X]|?> > A? and use the previous Theorem. |

P(IX —E[X]| = A) <
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Theorem 1.8.21 (Markov’s inequality). Let X be a r.v. with E[|X|]* < oo. For
any A >0,

E[IXI])
AL

P(X|>2) <

Proof. To prove the result follow the same argument as in the previous proof.
|

g General Tchebychev’s inequality

Let ¢ : R — R be a strictly positive and increasing function in (0, +00),
such that ¢(u) = ¢(—u) and let X be a r.v. such that E[¢(X)] < +o00.
then, for each u > 0 it holds that

E[p(0)]

P(X|=u) < ()

Theorem 1.8.22. If X and Y are two independent r.v. with finite expectation,
then
E[XY]=E[X]E[Y].

Proof. We prove again this theorem using the classical argument starting by
showing it for discrete r.v. For that purpose, let X,Y be discrete such that

Aj={w : X(w) = b;}
A ={w:Y(w)=ag}.
Then E[X] = Zj bP(A;) and E[Y] = >}, a;P(Ay). Now note that XY is a

discrete r.v. and XY (w) = aib; for w € A; N Ag. Then,

E[XY]= ) ayb;P(A;NA).
ik
Since P(A; N A)=PX=b i»Y = a;) and by independence we obtain that
E[XY]= ab;P(X =b)P(Y =a) = > bP(X =b;)) > a;P(Y =q)
.k j k
=E[X]E[Y].
(1.8.5)
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Now we extend the result to positive r.v. with finite mean. Then, we know
(recall the argument that we used when constructing the integral) that there
exist X,,, and Y,, discrete r.v. such that E[X,,] T E[Y] and E[Y,,] T E[Y]. To see
that they are also independent note that

P(Xy = 3, V= 5 ) = P(mesx<1;},2’fnSY<k2Lml)

k
=P(Xp =2 )P(V = % ).
In the second equality above we used the independence of X and Y. Another
way to show that X,, and Y,, are independent is to see that X, =z > and
Y, = [2 Y] and since they are functions of X and Y, their independence follows.
Finally, we have that 0 < XY —X,,Y,, = X(Y —Y,,) + ¥,,,(X — X,,,) and by the

Monotone Convergence Theorem we conclude that

E[XY]= lim E[X,Y,]= lim_ E[X,]E[Y,]=E[X]E[Y].

m—+0Q
So far the result is true for positive r.v. For the general case we take X =X —X~
and Y =Y*" —Y". Since X and Y are independent we get that X* and Y™ are
independent and also X~ and Y. To conclude note that

EXY]=E[XT—X")YT-Y7)]

and expand the product and use the independence. |

Remark 1.8.23. We note that a short proof of the previous result can be derived
by using Fubini’s Theorem. For that purpose, use that

E[XY]= J XydP= JJ xyv(dx,dy).
Q R2

Since v = Uy X Wy the term at the right hand side of last equality is equal to

ff xyux(dx)uy(dy)=J Xy (dx) J yuy(dy) =E[X]E[Y].
R2 R R

Corollary 1.8.24. If {X;};_; .. , are independent r.v. with finite mean, then

[ [ Tx) = Tetx,
j=1 j=1
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We leave the proof of the previous result to the reader. Now we introduce

the notion of correlation which measure how r.v. can affect each other.

Definition 1.8.25. Let X and Y be r.v. with finite expectation. The covariance
between X and Y is defined as

Cov(X,Y)=E[(X —EX]D(Y —E[Y]].
When Cov(X,Y) =0, we say that X and Y are uncorrelated.

Remark 1.8.26. Be careful: uncorrelation does NOT imply independence.

Example 16. Analyze the case when (X,Y) has density given by

2 2
=5 1_pze—m((%) o) )

and take p = 0.

Proposition 1.8.27. Let X, -+, X, be integrable r.v. such that Cov(X;,X;) =0
fori# j. Then

n
Var(X, +- +X,) = Y Var(x,).
i=1

Proof. First let us suppose that the X;’s have zero mean. Then

Var( ij) —g[( ]ZXJ)Z] :E[ZX;] cE[ S xx)

i#j=1

Since the r.v. have Cov(X;,X;) = 0 for i # j then the term at the right hand side
of last equality is equal to zero so that we conclude the proof. Now for general
X; we take Y; = X; —E[X;] and note that Y;’s are mean zero. So, apply the first
part of the proof to Y; and conclude. ]

Example 17. Let X and Y be r.v. with finite variance: show that if X and Y are

independent, then

Var(XY) = Var(X)Var(Y) + (E[X])?*Var(Y) + (E[Y ])*Var(X).
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1.9 Exercises

1.9.1 Exercises on set theory

Exercise 1:

Show that, if ./ and 98 are two o-algebras, then ./ (| 48 is also a o -algebra.

Exercise 2:
Let Q := {w;, w4, w3} be a sample space.

1. Exhibit all the o-algebras of Q.

2. Compute o({w;}). Check that it is a o-algebra.

Exercise 3:

Recall that, for a topological space S the Borel o-algebra (S) is gener-
ated by the family of open subsets of S. Prove that the Borel o-algebra of R is
generated by m(R) = {(—o0,x] : x € R}.

Exercise 4:

Let X be a random variable defined on a sample space 2. Compute o(X),
that is the o-algebra generated by X, when

1. Q:={wq,ws, w3} and X(w;) =X(w,) =X(w3) =1.

2. Q:={wi,wy,ws} and X(w;) =0, X(w,) =1 and X(w3) =2.

3. Q:={w;,wy, w3} and X(w;) =0, X(w,) =0 and X(w3) = 1.

4. Q = {w,wq, w3, w4} and X(w;) = 0, X(wy) = 0, X(w3) = 1 and

X(wy)=2.

Exercise 5:

Let Q2 be a sample space, % be a o-algebra of subsets of Q.
Assume that u(-) is a set map defined on Q satisfying the following condi-

tions:
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1. VE€ Z, u(E) = 0;

2. If {E;};>; is a countable collection of disjoint sets in &, then

b)) = 2 mE:

,>1 =1
3. u()=1.
Prove that
1. VE€e Z, wW(E)<1;
2. VE€ Z, u(0) =0;
3. VE€Z, u(E) =1—u(E®);
4. VE,F € Z, W(EUF) +u(E(F) = u(E) + u(F);
5. VE,F € & such that E C F, u(E) = u(F) — u(F \ E) < u(F);

6. Let {E;};>; be an increasing (decreasing) sequence of sets in & that is
E; CEj, (Ej 2 Ej4,) for all j > 1. Prove that, if {E;} ;> is an increasing
(decreasing) sequence of sets in & such that E;TE (E . | E), that is
E = U]>1 ] (E m1>1 ]) then 11m]—>+oo ,U,(E ) = ;U'(E)

7. (Boole’s inequality): ,u( Ujs1 Ej) < D is 1 ME)).

Exercise 6:

Let {E;} ;> be random events belonging to &, a o-field of events of a sample
space €.
Let u(-) be a probability measure defined on %. Show that for all n > 1

Lop(Mia By) = 1 X5 mCED;

2. fu(E;)=1—¢, forje{l,---,n}, then,u(ﬂ] 1 ])>1—n8;

3. M(m]>1 ]) 1- Z]>1.U'(EC)
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Exercise 7:

Prove the following properties:
1. If u(E;) = 0 for all j > 1, then p( ;z, E; ) =0

2. If u(E;) =1forall j > 1, then u( ﬂj21E') =1;

Exercise 8:

Take {E;};>; and {F;};>, belonging to the same probability space (2, Z, u).
Suppose that lim;_,; o, u(E;) = 1 and lim;_, , o u(F;) = p, with p € [0, 1].
Show that lim;_, , oo u(E; [ ) F;) = p.

Exercise 9:
Let
limsupE, = m U Ey, (1.9.1)
n n>1k>n
liminfE, = | J () E- (1.9.2)
" n>1k>n

If (1.9.2) and (1.9.1) are equal we write
limE,, =liminfE,, = limsupE,,.
n n n
Let {E,},>1 belong to a probability space (2, Z,u). Show that

1.
,u(liminfEn) <liminfu(E,) < limsup u(E,) < ,u(lirn sup En).
n n n n

2. Iflim,_,, o E, = E, then lim,,_,, o, U(E,) = u(E).
1.9.2 Exercises on Random variables and distribution functions

Exercise 1:

Specify the distribution function and the distribution measure of the random

variable X.
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(a) If X has probability function defined on k € {0,1} and given by
P(X =k) =p*(1—p)'™*.
That is X has Bernoulli distribution of parameter p.
(b) If X has probability function defined in k € {0, --- ,n} and given by
P(X =k)=C/p*(1—p)"*.
That is X has Binomial distribution of parameter n and p.
(¢) If X has probability function defined in k € {0,1,---} and given by

e %ak

k!
a > 0. That is X has Poisson distribution of parameter a.

PX =k)=

(d) If X has probability function defined in k € {0, 1, ---} and given by
P(X =k)=p(1—p)*-.
That is X has Geometric distribution of parameter p.
(e) If X has probability density function given by
£x) = e 1 4 0)(x),
with a > 0. That is X has Exponential distribution with parameter a.
() If X has probability density function given by
£ = =T )
for a, b € R with a < b. That is X has Uniform distribution in [a, b].

(g) If X has probability density function given by

1
f(X)Im,

x € R. That is X has Cauchy distribution.

(h) If X has probability density function given by

_ L —x2/2
fl)= o

x € R. That is X has Gaussian distribution.
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Exercise 2:

Let 0 > 0. Let X be a random variable with probability density function
2

f :R — R given by f(x) = — e 37

oVv2Tm

(a) Prove that f(-) is indeed a probability density function. How does the
graph of f look like when o is very small?

(b) Compute E[X] and E[X?].

Exercise 3:

Let X be a random variable with probability density function given by f (x) =
cle[_l’l](x).

(a) Determine the value of the constant c.

(b) Exhibit the distribution function Fx(+) and find x; such that Fy(x;) =
1/4.

Exercise 4:

Let X be a random variable with distribution function given by Fx(x) =
x31701706) + 11, 007(x).

(a) Find the probability density function of X.

(b) Prove that it is indeed a probability density function.

Exercise 5:

A random variable X is said to be symmetric around y if P(X > u+ x) =
P(X < u—x) for all x € R. If u = 0 we simply say that X is symmetric.
Let X be a random variable symmetric around the point b € R and suppose
that X takes the values a, b and 2b —a, witha <0 and b > 0.
(a) Show that E[X]=b.
(b)  Suppose that E[X] = 1, a = —1, Var(X) = 3 and determine the
distribution function of X and its induced measure uy.

() Compute ux((—00,—1]), ux((—00,3/2]) and ux({1}).

Exercise 6:
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Let X be a symmetric random variable that takes the values a # b # c.
Suppose that P(X =0) = 1/5.

Give the results in terms of a # 0.

(a) Exhibit the distribution function and the distribution measure of X.

(b) Compute E[X] and Var(X).

Exercise 7:

Let X be a random variable with probability density function fx(-) and for
b>0andceRletY =bX +c.

(a) Prove that the probability density function of Y is given by fy(y) =
1 y—C
5 (5)-

(b) Let X be a random variable with Cauchy distribution.

Compute the probability density function of Y = bX + M, where b > 0 and
M eR.

(¢) LetX be arandom variable with standard Normal distribution.
Compute the probability density function of Y = 0X + u, where o > 0 and
ueR.

(d) LetX be arandom variable with Gamma distribution with parameter
aand 1.

Compute the probability density function of Y = %(

What is the distribution of Y when a =1?

Exercise 8:

Let X be a random variable with density function given by f(x) = (1 +
X) 210 4+00)(%)

Let Y = max(X, c), where c is a positive constant ¢ > 0.

(a) Show that f(-) is a probability density function.

(b) Exhibit the distribution function of X and Y. Justify that Fy is in fact
a distribution function.

(c) Decompose Fy(-) in its discrete, absolutely continuous and singular

parts.
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(d) Compute E[X]and E[Y].

Exercise 9:

Let X be a random variable uniformly distributed on the interval [0, 1].
Let Y be the random variable defined as Y = min(1/2,X).

(a) Determine the distribution function of X and Y and represent their
graph.

(b) Decompose Fy(:) in its discrete, absolutely continuous and singular
parts.

(c) Compute E[X] and E[Y].

Exercise 10:

Let X be a random variable with exponential distribution with parameter
A > 0. Let Y = max(X, A).

(a) Determine the distribution function of X and Y and represent their
graph.
(b) Decompose Fy(:) in its discrete, absolutely continuous and singular

parts.

Exercise 11:

Let X be a random variable uniformly distributed on [0, 2].
Let Y be the random variable defined by Y = min(1,X).

(@) Determine the distribution functions of X and Y and represent their
graph.

(b) Decompose Fy(+) in its discrete, absolutely continuous and singular
parts.

Exercise 12:

Let X be a random variable with Cantor distribution:

(a) Describe the construction of its distribution function Fx(-).

(b)  Justify that X is a singular random variable.
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3] -
71 -
1] 3
2]
B
4
121 238
9 3 388

(c) Compute ]P’(X = %) Justify.

(d) Compute IF’(% <X < %), P(X < %) and ]P’(é <X < g),

(e) Compute E[X]. Justify.

Exercise 13: Let U be a random variable uniformly distributed in [0, 1].

(a) Find a function f : [0,1] — R such that f(U) is a random variable
uniform in [0, 2].

(b) Find a function f : [0,1] — R such that f(U) is a random variable with
Bernoulli distribution of parameter p, where p € (0, 1).

(c) Find a function f :[0,1] — R such that f(U) is a random variable with
exponential distribution of parameter A > 0.

(d) Let 0 < p < g < 1. Construct a random vector (X,Y) such that X
has distribution Bernoulli with parameter p, Y has distribution Bernoulli with

parameter g and X <Y almost surely.

(e) Let 0 < A; < A,. Construct a random vector (X,Y) such that X has
exponential distribution with parameter A, Y has exponential distribution with

parameter A, and X > Y almost surely.

1.9.3 Exercises on Random vectores and Stochastic Independence.

Exercise 1:
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Select a point uniformly in the unitary circle ¢ = {(x,y) : x> + y? < 1}.
Let X and Y be the coordinates of the selected point.

(a) Determine the joint density of X and Y.

(b) Determine P(X <Y),P(X >Y)and P(X =Y).

(c) What is probability of finding the point in the first quadrant? Justify.
Exercise 2:

Suppose that X and Y are random variables identically distributed with sym-

metric distribution around zero and with joint distribution given by

X\Y -1 0

-1 .. 0

0 0 .. 0
6 0 6

(a) IfP(X =-—1)=2/5, complete the table.
(b) Compute E[X], E[Y] and Var(X).
(c) Are the random variables X and Y independent? Justify.

(d) Find the probability functions of the random variables X +Y and XY'.

Justify if X +Y and XY are symmetric random variables around zero.

(e) Represent the graph of the distribution function of the random vari-
able X +7Y.

() Explicit the measure uy,y.
(g Compute py,y({0}) and py 4y ((—00,0]).
Exercise 3:

Suppose that X and Y are random variables with joint distribution given by:

X\Yy 1 2 3
1 0 1/5 0
2 1/5 1/5 1/5
3 0 1/5 0



TECNICO
LISBOA

Measurable spaces 67

(@) Compute the marginal probability functions of X and Y.

(b) Compute E[X], E[Y] and Var(X).

(c) Are the random variables X and Y independent? Justify.

(d) IfZand W areindependent random variables, then E[ZW ] = E[Z]JE[W].
Is the opposite true? Prove or exhibit a counter example.

(e) Find the distribution function of X and represent its graph.

(f)  Exhibit the distribution measure uy of X.

(g) Compute the distribution function of X + Y.

(h) Compute the distribution function of X —Y.

Exercise 4:

Suppose that X and Y are random variables with joint distribution given by:

X\Y 1 0 -1
1 0 a O
0 b ¢ b
-1 0 a O

where a, b,c > 0.

@

(b)
(©)
(d
(e)

®

Compute the marginal probability functions of X and Y.

Justify that 2a +2b+c=1.

Compute E[X ], E[Y] and Var(X).

Verify that the random variable XY is such that XY = 0 almost surely.
Are the random variables X and Y independent? Justify.

If Z and W are independent random variables, then E[ZW ] = E[Z JE[W ].

Is the opposite true? Prove or exhibit a counter example.
Take ¢ = 1/4 and a, b such that a = 2b.
(f1) Find the distribution function of X and represent its graph.

(fy) Exhibit the distribution measure uy of X.
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Exercise 5:

Let X be a random variable such that X ~ %[0, 1]. Compute the distribution
of Y = —log(X).

Exercise 6:

Let X and Y be i.i.d. random variables with X ~ %[0,1]. Compute the
distribution of Z = X/Y.

Exercise 7:

Let X and Y have joint density given by f (x, y). Show that

fxey(@) = J flu—t,t)dt.
R

Moreover, if X and Y are independent with densities fx and fy, respectively,
then

fxry(W) = f fx(O)fy(u—t)dt.
R

Exercise 8:
Let X be a r.v. with density f(x) = %e"x /2 for x € R. Compute the distri-
bution of Y = |X]|.
Exercise 9:
Show that the function
1—e Of) x>0 and y>0
F(x,y)=

0, otherwise

is not the distribution function of a random vector.

Exercise 10:

Show that the function

(1—e™)(1—e”), x=0 and y =0

0, otherwise

F(x,y)={
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is the distribution function of a random vector.

Exercise 11:

Let X and Y be i.i.d. random variables with uniform distribution on [0 —
1/2,6 +1/2], with 8 € R. Compute the distribution of X — Y.

Exercise 12:

Let X1,X,,...,X, beii.d. random variables with Rayleigh distribution with
parameter 0, that is, the density of X is given by

X2

X ——
flx)= @ e 292, x>0
0, otherwise

(a) Compute the joint density of Y7,...,Y,, where foreachi=1,...,n it
holds that ¥; =X 12

(b) Compute the distribution of U = min;<;<, X;.

(c) Compute the distribution of Z = X, /X,.

Exercise 13:
Let X1,X,,...,X, be independent random variables with exponential distri-
bution with parameter a4,..., a,, respectively.
(a) Compute the distribution of Y = min;«;<,X; and Z = max;<;<, X;.
(b) Show that for each p =1,...,n it holds that
. %p
P(X, = min X;)= —————.
1<i<n a;+---+a,

(Hint: Consider the event {X}, < min;,, X;}).

Exercise 14:

Let X1,Xs,...,X, be independent random variables with distribution func-
tions Fy, F,,- -, F, respectively. Find the distribution functions of the random

variables min; .;<, X; and max; ;< X;.
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Exercise 15:

Let X and Y be independent random variables each assuming the values 1
and —1 with probability 1/2. Show that {X,Y,XY} are pairwise independent
but not totally independent.

1.9.4 Exercises on Mathematical Expectation

Exercise 1:

In each case, compute E(X) and Var(X), if they exist:

(a) If X has probability function defined on k € {0, 1} and given by P(X =
k)=p*(1-p)'".

That is X has Bernoulli distribution of parameter p.

(b) If X has probability function defined in k € {0,---,n} and given by
P(X = k)= C/p*(1—p)"*.
That is X has Binomial distribution of parameter n and p.

(c) If X has probability function defined in k € {0,1,---} and given by
PX =k)= & a>0.

That is X has Poisson distribution of parameter a.

(d) If X has probability function defined in k € {0,1,---} and given by
P(X = k) =p(1—p)*.

That is X has Geometric distribution of parameter p.

(e) IfX hasprobability density function given by f (x) = ae™* 1} 4c0)(X),
with a > 0.
That is X has Exponential distribution with parameter a.

(f) If X has probability density function given by f(x) = ﬁl[a’b](x) for
a,b € Rwith a < b.
That is X has Uniform distribution in [a, b].

(g) If X has probability density function given by f(x) = m, x €R.
That is X has Cauchy distribution.
(h) If X has probability density function given by f(x) = ‘/%e_xz/ 2 xe
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R.
That is X has Normal distribution.

Exercise 2:

Prove that:

(a) For any random variable X with distribution function Fy, it holds that

+00 0
E[X] =f 1—FX(x)dx—f Fx(x)dx
0

—00
(b) and for any k € N
+00 0
E[x*]= kf (1 —Fy(x))x*1dx — kJ Fy(x)x*dx.
0

—0Q0

(c) IfX is non-negative, then

+00
E[X] =J 1—Fyx(x)dx.
0

(d) If X is discrete and takes non-negative integer values, then
+oo
E[X]= ) P(X >n).
n=1

(e) If X has Exponential distribution with parameter A > 0, then E[X*] =
k!/A%, for any k € N.

() Let X and Y be random variables, such that Y is stochastically dom-
inated by X, that is for all x € R it holds that Fyx(x) < Fy(x). Show that
E[X] = E[Y], if both expectations exist.

Exercise 3:
Show that:

(a) if X is a constant random variable, then Var(X) = 0.

(b) ifaeRthen Var(X +a)=Var(X).
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() ifa,beR then Var(aX + b) = a?*Var(X).
Exercise 4:

Prove:

(a) Basic Tchebychev’s inequality:

If X is a non-negative random variable (that is X > 0), then for all A > 0:

PX>A)< %E(X).

(b) Classical Tchebychev’s inequality:
If X is an integrable random variable, then for all A > 0:

P(IX—EX)|= A) < %Var(X).

(b) Markov’s inequality:
If X is a random variable, then for all t > 0 and A > 0O:

P(X|=A) < %E(IXF)-

Exercise 5:

(a) Let X be a non-negative random variable, that is X > 0, such that
E(X)=0.
Show that P(X = 0) =1, that is, X = 0 almost surely.

(b) Let X be a random variable independent of itself.
Show that X is constant with probability 1 (that is, there exists a constant ¢
such that P(X =c¢) =1).

Exercise 6:

Let X4, -, X, be integrable random variables, such that for i # j,
COV(Xi,Xj) = E[XIX]] _E[Xl]E[XJ] =0.

Show that
Var(X; +---+X,)=Var(Xy)+---+ Var(X,).
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Exercise 7:

Let X4,---,X, be independent random variables with distribution function
Fx,,---,Fx , respectively.
(a) Find the distribution function of max; <<, X; and min;cj<, X;.

(b) Suppose that the random variables are identically distributed with fi-

nite mean. Show that

lim 1E[ max |X]~|] =0.

n—+o0o n 1<j<n

Exercise 8:

Let X and Y be random variables defined on a probability space (92, Z, P),
both with finite expectation. Show that

() E[X+Y]=E[X]+E[Y]
(b) if X and Y are independent, then E[XY ] = E[X]E[Y].
Exercise 9:

Let (X,Y) be a random vector with density function given by

Y — U2

o= ke (S a5 2)(522) o

2n0,0,4/1—p 2(1=p2)tt oy 01 op)

(a) Find the marginal distributions of X and Y.

(b) Assume that X and Y are independent. Compute the distribution of
X+Y.

(c) Show that X and Y are independent if and only if p = 0.

Exercise 10:

Let X and Y be random variables taking only the values O and 1. Show that,
if ELXY]=E[X]E[Y] then X and Y are independent.

Exercise 11:

%)

V1



TECNICO
LISBOA

74 Exercises

LetX and Y be random variables with finite variance. Show that, if Var(X) #
Var(Y) then X +Y and X —Y are not independent.

Exercise 12:

Let X and Y be i.i.d. random variables with Uniform distribution in [0, 1].
Compute the expectation of min(X,Y) and max(X,Y).

Exercise 13:

Prove Wald’s equation, that is, show that E[S,] = E[N,]E[X; ], where S(t) is
a compound stochastic process, or else, S(t) := Z?’;l X;, where N, is a counting
process (i.e. N, takes values in N) and {X;};>; is a sequence of i.i.d. random

variables and independent of N, for all t.

Exercise 14:

Let X be a random variable and Fx(-) its distribution function. Prove that,

for any a > 0, we have

f (FX(x +a) —FX(x))dx =a.
R

Exercise 15:
Show that if Cov(X,Y) = +/Var(X)+/Var(Y), then there exist constants a
and b such that

P(Y=aX+b)=1.
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Convergence of sequences of r.v.

2.1 Convergence a.e., L’ and in probability

Recall that we have seen that if {X,,},,~; is a sequence of r.v. then lim,_,, o X,
is a r.v. The notion of convergence we use is of convergence to a finite limit:
if we say {X,},en converges in A € Z, this means that for all w € A we have
that the sequence {X,(w)},cy converges. When A = Q2 we say the convergence

holds everywhere.

Definition 2.1.1 (Almost everywhere convergence). The sequence {X,} ey IS

said to converge almost everywhere to X iff there exists a null set N such that
YweQ\N: lirgoXn(co) =X(w) finite.
n—

Theorem 2.1.2. A sequence of rv. {X,,},en converges a.e. to X iff for every € > 0
we have that
lim P(|X,,—X|<e foral n=m)=1
m—0Q

or equivalently
lingoIP’(IXn —X|>e€ forsome n>m)=0 2.1.1)
m—

Proof. Let us suppose that there is convergence a.e. and let , = 2\ N where
N is the set where the convergence does not hold. For ¢ > 0 and m > 1, let
A, (€) be the set inside the first probability above:

Ap(e)=Ur{|X, —X| <&} (2.1.2)

75
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Then, A,,(¢) C Apy1(€), so that A, (e) 7. Fix wqy € £ and note that the con-
vergence of X(wg) to X(w,) implies that given ¢ > 0, there exists an order
m(wy, €) such that for any n > m(wy, €) it holds that |X,(wy) — X (wg)| < e.
Then, w, belongs to some A,,(¢). Since this property holds for any w, we have
that

Qo CUTT AL (e).

By the monotone property of the measure P it holds that
lim P(An(e)) 2 B(Q) = 1.
Since P is a probability measure it follows that
lim P4, () =1.
This proves the first result. Reciprocally, suppose that
1= lim P(A,(e)) = P(U} S An(€)) = B(A(e)).

For ¢ > 0 and w, € A(¢) we have that there exists an order m such that for all
n > m it holds that |X,,(wo) —X (wo)| < &. Let e =1/n and let A= N*7A(1/n)
and note that P(A) = P(N7°7A(1/n)) = 1 for all n > 1. If wy € A then the
property: there exists an order m such that for all n > m it holds that |X,,(wy)—
X(wp)| < € holds for any ¢ = 1/n. Now we prove that in fact it holds for
any ¢ > 0. Fix ¢ > 0 not necessarily of the form 1/n. Then take n such that
1/n < ¢. Then since there exists an order m such that for all n > m it holds that
1X,(wo) —X(wo)| < 1 < . Since the property holds for any ¢ > 0 and for all

wq € Awith P(A) = 1, it follows the a.e. convergence. |

Definition 2.1.3 (Convergence in probability). The sequence {X,} ey is said to
converge in probability to X, iff for every € > 0 it holds that

lim P(JX, —X|>¢€)=0.
n—oo

Theorem 2.1.4 (Convergence a.e. implies convergence in probability). Con-

vergence a.e. to X implies convergence in probability to X.
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Proof. Note that (2.1.1) implies the previous limit. To see that note that (2.1.1)
means that for all e > 0

lim_P(X, —X| > ) =0.

But
lirrolo P(X,—X|>€) <P(U >, X, —X|>¢e)=0
n— -
so that the proof ends. o

Definition 2.1.5 (Convergence in P, 0 < p < 00). The sequence {X,} ey IS
said to converge in P to X, iff X,, € LP, X € L and

lim E[|X,—X|P]=0. (2.1.3)
n—oo

Definition 2.1.6. We say that X is dominated by Y if |X| <Y a.e. and that the
sequence is dominated by Y, if this is true for any n with the same Y. Moreover, if

above Y is constant we say that X or X, is uniformly bounded.
Above we can suppose X = 0 since the definitions hold for X, —X.

Theorem 2.1.7 (Convergence in IL” implies convergence in probability). Con-
vergence in ILP implies convergence in probability. The converse is true if the se-
quence is dominated by some Y € LLP.

Note that in the two previous sentences we can take X = 0 since X,, = X in
LP is such that {X,},>; is dominated by Y, then {X, —X},>; is dominated by
IX,|+|X| <Y +|X| €LP.

Proof. To prove the first affirmation we use the general Tchebychev’s inequality
with ¢ (u) = |u|P. Then,

P(X|=¢) <

_)n—>+oo 0.

E[IX[P]
ep
Now, suppose that |X,| <Y a.e. and that E[Y?] < +00. Then,
]E[Ianp]=f IandeP’+f X, PP

{IX,1<¢} {IXn|>¢€}

2.1.4)
<eP+ J YPdP.
{IX,|>¢}
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Now, since P(|X,| > ¢) — 0 as n — +00 and since Y? is integrable, we have,

from a result from measure theory that the term at the right hand side of last

expression vanishes as n — +00. Then we take ¢ — 0 and the result follows.
[

Remark 2.1.8.

e Convergence in probability does not imply convergence in P and conver-

gence in LP does not imply convergence a.e.
e Convergence a.e. does not imply convergence in LP.

Theorem 2.1.9 (Scheffé’s Theorem). Let {X,},ey be a sequence of rv. with
densities fi, fo,++ and let X be a rv. with density f. If lim, f, = f, holds a.e.

then lim,,_, oo [5 |f — fldx =0.

| Exercise: do the proof of the previous theorem.

Definition 2.1.10 (limsup,, and liminf,). Let {E,},cn be a sequence of subsets
of Q. The limsup,, E,, and the liminf, E, are defined by

lim s%p E,=n> ux E, and lim iEfEn =u> . N2 E, (2.1.5)
Remark 2.1.11.

e Note that a point belongs to limsup, E, iff it belongs to infinitely many
terms of the sequence {E, },en and belongs to liminf, E, iff it belongs to all
the terms of the sequence from a certain point on. To see this note that a
point belongs to an infinite number of sets E,, iff that point does not belong
to all the E from a certain order on. Then, the second affirmation is a
consequence of the first. Let w be a point that belongs to infinitely many

E,, then w belongs to F,, = U°®

2o Ey for all m = 1 and so w belongs to

N} F,, = limsup, E,. Reciprocally, let w € limsup, E, i.e. suppose that

oo

+
went

F,. Then w € F,, for all m = 1. If w belongs only to a finite
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number of E,’s then there would exist an m > 1 such that w ¢ E,, forn > m
and we would have that w ¢ U'°° E, = F,, which is absurd. Therefore, w

belongs to infinitely many E,’s.
e Also note that (limsup, E; )° = liminf, E,.
e The event limsup,, E,, occurs iff the events E, occur i.o.

e Ifeach E, € &, then P(limsup, E,) = lim,,_,oc P(U;2 E,). To prove this
result note that if F,, = Ut °> E, then F,, |. Therefore,

P(Ny 2y F) = lim P(Fy,).
As an exercise show that P(liminf, E,) = lim,,, oo P(N>2 E,).

Lemma 2.1.12 (Borel-Cantelli - the convergent part). For {E,},cy arbitrary
events, ifzsil P(E,) < oo, then P(E,, i.0.) = 0.

Proof. Let F,, = U'® E,. From Boole’s inequality we have that

+00
P(F,) < Z B(E,).

Now note that the hypothesis of the theorem implies that lim,,,_, , o, P(F,,,) = O,
since the series .-, P(E,) is converging. Then

0< IP(lunnsup E) < ml_l)IPOO P(F,,) =0,
from where the result follows. m]

We can rephrase Theorem 2.1.2:

Theorem 2.1.13. A sequence of rv. {X,},>1 converges a.e. to 0 iff Ye > 0 we
have that
P({|X,| > €} i.0.)=0.

Proof. Let us denote A,, = UT2 {|X, | < €}. Then

{1X,] > €} i.0.} =N UF {|X,| > £} = NFOAC
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From Theorem 2.1.2 we know that X, —,_, .o, O iff for all £ > 0 we have
that P(AS ) =100 0. Since AS |, since AS = U {|X, | > ¢} and last limit is
equivalent to (2.1.1). cl

Theorem 2.1.14. If {X,},>1 converges in probability to X, then there exists a
sequence {n;} of integers growing to oo such that X,, — X a.e. This means that

convergence in probability implies converges a.e. along a subsequence.

Proof. Let us take X = 0. Then, as a particular case of the convergence in
probability, it follows that for all k € N we have that

lim P(X,]>1/25)=o0.
n—+090

Then for all k € N there exists n; such that lim,,_, , oo P(|X}, | > zik) < 2ik So we

have that
Z]P’(|Xnk| > lk) < Z lk < 4o00.
keN 2 keN2

Now, having n; fixed, let 7, := {|Xnk| > zik} and from the Borel-Cantelli’s

Lemma (converging part) we have that IP’({ X, | > Zlk }i.o.) = 0 and this implies
the a.e. convergence of X,, to 0 as k — +00. To see this we do it as we have

already done before, we fix £ > 0 and we choose k such that zik <e. i

If we add independence to the Borel-Cantelli’s Lemma, then we have

Lemma 2.1.15 (Borel-Cantelli - the divergent part). For independent events
{Ep}nen if 2ore i P(E,) = +00, then P(E, i.0.) = 1.

Proof. Note that
IP(limn infES) =P(N} S0 EC).

n=m-n

Moreover, since the events {E, },cy are independent, then the events {E },cy

are also independent. Therefore, if m’ > m, then

]P( i E;) - ﬁ P(ES) = ﬁ(1 —P(E,)).
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Now, we use the fact, that for all x > 0 it holds that 1 —x < e™™. As a conse-

quence last probability is bounded from above by

m/

l_[ e_P(En) — e_ZT:m ]P(En)

n=m

and taking the limit m” — + 0o we have that e~ Zon=m P(En) 0, since the series
Z:Zl P(E,) is diverging. Now, from the monotonicity property of P we have
that

P(M2 E )= lim P(n™ EZ)=0.

m’—+o00 n=m-n

Then P(liminf, E;) =0 <= P(limsup, E,) = 1. |

Remark 2.1.16. Removing the independence assumption, the result is false. To
see that, take E, = A for all n = 1 with 0 < P(A) < 1. Then an1 P(A,) =
Zn21 P(A) = +00. But the event {A,i.0.} =Aand P(A) < 1.

We observe that the previous result also holds with pairwise independence.

Lemma 2.1.17. For events {E, },cn Which are pairwise independent, if Z:Zl P(E,) =
+00, then P(E, i.0.) = 1.

Proof. Let I, = 1 and in that case the pairwise independence hypothesis can
be written as
E[II,] = E[I,]E[1,]

for m # n. Consider the series Zn21 I,,(w). This series diverges iff an infinite
number of terms is equal to 1, that it if «w belongs to an infinite number of E,’s.

Then, the conclusion of the theorem can be written as

P(> I, =+00)=1.

n>1

The other hypothesis can be written as 2,21 E[I,,] = +0o0. Consider the partial
sum J;, = S

n—1 In- From Tchebychev’s inequality we have that

o(J) 1

P(We—ELI > A0U0) < s =



TECNICO
LISBOA

82 Different types of convergence

From here it follows that
1
P(|J; —EL ]l <A0() 2 1 -

Above o2(J;) denotes the variance of Ji. Now, let p,, = E[I,] = P(E,). Then

E[J2] [Zk:l]+2E[ > I,

n=1 1<m<n<k
k
ZE[12]+2 > ElL,JEL,]
; st ) (2.1.6)
=S(B0) +2 D] Bl L]+ D (EL2] - (ELLL]P)
n=1 1<m<n<k k=1
k
= (an)z + Z(pn

n=1

Therefore, 02(J;) = Zn L 0%(I,). Since
k
> b= ZP(EH) = ZE[ln] =E[Ji] 2 korto0 T09,
n=1 n=1 n=1

k k 1/2
then 02(Ji) = X, (py—p2) < Sn_y prs sothat o(Jy) < (ELJ]) = o(ELJ ).
Now, if k > ko(A) we have that ]E[(;(]k)l Then
kl=2z

1— 1% <P(I —El] <A0() < B(Jy = —Ac(J) +E[)])  (2.1.7)

and this implies that

1 E[J;]
1—1@5@(@2 S ). (2.1.8)

Now, observe that J; increases with K. Since the inequality above holds for
k > Ky(A), then we can replace J; by lim, J; and then we get that

1
P lim J, = =>1——. 2.1.
(k—g—noo k +Oo)_ A2 (2.1.9)
Since the constant A is arbitrary, we can take the limit as A — 0 to conclude that
]P( lim J=+00)=1. (2.1.10)

k—+00

This concludes the proof. |
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Putting together the previous results we have the following statement:

Corollary 2.1.18 (Zero-One law). For independent events {E, },cn, then

P(E,i.0.)=0 or 1

iP(En) < oo or i]P’(En) = 0.
n=1

n=1
2.2 Weak convergence

If a sequence of r.v. {X,},>; converges to some limit, does the sequence of
probability distribution measures {u,, },cx converges in some sense? Is is true
that lim,, u,,(A) exists for any A € 8? The answer to the questions above is no.
Let us see an example. For each n € N, take X,, = c,,, where ¢, is a constant
such that lim,_,, ¢, = 0. Then X,,_,, X, = 0 deterministically. Let u, be
the measure induced by X,, and let u be the measure induced by the limit r.v.
which is equal to 0. Let I be an interval of R such that 0 ¢ I where I is the
closure of the set I. Then lim,_,, s t,(I) = 0 = u(I). On the other hand if
I is an interval such that 0 € I°, where I° is the interior of the set I, then
lim,,_, 00 U,(I) = 1 = u(I). From this we see that if ¢, oscillates between
strictly positive and negative numbers and if I = (a,0) or I = (0, b), then u,(I)
oscillates between 0 and 1 and u(I) = 0. Nevertheless, if | = (a,0] or I =[O0, b),
then u,(I) oscillates between 0 and 1 but u(I) = 1. Note that u = 5.

Another tricky example is to take X,, with uniform distribution in (c,,c/)
with ¢, < 0 < ¢/ and both sequences {c,},cy and {c},cy converge to O as
n — +00. Analyse this case.

Now the relevant question is : and if {u,},cy converges in some sense,
is the limit necessarily a probability measure? The answer is again no. Take
X, = ¢, but now with ¢, — +00 and note that X,, —» +o00 and if I = (a, b),
then lim,_,, o, 4,(I) = 0 for any a, b € R. So, if there is a limiting measure it
gives weight O to any finite interval so that the limit should be equal to zero.

Definition 2.2.1. A probability measure u in (R, ) with uw(R) < 1 is a called a

subprobability measure.
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Definition 2.2.2 (Weak convergence). A sequence of subprobability measures
{Untnen in (R, B) is said to converge weakly to a subprobability measure u iff
there exists a dense subset D of R such that Ya,b € D,a < b,

lim u,((a,b]) = u((a, b]).
n—,oo
We will use the notation u, —" u and u is said to be the weak limit of {4, }nen-

Definition 2.2.3. An interval (a, b) is said to be a continuity interval of u is a, b
are not atoms of u (in other words this means that u((a, b)) = u([a, b])).

Lemma 2.2.4. Let {u,},eny and u be subprobability measures. The following
propositions are equivalent:

1. For every finite interval (a,b) and € > 0, there exists an ny(a, b, €) such
that if n > ny, then

w((la+e,b—e))—e <uy((a,b)) <u((a—e,b+e€))+e. (2.2.1)

2. for every continuity interval (a, b] of u we have that
lim w,((a,b]) = p((a, b]).
n—.oo

3. tp = e

Proof. Let us first prove that 1. implies 2. Let (a, b) be an interval of continuity
of u. From the monotonicity of u is follows that

1irr(1),u(a +e,b—¢)=ul(a,b) <mul[a,b] = 1irr(1),u(a —g,b+e¢).
£— £

Taking the limit as n — +o0 and then the limit when € — 0in (2.2.1) we obtain
that

u((a, b)) < liminfu,((a, b)) < limsup un(la, b]) < p(la, b]) = u((a, b)).

n—+oo

Now we want to prove that Let us first prove that 2. implies 3. This means
that we want to prove that there exists D a dense subset of R such that for any
a < b € D it holds that u,((a, b]);—+cot((a, b]). Since the set which contains
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the atoms of u is at most numerable, then its complementary, let us call it D is
dense. Therefore, if a < b € D, then (a, b) is a continuity interval for y and
from 2. it holds that

1im_2,((a, b]) = p((a, b]). (2.2.2)

Now we prove that 3. implies 1. Given (a,b) and ¢ > 0, there exist
aq,as, bl’ b2 €D Satisfying

a—e<aqy<a<ay<a+e and b—e<b;<b<by<b+e.

Now, note that from the notion of weak convergence we have that there exists
ny € N such that foranyn > ng and fori =1,2 and j =1, 2

lun((a;, b;1) —u((a;, b DI < e.
Therefore,

u((la+e,b—e))—e < u((az, by])—e < py((az, br]) (2.2.3)
< pn((@, b)) < pn(a, by]) < p((ag, by +e <p((a—e,b+e))+e.

And this proves 1. |
An immediate consequence of the theorem is that the weak limit is unique.

Let us check it. Suppose that besides (2.2.2) we also have for a < b € D’ where
D’ is a dense subset of R that

lim_pn((a, b]) = f(a, b))

What we want is to show that u = fi. Let .« be the set of the common atoms of
u and [i. Then, from item 2. of the previous theorem we know that

w((a, b)) = lim u,((a,b])= fi((a, b]).

So that u((a, b]) = @((a, b]) for all a,b € .&°. Since ./¢ is a dense subset of
R, then we know that the measure coincide in all the intervals whose extreme
points are in a dense subset of R and from a Theorem that we have seen in the

beginning of the course, we conclude that the two measures u and {i are equal.
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Recall that given any sequence of real numbers in a subset of [0, 1], there is a
subsequence which converges and the limit is an element of that set. This means
that [0, 1] is sequentially compact. Now we prove that the set of subprobability
measures is sequentially compact with respect to the weak convergence.

Theorem 2.2.5 (Helly’s extraction theorem). Given any sequence of subprobabil-
ity measures, there exists a subsequence that converges weakly to a subprobability

measure.

Proof. Let x € R and define the subdistribution function as F(x) = u((—oo, x]).
The function F has the same properties as the distribution function that we
defined for distribution functions, that is, F is increasing, continuous from the
right, lim,_,_., F(x) = 0 but lim, _, o, F(x) < 1. let D be a countable dense
subset of R and let {r;};~; be an enumeration of D. Note that the sequence of
real numbers {F,(r;)},>1 is bounded and by the Bolzano-Weierstrass theorem
we know that there exists a subsequence {F;;};>; of that sequence such that
the limit limy_, oo F1x(r1) = ¢, exists and let us denote it by £;. Clearly 0 <
¢, < 1. Now we repeat the procedure. Note that the sequence of real numbers
{F1x(r9)}x>1 is bounded, so that there exists a subsequence {Fo; }r>1 of {F1j }i>1
such that limy_,, oo For(ry) = ¢, and again 0 < £, < 1. Since {Fyi}r>1 is a
subsequence of {Fj;};>1, then it also holds that lim;_,, o For(r;) = £;. Now
we repeat the argument and at the m-th step we have a sequence {F,,; };>; such
that limy_, | oo Frui(r;) = ¢; foralli =1,--- ,m. Now we consider the sequence
{Fii}x>1 which converges in every point r,, for m > 1. For that purpose, note
that for r,, fixed, ignoring the first m — 1 terms, the sequence {Fj;};>1 is a
subsequence of {F,,;}x>1 which converges in r,, to {,,, so that {Fi;}r>1 also
converges in r,, to £,,,. Up to now we have proved the existence of a subsequence
{ni}x>1 and of a function G defined on D, which is increasing and such that

VreD, lim F, (r)=G(r).
k—+o00

Now we need to extend the function to R. For that purpose, let F : R — R be
defined on x € R by F(x) = inf, ..<p G(r). From Lemma 1.5.14, we know that F
is increasing and right continuous everywhere. Let % be the points of continuity
of F. Then ¥ is dense and now we have to prove that for all x € ¢ it holds that
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limy_, ; o Fy, (x) = F(x). We leave this as an exercise for the reader. To this
function F corresponds a unique subprobability u through the correspondence
F(x) = u((—o0,x]). The proof of this result is quite similar to the one of
Theorem 1.3.6 and is left to the reader. Now we see that for alla < b € €,
it holds that limy_, oo 4y, ((a, b]) = limy_, ;oo Fp, (D) — Fy (@) = F(b) — F(a) =
u((a, b]). This means that u, —" u. |

Definition 2.2.6. Given F,, and F subdistribution functions, we say that F, con-
verges weakly to F and we write F, =" F if u, —" u, where u, and u are the

subprobability measures of F,, and F, respectively.

Theorem 2.2.7. If every weakly converging subsequence of a sequence {u,,}n,en Of
subprobability measures converges to the same u, then u, =" u.

Proof. Letus suppose that u,, does not converge weakly to u. Then, from item 2.
of Lemma 2.2.4, there exists a continuity interval (a, b) of u such that u((a, b))
does not converge to u((a, b)). Then, by the Bolzano-Weierstrass theorem, there
exists a subsequence n; going to +00 such that u, ((a, b)) converges to a limit,
that we denote by L and we know that L # u((a, b)). From Helly’s extraction
theorem, we can extract from {u,, }i>; a subsequence {,un;c}klzl such that it
converges weakly to u, by the hypothesis of the theorem. Then, from item 2.
of Lemma 2.2.4, we have that “n;((a’ b)) =1 o400 W((a, b)) for any continuity
interval (a, b) of u. But ,unz((a, b)) =1/—+00 L # u((a, b)) and this is an absurd.

|

Now we want to give another characterization of weak converge by inte-
gration the measures with certain spaces of test functions. For that purpose we
need to introduce some notation. Let us define the following subsets of the set
of continuous functions from R to R.

Let

1. Ci be the space of functions f : R — R which are continuous and with
compact support.

2. Gy be the space of functions f : R — R which are continuous and go to

zero at infinity: lim, |0 f(x) = 0.
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3. Cp be the space of functions f : R — R which are continuous and bounded.
4. C be the space of functions f : R — R which are continuous.
Note that we have the following inclusion:
C.cCycCgcCcC.
We recall now a lemma from real analysis which will be useful for our purposes.

Lemma 2.2.8. Suppose that f € Cy has support in the interval [a, b] (recall that
the compact subsets of R are closed intervals). Given a dense subset ./ of R and
€ > 0, there exists a simple function f, defined in (a, b) such that sup, g |f (x) —
fe(x)| < e. If we take f € C, then the same results is true if (a, b) is replaced by
R.

We have the following criterion for the weak convergence.

Theorem 2.2.9. Let u, and u be subprobability measures. Then u,, —" u iff for
all f € Cy (or Cy) we have that

f FOun(dx) =400 J F()uldx). (2.2.4)
R R

Proof. Suppose that u,, —" u. By definition we know that u,((a,b]) =,-+00
w((a, b]) for a,b € D, where D is a dense subset of R. This means that (2.2.4)
holds for f = 1(, ;7. By linearity of the integral, it also holds for simple functions
that take values in D. Now let f € Cj and let ¢ > 0. By Lemma 2.2.8 there exists
a simple function f, which takes values in D and such that

sup |f (x) — fo(x)| < .

x€R

Then

F M) = | FEIE0)| < | [ ¢ = £I00undx)
. Jreowan]<|| |
+] f (g (dx) f £.(0u(dx)|

+] f (F = £)Cud)|
(2.2.5)
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Now note that from Lemma 2.2.8 we have that f(f —fg)(x),un(dx)‘ < ¢ and
the same bound is true for the same integral but with respect to the measure u.
On the other hand,

lim ‘ J fe(Xpy(dx) — J fs(X)u(dX)‘ =0 (2.2.6)

n—+00

since f, is a simple function. Therefore

n—-+00

lim U f(x)un(dx)—J f(x),u(dx)’ <2 (2.2.7)
R R

and since ¢ is arbitrary we can take it to 0 and we are done. Now we suppose
that (2.2.4) is true for f € C;. Let .«/ be the set of atoms of u and let D = .&°.
We shall prove the weak convergence on the set D. For that purpose, let g =
1¢,p) with a,b € D. Given ¢ > 0, there exists 6 > 0 such thata+6 <b—06
and forU=(a—6,a+6)U(b—6,b+ ), we have u(U) < ¢. Note that this is
true since a and b are not atoms of y. Now define the continuous function g;
which is equal to 1 in (a + 6, b — &), equal to 0 in (a, b)°, and in (a,a + &) and
in (b—9, b) it is linear. Analogously define the continuous function g, which is
equal to 1in (a, b), equalto 0 in (a—&,b+6)°, and in (a—6,a) and in (b, b+6)
it is linear. From this we have that g; < g < g, < g; + 1 and as a consequence

fgl(x)un(dx)sfg(x)un(dx)ﬁjgz(x)un(dx)-

Since g; and g, are functions of compact support, by hypothesis we have that

nl}-kmoof gi(X)‘un(dX) = f gi(x)u(dx):

for i = 1,2. On the other hand, we also have that

f gl(x)u(dX)ng(x)u(dx)S f g2()u(dx).

Since fgz(x),u(dx)—fgl(x),u(dx) < fU,u(dx) = u(U) < ¢ and since ¢ is
arbitrary we conclude that

n—

li_rpooJ g(x)uy(dx) = J g(x)uldx),

and we are done. o
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Corollary 2.2.10. If {u,},>1 is a sequence of subprobability measures such that
for any f € C the limit

lim fRf (x)un(dx)
exists, then {u,},>1 weakly converges.

Proof. From Helly’s extraction theorem, we know that there exists a subse-
quence {uy, }r>1 such that u, —" u, where u is a subprobability measure.

From the previous theorem we also know that

J SO, (dx) =400 f f (e )uldx).
R R

From the uniqueness theorem, namely Theorem 2.2.7, if we prove that all the
subsequence of {u,},>1 converges weakly to this measure u, where u is a sub-
probability measure, then we conclude that u, —" u. Let {,unj }j>1 be a subse-
quence of {u,},>1 such that [Ty —Y v. We want to prove that y = v. Now we
also know from the previous theorem that for any f € C; we have that

J F O, (dX) =ns00 f f(x)v(dx).
R R

From the hypothesis of the theorem we conclude that

J f(x)uldx) =f f(x)v(dx),
R R

for any f € Ci. We leave the reader prove that the previous identity implies that

u = v, from where the proof ends. |

Definition 2.2.11 (Convergence in distribution). A sequence of rv. {X,},en IS
said to converge in distribution to F iff the corresponding sequence of distribution

functions {F,},en converges weakly to the distribution function F.

If X is a distribution function which has distribution function F, we will say

that {X,},ey converges in distribution to X.

Theorem 2.2.12 (Convergence in probability implies convergence in distribu-
tion). Let F, and F be the distribution functions of the r.v. X, and X. If {X,},en

converges to X in probability, then F, —" F.
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Proof. We start the proof by saying that if X,, —,_,, o, X in probability, then for
any f € Cy it holds that f (X,) =,_ 4100 f (X) in probability. On the other hand
also note that since f € C is also bounded, the previous convergence also holds
in L'. This means that

[ELF () = £ (]| < B () = £ GO =100 O

Last identity is equivalent to

f f )y (dx) _>n—>oof f()u(dx)
R R

for any function f € C;. From Theorem 2.2.9 this is equivalent to u,, =" u.

In the next lemma we prove that convergence in probability and conver-

gence in distribution are equivalent when the limit is a constant.

Lemma 2.2.13. Let ¢ € R. Then {X,},cy converges to c in probability iff {X,,}hen

converges to c in distribution.

Proof. From the previous theorem it is enough to show that convergence in dis-
tribution to a constant implies convergence in probability to the same constant
c. Let u, be the measure induced by X,, and let u be the measure induced by
X = c. Recall that we want to prove that P(|X,, —c| > €) =,_,;00 0. Note that
the previous probability is equal to

P(|X,—c|>e)=PX,€(c—¢,c+€))=u,((c—e,c+e)).

Let I = (c—¢,c+ €)°. Then I is a continuity interval for u for any £ > 0. By
hypothesis, we know that

nl}grnooun(l)zu(l)z1—,u((c—£,c+£))=1—]P’(X€(c—e,c+8)):O.

With this the proof ends. o
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Note that it is not true that if {X, },cy converges in distribution to X and
{Y,,}hen converges in distribution to Y, the sum {X,, + Y, },ey converges in dis-
tribution to X + Y. We will see in the next chapter that last sentence is true
when we add the hypothesis that X, and Y,, are independent. For now we see
the special case when Y = 0.

Theorem 2.2.14. If {X,,},cn converges in distribution to X and {Y,} ey converges
in distribution to 0, then:

o {X, +Y,},en converges in distribution to X
o {X,Y,},en converges in distribution to 0

Proof. Let us prove the first item. Take f € C; and suppose that M is a constant
such that |f| < M. Since f is continuous of compact support, it is bounded by
M and it is uniformly continuous. Then given £ > 0 there exists 6 such that
|x —y| < 6 then |f(x)— f(¥)| < e. As a consequence

E[f (X, +Y,)— f(X,)I] SJ edP +2M dP
(If K+ Yo)—f (Xp)I<e} (If K+ Y)—f (X)I>e)

< EP(f(Xn+Yn)_f(Xn)| < €)+2MP(f(Xn +Yn)_f(x)| > 8)
< e+ 2MP([Y,| > 6),

and since Y, converges in distribution to O, from the previous lemma, it con-
verges to O in probability, so that when we take the limit as n — 400 in last
inequality we obtain that

nlg-noo ]E[lf(Xn + Yn) _f(Xn)H <e. (228)
Since ¢ is arbitrary, taking it to 0, we conclude that

tim E[If (X, + V)~ f(1 = lim ELf(X,)] = E[f (O

In the last equality we used Theorem 2.2.9. From this we conclude that for any
f € Cy it holds that

f X+ Y )dP =00 f fX)dP,
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which means that X, +Y,, converges in distribution to X.

Now we prove the second item. Given € > 0 let us choose A such that
+A are both continuity points of the distribution function of the r.v. X and
sufficiently big such that lim,_, o P(|X,| > A) = P(|X| > A) < ¢. Note that the
first limit is true since X,, converges to X in distribution. The inequality above
is a consequence of the fact that P(|X| > A) = u((—A,A)°), u is a probability
measure and A is quite big. Then P(|X,,| > A) < ¢ for all n > n(e). But for
n > n(e) it holds that

P(X, Y| > &) =P(IX,. Y, | > &,1X,| > A) + P(IX,, Y, | > €, [X,,| < A)
€
<B(X,] > A) +B(|Y,] > 7 ) (2.2.9)
€
<e+P(|%,]> ;\).
Now for n sufficiently the last inequality becomes P(|X,Y,| > ¢) < ¢, and since

¢ is arbitrary we can send it to 0 and we proved that {X, Y, },en converges in
probability to O which implies the convergence in distribution. O

We finish now with the following corollary whose proof we leave for the
reader.

Corollary 2.2.15. If X, converges to X in distribution , if the sequences of real
numbers a, and f3, converges, respectively, to a and 3, then aX, + f3, converges
in distribution to aX + f3.

ﬁ Exercise:
Analyse if X,, converges in probability and in distribution to X, where Q =

{0,1}, X,,(0) = 0 and X,,(1) = 1 each with probability 1/2 and X(0) =1
and X (1) = 0 each with probability 1/2.

The first thing to compute is the distribution function of X, and of
X and we find out that they are the same. Therefore, the convergence
in distribution is true. But P(|X,,(w) —X(w)| > €) does not vanish as
n — 400 since |X,(w)—X(w)| =1 for all n and for all w € Q. Then the

convergence in probability does not hold.
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Now we note that from item 2. of Lemma 2.2.4 we know that u, —" u iff

for every continuity interval (a, b] of u we have that

Jim pn((a, b]) = pl(a, b))

this can be translated into (check!) saying that X, converges in distribution to
X iff F,(x) =p—100 F(x) for all x continuity point of F.

f! Exercise:
Take X, = 1/n and X = 0 and analyse the convergence in distribution of

X, to 0.

2.3 Law of Large Numbers

2.3.1 Weak Law of Large Numbers

The law of large numbers has to do with the partial sums of a sequence of r.v.
{Xn}nzl .

Spi=X1++X,
The notion of weak or strong law of large numbers depends on whether

Sn B IE[Sn]
n

—n—o0 O)

in probability or a.e. (note that it needs that E[S,, ] to be finite!) We have seen in
the previous chapters that if a sequence converges to 0 in L2 then it converges
to O in probability and then it converges a.e. to 0 along a subsequence. Note
that .
27 _ 2 — O(n2
E[s2]=E[ > X2+ > X.X;|=0(n?).
j=1 i#]

But if {X;};>; are uncorrelated and mean zero, we have that
n
29 _ 27 _
E[s2]=E[ > x2]=0(n).
j=1

s .
From where we conclude that = converges to 0 in L2
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Theorem 2.3.1 (Tchebychev).
If {X,}nen is a sequence of uncorrelated r.v. whose second moments have a

Sy —E[S,]
n

common bound, then =2 — 100 0 in L2 and therefore also in probability.

Proof. It is enough to suppose first that X, has mean zero for all n > 1 and
then use the computations above to conclude the result for X,. After that take
Y,, =X, —E[X,] to conclude the result in the case where the r.v. are not mean
zero. o

In fact the previous result also holds with convergence a.e. This is the con-
tent of the next theorem.

Theorem 2.3.2 (Rajchman).
If {X,}hen is a sequence of uncorrelated r.v. whose second moments have a

common bound, then
Sn — IE[Sn:l
n

—. 5000 ae

Proof. Let us start by supposing that E[X,, ] = O for all n > 1 and then we repeat
the argument of the previous proof. At this point we know that IE[S,%] < Mn
where M is a positive constant. From this is follows that P(|S, | > ne) < % We
want to prove that S,/n — 0 a.e. that is P(limsup, {|S,| > ne}) = 0 and from
Borel-Cantelli’s Lemma (converging part) it is enough to prove that

ZIP(|SHI > ne) < +00.

n=

From the computations above, we conclude that

M
Z]P’(lSnz| > n?e) < Z —— < +00,
n=

202
n=1 n-e
and as consequence S,2/n%? —,_,.., 0 a.e. Up to now we have proved the
result for a subsequence and we want to prove it to the whole sequence. For
that purpose, for n > 1 let D, = maX,2<j<(n+1)2 Sk — Sn2|. We have that
|Sk| _ |Sk —Sp2 +Sn2| < |Sk_Sn2|

+|Sn2| <&+|Sn2|
kK k - n2 n2 ~ n2 n2°




TECNICO
LISBOA

96 Weak law

So the proof ends as long as we show that D, /n? —,_,, o, 0 a.e. Note that

2
]P’(% > &) =P(D, > n) < %.

E[(Dy)]

i~ < +00 and then from Borel-Cantelli’s

We want to show that >} -,

Lemma we are done. Note that

DT% = max |Sp—S,.:|*= X
n2<k<(n+1)2 n2<k<(n+1)2

(> %))

i=n2+1

k k
< max (k—(n*+1)) Y, X2<((n+1)?—(n?+1)) », X2

T n2<k<(n+1)? P i=n24+1
(2.3.1)

From this it follows that

E[D?] 2n < b AM
e2n4 = e2n4 Z IE[Xi:IS £2n2

i=n2+1

E[(D,)*]

T~ < +00 and we are done. m|

which implies that >,

S,—E[S
Up to now we have seen the convergence of HT[H]

a.e., L? and in proba-
bility but we assumed that the second moments of X; are finite for all j. Now
we want to weak that hypothesis in order to prove the law of large numbers.

We start with the notion of equivalent sequences.

Definition 2.3.3 (Equivalent sequences (Kintchine)).

Two sequences of rv. {X,,},>1 and {Y, },en are said to be equivalent iff

D P(X, #Y,) < 0.
n>1
Theorem 2.3.4. If {X,},>1 and {Y,},cn are equivalent then
Z(Xn - Yn)
nx>1

converges a.e. Moreover, if a, — +090, then

1 n
0y 22557
an i3

converges a.e. to 0.
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Proof. From Borel-Cantelli’s Lemma, we know that since the sequences are

equivalent, then
P(limsup{X, #Y,}) =0 < P(liminf{X, #Y,}) = 1.
n n

This means that there exists a set Q, with P(£) = 1 such that for all w €
Q there exists an order ny(w) such that for all n > ny(w), by definition of
liminf, it holds that X,(w) = Y,(w). Then, >, o,(X, —Y¥,) = > (X, —Y,)
and this is finite. This proves the first result. Now the second follows from
% ijl(Xj _Y]) = % Z;'lil(Xj - Y]) —notoo 0.

Corollary 2.3.5. In the same conditions as in the previous theorem, With prob-
ability 1, the expression Y, - X, or % Z;‘:lX ; converges or diverges to £00 in
1 n . o 1 n
the same way as 3,5, Y, or o= >0, Y. In particular; if o~ >, X; converges to
. e 1 n
X in probability, then @ > =1 also does.

Proof. Let us prove the last sentence, the other is left to the reader. From the
. 1 n
previous theorem we have that - > j:l(X j—Y;) converges to 0 a.e. and there-

n

fore it also converges in probability. If ai 25‘;1 X converges to X in probability

then
1w, 1< 1<
== X — D (G -X,
n ]‘:1 n j:1 n j:]-
converges to X in probability and we are done. o

Theorem 2.3.6 (Weak Law of Large Numbers of Kintchine).
If {X,}a>1 1s a sequence of pairwise independent and identically distributed r.v.
with finite mean m, then S;" — m in probability.

Proof. Let F be the distribution function of X, for alln > 1. Then m = E[X,,] =
fR xdF(x)and E[|X,|] = fR |x|dF(x) < +00 We have already seen in Theorem
1.8.8 that

E[[X,|] < +00 <= > P(|X,|>n) < +oo.

n>1
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NowletY, = X, 1jx |<,- Asimple computation shows that the sequences {X },,>1
and {Y,},>1 are equivalent. Now let T,, = Z;.lzl Y; and note that by the previ-
ous corollary the proof ends as long as we show that % — m in probability. But
now the advantage is that T, is the sum of r.v. which are pairwise independent
and with finite second moments (since they are bounded). Note that

oz(Tn)=ioz(1@)siEmZ]=i f |x|2dF(x)<Z J |x|dF(x)
j=1 j=1 j=1

{lxI<j} {lxI<j}
n
. nn+1
< ST | larco < 2 Vg = o),
= Jr 2

(2.3.2)

In the first equality we used the fact that the r.v. Y; are uncorrelated. As we
have seen above, last bound is not good for our purposes, we need something
better. So let us consider a sequence of integer numbers {a,},>; such that

lim,, a,, = + 00, but with a(n) = o(n), for example, a, = 4/n. Then we have

ZHIJ IXIZdF(X)=(Zn:+ Zn: )J |x|2dF(x)
j=1 JH{Ix|<j} {Ix|<j}

j=1 j=a,+1

n
J X|dF(x)+ . anJ |x|dF(x)
j<a, {Ix[<a,} j=a,+1 {lx|<a,}

n

n Z n f |x|dF(x)
j=a,+1  J{a,<|x|<n}

n n
anJ x|dF(x)+n > f |x|dF (x)
= {Ix|<a,} j=a,+1 J{a,<|x|<n}

< nanE[|X1|]+n2f |x|dF(x).

{lx|>a,}

(2.3.3)
From this we conclude that

1 < 0
=>. f |x|2dF(x)s“—E[|X1|]+f X[dF(x).  (2.3.4)
=1 J {IxI<j} n {Ix|>a,

n2

The first term at the right hand side of last expression vanishes as n — +00

since a, = o(n) and the second term also vanishes as n — +00 since the r.v.
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X are integrable (since they have finite mean) and the probability of set in the
integral is vanishing as n — +00. Therefore we conclude that o?(T,) = o(n?).
Now we use Tchebychev’s inequality to conclude that

2
o*(T,)
]P(lTn_E[Tn]l > STlD < gz—nzn —n—+o0 0.

From this we conclude that

T,—E[T,] _ 2. —EVD
n - n

n—+00 0.

Now we just have to argue that E[Y;] = E[le{xjsj}] —jtoo E[X1] = m from
where we conclude that T,,/n —,,_, . oo m. This ends the proof. o

2.3.2 Convergence of Series

Theorem 2.3.7 (Kolmogorov’s Inequality).
Let {X,},>1 be independent r.v. with E[X,] = O for every n and ]E[Xi] =
02(X,) < 0o. Then, for every £ > 0 it holds that

2

o*(Sxn)

. < .
Plmmisi>e) <=5

Proof. Fix € > 0 and for w € A with A = {w : max;<j<, [S;j(w)| > &} we define

the r.v.

w)=min{j : 1 <j<n;|S;(w)l> e}

Let

A ={w:v(w)=k} ={w: max |S;(w)|=<e, |Si(w)|> ¢}
1<j<k—1

Note that the A tells us that when we sum k r.v. X; then |Si| is, for the first
time, bigger that ¢ which means that the previous sums have absolute value
less than ¢. Also note that for k = 1, above in A; we should convention that
max; <j<o |Sj(w)| is fixed as being equal to 0. So v is the first time the max of S;

exceeds ¢ and Ay is the event where that happens for the first time in the k-th
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step. Note that the A are disjoint and A = U;_, A¢. Then,

n
fsﬁdm:f SﬁdIPsz S2dp
A u k=1 Ag

n
=D (Sp+8,—S)%dP
k=1 A

n
=1 Mk

n
=ZJ S2 +25,(Sy — Si) + (S, — S)*dP
k=1 A

Now note that for ¢, = 1, , the rv. ¢; Sy and S, — S are independent since
¢Sy is a function of the r.v. {X;,---,X;} and S, — S is a function of the r.v.
{X141, ++,X,}. From this observation it follows that fAk Si(S, — Si)dP = 0.
Then

n n
o%(S,) = J S2dP > J S2dP > Zf S2dP> £ > P(Ay) = e2P(A)
A k=1 Ax k=1

from where we conclude that

o*(Sy)

P(A) =B( max Is;| > e) < >

c

The next result does not impose any condition on the second moments of

X,. We leave the proof for the interested reader.

Theorem 2.3.8. Let {X,,},>1 be independent r.v. with E[X,] < 00 and suppose
that 3A> 0s.t. |X,,—E[X, ]| <A< oo, VYneN. Then, Ve > 0:

2
]P’( max |S;| < 8) < (2A+4e)
i<j<n ? 02(S,)

Now we also state a theorem that we will not prove but that will be needed

below. We leave the proof for the interested reader.

Theorem 2.3.9 (Three series of Kolmogorov).
Let {X,,},>1 be a sequence of independent r.v. and for a positive constant A> 0
let Y, = X, 1{x |<a}- Then the series Zn21X ., converges a.e. iff the following three

series converge:
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L anl ]P(|Xn| >A)= anl P(Xn 7é Yn)
2. Y1 ElY,]

3. ZHZI az(Yn).

ﬁ Exercise:
| Prove the previous theorem.

2.3.3 Strong Law of Large Numbers

Now our interest is focused in showing the strong law of large numbers. We

start with the next lemma which will be useful in what follows.

Lemma 2.3.10 (Kronecker’s Lemma).
Let {x; }ix>1 a sequence of real numbers, {a; };>1 a sequence of strictly positive

real numbers T 00. If 3,5, 3* < 00, then = > x; = 0.

Proof. Forn>1let b, = Z? 1 a— and note that b, exists since it is equal to
the sum of the series. Let ay = bo = 0. Then a—” = b, — b,_; which means that

x, = a,(b, —b,_;). Therefore,

—Zx ——Za(bj—bj_l)zlzn:a]bj inil:ajﬂbj
n =1 an 5= In =0

1 n—1
- Z(aj+l - a])b]
an ‘=

Now note that

n—1
1 a, —dag
. E:(aj+1_aj): . =1
n j:()

From here is follows that
‘ 1 n ) 1 n—1
niibo o 4 e o (b =2~ Z(am —a;)b;)
= —
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and

1 n—1 1 n—1 1 n—1
a_Z(aj+1 _aj)bj = a_Z(aj-H _aj)(bj —boo)+ a_ Z(aj+1 _a})boo
n =0 n =0 n =0

and the term at the left hand side of last expression vanishes as n — +00 and
the term at the right hand side of last expression is equal to b.,. From this the
proof ends. |

Theorem 2.3.11. Let ¢ : R — R be a positive, even and continuous function, such

that as |x| increases: (p(x) T and (p(x) | . Let {X,},>1 be a sequence of independent

Eleo(X,)]

rv. with E[X,] = Ofor every n and let 0 < a, T 400. If Y., R

< o0,

then Zn>1 " converges a.e.

Proof. Let F, denote the distribution function of X,, and define for each n > 1
the rv. YV, =X, 1|x |<q,- Then

Se4]-X[  Lanw
"7 =1 ixl<a,) Ta

n>1
Note that by the hypothesis in ¢ we have that if |x| < a,, then (p(x) > ‘P((;").
Then
PICSCOEPN- f £ gr, () < > B[]
n>1 n>1 n>1J {|x|<a,} (ay) n>1
E
_ Z [p(I] _ too.

n>1 So(an)

Taking the sequence of r.v. {%ﬁ"]} , then E[—Y ElY, ]] 0, <2
n>

n Tl

Y, E[Y]

and finally Zn21 02(3;—") < 400. Then from the Theorem of Three series of

Kolmogorov, namely Theorem 2.3.9, we have that an1 %W”] converges a.e.
On the other hand
ElY, 1
Z [ELY, ]| = Z — xdF (x)‘ = xan(x)‘
=1 In =1 It J {jx|<a,) {Ix>a,}
1
<> = |x|dF, (x).

=1 dn J{|x|>a,}



TECNICO
LISBOA

Law of Large Numbers 103

Since for |x| > a, we have that |x| < j((éc)), then

E[Y, ] p(x) E[p(X,)] _
Z ;£|x|>an} (an Z v(ay,) oo

n>1 n>1

From this it follows that ZnZl % converges a.e. To finish the proof it remains
to check that the sequences {X,,}, g¢q1 and {Y, },,>1 are equivalent. To prove it
note that:

DR, A Y) = Y P(X,| > a,) = ZJ dF,(x)
{Ix|>a,}

n>1 n>1 n>1

o (x) E[p(X,)]
d —_— .
SZLIMM%) Falx )‘;_1 ola) O °

Since the sequences are equivalent we conclude that Zn>1 “ converges a.e.,
which ends the proof. ]

We note that being in the hypothesis of the previous theorem, from Kro-
necker’s lemma we can conclude that ain Z?:l X; converges a.e., as n — +09,
to 0.

Now we state the Strong Law of Large Numbers due to Kolmogorov.

Theorem 2.3.12 (Strong Law of Large Numbers of Kolmogorov).
Let {X,},>1 be a sequence of independent and identically distributed r.v., then
1 E[|xy]]< oo =% S E[X] ae

2. E[|X;|] = oo = limsup,, lsn”l

=400 a.e.

Proof. Let us start with the proof of the first item. For eachn > 1 therv. Y, =
anan|$n' Then

D B, # Y= D B(X,] > n)= ) B(IXy] > n) < +oo,
n=1 n=1 n=1

since X, is integrable. Now we apply the previous corollary with ¢(x) = x2 to
the sequence {Y,, —E[Y,]},>1. Then,

2
>, Uz(f") < Z E[Y J x2dF(x).
n =10 Jlxl<n)

n>1 n=1
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In this case we do not have any information about the second moments so that

we proceed as follows. Last term is equal to:

Z J x2dF(x) = ZJ 2dF(x)Z —.
{i—1<Ix|<j} {i—1<Ix|<j}

Tl>1 n>]

Since last series is convergent (take the integral test for example) and since
SUMp> o L < C/j, then the previous expression is bounded from above by

ZJ zdF(x)Z—— = CE[|X,]] < +oo.
j {i—1<Ix|<j}

n>j

From the previous observation we conclude that = L Z;l (Y — ]E[Y 1) converges
a.e.,asn — +00, to 0. On the other hand E[Y,] —,,_,+ 0o E[X;]and & Z E[Y;]
converges, as n — +090, to E[X; ], from where we conclude that,l1 Z =1 Y] con-
verges a.e., as n — +00, to E[X;]. Since the sequences are equivalent the
proof of the first item ends. Now we prove the second item. Let A > O.

E[|X41]
A

Then by hypothesis we have that = +o00. From the integrability cri-

terion, namely Theorem 1.8.8 we have that >, -, P(|X;| > An) = +00. Then
IS, —S, — 1| = |X,| > An implies that |S,| > An/2 or |S,_;| > An/2. Since
Borel-Cantelli’s Lemma (the divergent part) implies that

P({|X,| > An}i.0.) =1,
we can now conclude that

({15, > ’%} i.0.)=1.

This means that for each A > 0, there exists a set N(A) with P(N(A)) = 0, such
that for each w € N(A)¢ it holds that

S A
lim sup () >—.
n>1 n 2
Now let N = U} N(m), then P(N) = 0 and for w € N° the previous inequality
is true. Since it holds for any A = m > 0, then the upper limit is +oo. From this
the proof ends. |
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We end this chapter with a generalization of the previous result in the case
where the mean is infinite.We leave the proof as an exercise to the interested

reader.

Theorem 2.3.13 (Strong Law of Large Numbers of Feller).

Let {X,},>1 be a sequence of independent and identically distributed r.v. with
E[|X;1]] = oo and let {a,},>1 be a sequence of positive real numbers such that
a—n" 1. Then

Ssl_ 0 e or ey 1

n>1 0y n>1 Qdy

depending on whether

ZIP’(anl >a,) s finite or infinite.

n>1

25 Exercise:

Prove the previous theorem.

2.4 Exercises

Exercise 1:

Let (&,),>1 be random events on a probability space (2, Z, P). Show that

P(&,) — 0< 1, —— 0, in probability.

" n—+00

Exercise 2:

Let (X,),>1 be a sequence of random variables.

Show that if E(X,,) ¢ and Var(X,) = 0, then X, —o % in probability.

Exercise 3:
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(a) Let (X,,),>1 be a sequence of random variables such that for eachn > 1
it holds that
PX,=1)= 1 and P(X,=0)= 1—1.
n n
Show that

X, — 0, in probability.

" n—+oo

(b) Now suppose that for each n > 1 we have that P(X, = 1) = p,, and
P(X, =0)=1-—p,, and suppose that (X,),>; are independent. Show that:
(n x, s 0, in probability < p, — s 0.

(2) X,——0, inl? <p,——0.

n—+00 n—+00o
3) X, —= 0, almost everywhere < an < +00.

n>1

(c) Justify if in (a) the sequence (X,,),>1 converges almost everywhere to 0.
Exercise 4:

Prove the Tchebychev’s weak law:

Let (X,,),>1 be a sequence of random variables pairwise independent, with
finite variance and uniformly bounded, i.e. there exists a constant ¢ < +00
such that Var(X,) < c for all n > 1. Then,

Sn - E(Sn)
n

—,+00 0, in probability,

where S, = Z?ZlX j is the sequence of the partial sums of (X;,)p>1-
Exercise 5:

Prove the Bernoulli’s Law of Large Numbers:
Consider a sequence of independent Binomial experiments, with the same
probability p of success in each experiment. Let S,, be the number of successes

in the first n experiments. Then,

— >, 100 P, in probability.
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Exercise 6:

Consider a sequence of independent Binomial experiments with probability
Dy, of success in the n-th trial. For n > 1, let X,, = 1 if the n-trial is a success,
and X, = 0 otherwise. Show that

(@ If) o,pn=+00,thenP(}; -, X, =+00) =1, (there are an infinite
number of successes a.e.).

(b) If >, Pn < 400, then P(D,; X, < 00) = 1, (there are a finite
number of successes a.e.).

Exercise 7:

Let (X,),>1 be a sequence of independent random variables such that for
each n > 1 it holds that

1
n+1

1
PX,=¢")=—— and PX,=0)=1-
n+1

Analyze the convergence of (X,),>; to X = 0 in the case of
(a) convergence in probability.

(b) convergence in P, for p > 0.

(c) convergence almost everywhere.

(d) convergence in distribution.

Exercise 8:

Let (X,),>1 be a sequence of independent random variables such that for
each n > 1 it holds that

1 1
PX,=1)=_ and P(X,=0)=1-_.

Show that X, —— 0,
n—+o0o

(a) in probability.

(b) inLP, for p> 0.

(c) almost everywhere.

(d) in distribution.
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Exercise 9:

Let X and Y be random variables defined on a probability space (2, #,P).
The covariance between X and Y is defined by

Cov(X,Y):=E[XY]—E[X]E[Y].

LetX,,---,X, be uncorrelated random variables, i.e. such that Cov(X;,X ]-) =0,
for i # j, with E[X;] = u and Var(X;) < C < +o0o, for all i > 1, where C is a
constant. If S, := X; +---+X,,, show that
(@ E[S,]=nuand Cov(X,Y)=E[(X —-E[X]D(Y —E[Y]].
(b) Var(S,)=Var(X;)+---+Var(X,).
Sn

on . 2 . I ]
(o = — oo M in LL* and in probability.

Exercise 10:

Let (X,,),>>be a sequence of independent and identically distributed random
variables such that X; has exponential distribution with parameter 1. For each
n > 2let Y, =X,/log(n). Analyze the convergence of (¥;,),>» to Y =0 in the
case of

(a) convergence in probability.

(b) convergence in L!.

(c) convergence almost everywhere.

(d) convergence in distribution.

Exercise 11:

Let X1,X5,X5... be independent random variables with X,, ~ %[0, a,, ], with
a, > 0. Show that

(@) If a, = n?, then, with probability 1, only a finite number of X,, takes
values less than 1.

(b) If a, = n, then, with probability 1, an infinite number of X, takes

values less than 1.

Exercise 12:
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Let (X,,)n.>1 be a sequence of i.i.d. random variables such that X; ~ %[0,1].
Show that n™*» converges to 0 in probability but it does not converge to 0 almost

surely.

Exercise 13:

Let (X,,),>1 be a sequence of random variables such that for n € N it holds

that

12 12
P(X,=n?)== and PX,=0)=1-—=.
n n

Show that X, converges almost surely (find the limit X) but E[X"] does not
converge to E[X™], for all m € N.

Exercise 14:

Let (X,,),>1 be a sequence of i.i.d. random variables such that X; ~ %[0, 1].

1/n
Find the limit in probability of ( [T X k) )
Exercise 15:

Let (X,).>1 be a sequence of i.i.d. random variables such that E[X;] = 1
and Var(X;)=1. Show that

ZZ:lxk

1
T r—————— "no+00 =
vV nZZzle V2

in probability.
Exercise 16:

Let (X,,),>1 be a sequence of independent random variables such that E[X,, ] =
0 and E[X?] =1foralln € N. Let S, := X; +---+ X, and for all x € R let
p(x) = ffoo ﬁe‘yz/zdy. If P(S, < v/nx) — p(x) for all x € R, show that

. S
limsup,_,; 0o 75 =+00 almost everywhere.

Exercise 17:

Show that if X,, converges to X in probability,asn — +00,andifg: R - R
is a continuous function, then g(X,) converges to g(X) in probability, as n —

+00.
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Exercise 18:

Let (X,),>1 be a sequence of independent random variables with distribu-
tion function F, . Prove that, P(lim, X,, = 0) = 1 if and only if Ye > 0,

D> {1 —Fy(e) + Fy(—e7)} < +00.

n>1

Exercise 19:

If ZnZl P(|X,| > n) < oo, then limsup,, % < 1 almost everywhere.

Exercise 20:

(a) Let X and Y be independent random variables with laws X ~Poisson(A;)
and Y ~Poisson(A,). What is the law of X + Y?

(b) Let Z be a random variable with law Poisson(A), and let £1,&,,... be
i.i.d. Bernoulli(p) random variables, independent of Z. Define X := Zle ;.
Show that X has law Poisson(pA).

Remark: Item (b) is know as the Poisson coloring theorem. You can think you
have a Poisson number of balls, and color each ball either red (with probability
p) or blue (with probability 1 — p), independently. Then the number of red
balls is also Poisson distributed. This is one of the basic results in the theory of

Poisson Point Process.

Exercise 21:

(a) Let X be a random variable with law Exp(A), and let t,s > 0. Prove that
PX>t+s|X>s)=P(X >t).

This property is called "lack of memory of the exponential distribution".

(b) Let Y,, be a geometric random variable with success probability % (as-
sume n large enough, so that % < 1). Show that % converges weakly to an

Exp(A) distribution.
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Characteristic functions

3.1 Definitions and properties

In this chapter we introduce the notion of characteristic functions which is going

to be a very useful tool in order to prove weak convergence results.

Definition 3.1.1. For any r.v. X with probability measure u and distribution
function F, the characteristic function of X is defined as the function ¢ : R —» C
given by

p(t) =E[e'*] =f

Q

eithIP’=J eitx,u(dx)=f e'™ dF(x).
R R

Note that before we have discussed the notion of the integrals above when
the r.v. involved are real-valued and here we need it for a complex valued
function. Then, we observe that the real and imaginary parts of ¢y are given,

respectively by

Rep(t) :f cos(tx)u(dx) and Ime(t) =J sin(tx)u(dx),
R

R

so that the definitions make sense.

Now we enumerate some properties of the characteristic function:
o VteR: |p(t) <1=¢(0).

111
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To prove this item note that

|0 (6)1v/ (E[cos(£X)])2 + (ELsin(tX)])? = F(E[cos(tX)], E[sin(tX)]),

where F(a, b) = v a2 + b2. Note that the function F is convex, so that by
Jensen’s inequality we conclude that

F(E[cos(tX)], E[sin(tX)]) < E[F(cos(tX),sin(tX))],
from where the inequality follows.
Vit eR: ¢(t) = p(—t).

¢ is uniformly continuous.

Let h > 0. Then
Pt +h) = p(6)] = U (6047 — eit)u(da)| = U (e —1)ei*p(dx)
R R
< J e~ 1|u(dx)
R

Now note that |ef™ — 1| < 2 so that fR lei™ —1|u(dx) < 2 and since

hx — 1, we conclude, from the Dominated Convergence Theo-

limy,_,, €'
rem, that f R le?"® — 1|u(dx) vanishes as h — 0. Note that there is not

dependence on t, so the the convergence is uniform.

If py is the c.f. for a r.v. X, then

b and  @_x(t) = @x(1).

vax+p(t) = wx(at)e
If {p,}n>1 is @ sequence of characteristic functions, A, > Owith >} -, A, =
1, then >, -, A,¢, is a characteristic function. For each n > 1, let u, be
the probability measure corresponding to ¢,. Then, observe (prove it!)
anl Anly, is again a probability measure. Therefore , defining y(t) =
fR eltx D in>1 Anttn(dx) then, a simple computations shows that 1(t) is

equal to anl A1‘1(101‘1(15)
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o If {p,}.>1 is a sequence of characteristic functions, then ]_[;1:1 pjisa

characteristic function.

We know that given probability measures {u;};_; .. , where y; is corre-
sponding to ¢;, then there exist independent r.v. {X;} all defined in the
same probability space 2, #,P) whose induced measure is u;. Then for
Sp = 2.;_1 X;j we have that

Bl =] [ 1=] [ ¢ (0.
j=1 j=1

55 Exercise:
| Do the missing proofs of the properties above.

Let S, =X; + -+ X,,, where X; are independent. Then, from the previous
property we know that pg (t) = l_[?:1 (,oXj(t). But, what can we say about the
distribution of S,,? Let us now go for a small digression on the convolution.

Definition 3.1.2 (Convolution of distribution functions).

The convolution of two distribution functions F; and F, is the distribution
function F defined on x € R as F(x) = fR F1(x — y)dF,(y). In this case we use
the notation F = F; x F,.

ﬁ Exercise:
| Check that F given above is in fact a distribution function.

Theorem 3.1.3. Let X and Y be two independent r.v. with distribution functions
Fx and Fy respectively. Then X +Y has distribution function Fx % Fy.

Proof. Note that we want to prove that for x € R we have that
P(X +Y <z)=Fyx xFy(2).

Let f(x,y) = 1{x4+,<;} and note that f is #2-measurable. Then

f fX,Y)dP = U f(x,y)u*(dx,dy),
Q R2
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where u? is the measure induced by the r.v. (X,Y) and since the r.v. X and Y
are independent we know that u? = uy x Uy, that is u? is the product measure

between u, and uy. Then, by Fubini’s theorem, the previous integral equals to

,
J f f(an’).uX(dX)Hy(d}’):J x (00,2 — y Duy(dy)
RJR

R

= Fx(z—y)uy(dy)
Jr

-
= | Fx(z—y)Fy(dy) = Fx * Fy(2).

Jr

Definition 3.1.4 (Convolution of density functions).

The convolution of two probability density functions f; and f, is the probability
density function f defined on x € Ras f(x) = fRfl(x —¥)fo(y¥)dy. In this case
we also use the notation f = f; * f5.

ﬁ Exercise:
| Check that f given above is in fact a density function.

Theorem 3.1.5. The convolution of two absolutely continuous distribution func-

tions F; and F, with densities f; and f,, is absolutely continuous with density
f=hHh*fa

Proof. Let p = f;*fy, which we know to be a density from the previous exercise.

Then
f P(y)dy=r fl*fz(y)dy=J Jfl(y—Z)fz(Z)dzdy
—00 —00 —o0 JR
= [ Fi(x —2)fy(2z)dz
J]R —00
= [ Fi(x —2)Fy(dz) = Fq % Fo(x).
J]R —00

Then p = f is the density of F; * F,. |
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And what can we say about the probability measure corresponding to F;*F,?

We shall denote this measure by i, * u,. We introduce the notation
AxB={xty:x €A y€<B}
for A and B subsets of R.

Theorem 3.1.6. For each B € 98 we have that

(g * ug)(B) = f u1(B—y)uo(dy).

R
Moreover, for each B- measurable funtion g integrable with respect to i * o, we
have that

f gy * py(du) = H g(x + y)up(dx)uy(dy).
R R2

Proof. First note that u; * U, is a probability measure, we leave this as an exer-
cise to the reader. To show that the corresponding distribution function is F; *F,
we have to compute U, * t,((—o0, x]) and show that it coincides with

F(x)= f Fy(x — y)dF,(y).
R

Now,

U * Up((—00,x]) = f

pp((—o0, x]—y)us(dy) = J p1((—00, x — y Duo(dy)
R

R
= f Fy(x —y)Fy(dy) = Fy * F5(x).
R

This shows the first affirmation. Now we prove the second one. Let g = 15.
Then, for each y, we have that g, (x) = g(x + y) = 1(5_,}. Now

f g(x + y)uq(dx) = uy(B—y).
R

And

fJ g(x + y)uy (dx)uy(dy) =f u1(B—y)ua(dy) = uq * ug(B—y)
R2 R

= J gy * pp(duw).
R

This ends the proof. ]
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Let us now compute the characteristic function of the convolution uy * u,.
We have that the sum of two r.v. with probability measures u; and u, has
induced measure given by u; * u, and its characteristic function is given by

“ ey x pp(du) = “ e'Ye™uy (dx)uy(dy) = J e”xul(dX)J e uy(dy)
R R

which is equal to ¢, (t)p,(t).

Then we conclude the next result.

Theorem 3.1.7. The sum of a finite number of independent r.v. corresponds to the
convolution of their distribution functions and to the product of their characteristic

functions.

Lemma 3.1.8. If ¢ is a characteristic function, then |¢|? is a characteristic func-

tion.

Proof. We know that given a r.v. X with characteristic function ¢, then there ex-
ists a r.v. Y with the same distribution of X (and therefore the same characteris-
tic function) which is independent of X. Then the characteristic function of X—Y

is given by ¢x_y(£) = @x(t)oy (—1) = @x()ox (—1) = @x () px (1) = |x (D)2
C

Example 18.

1. X ~ Ber(p) we have that px(t) =e''p +(1—Dp).

2. X ~ U[—a,a] we have that px(t) = sin(at) if t #0 and px(0) = 1.

at ?

22

3. X ~N(u,0?), we have that ¢x(t) =e'fe™ 2 .

3.2 Inversion formula

The question now is: Given a characteristic function how can we find the cor-

respondent distribution function or the distribution measure?
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Theorem 3.2.1 (The characteristic function determines the distribution).
If xq < x4 then
T

e—itxl _ eitxz

1 1 1
ul(xr, x2)) + Sulla ) + Sul{xo}) = — lim J_T — edt.

*Note that the integrand function is defined by continuity at t = 0.

Proof. Note that

T —itxl _ itXZ T . —itxl _ ith
————p(de = e () ———— Jdt
it R it

=T

Note that the function inside square brackets in the expression above is bounded

ettx—l

it

since ~ x when t is close to 0. Then from Fubini’s Theorem, the last

T —it(x—xq) __ pit(x—x3)
fu(dx)J E —¢ Jac (3.2.1)
R —T i

Above we used Fubini’s Theorem since
X2
J e—ltudu
X1

T
Jf |3y —xq|dtu(dx) < 2T |x9 —xq].
RJ-T

integral is equal to

’e—it(x—xl) _ eit(x—xz)

it

and

So the integrand is dominated by an integrable function with respect to the
product measure dtu(dx) in [—T, T] x R. Now note that

eI _pithe=x2) = cog(¢(x—x71))—cos(t(x—x4))+i(sin(t (x—x; ))—sin(t(x—x5)))

and since the integral above, with respect to t is in a symmetric domain and the
function cos(t(x —x;))—cos(t(x —x,)) is even and i sin(t(x —x;))—i sin(t(x —
x,)) is odd, we have that (3.2.1) is equal to

ZJ H(dx)(fT sin(t(x—xl))dt_JT sin(t(x—xl))dt).
R 0 t t

0
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By a change of variables last expression equals to

J~ M(dx) J- s1n(sx) J~T(X—X2) Mds)
0 N

T o
Now we note that f 0 SHL(S)

ds —=1_,400 5. A simple way to note this is to argue

as follows:

oo sin(s) oo
f —2ds —J sm(s)f X duds —f J Usin(s)duds
o s
- fo 1+ u2 du= 5

Now we take the limit as T — +00 in Z(f

T(x—x1) s1n(sx)d fT(X—xz) sin(sx)d )
—das
0 s

and it equals to
1. —2( ffoo %sx)ds—fi)oo wds) =0,if x < x; < X9;
2. 2([1)00 Sing—sx)ds =7, if x =x; < Xxy;
3. 2m, if xp < x < Xxy;
4. m,if x; < x9=x;
5. 0,if x; < x5 < X3

From the previous equalities we obtain the result. |

Remark 3.2.2. Note that if (x1, x5) is a continuity interval for u, then the previous
theorem says that
T e—itxl _ eitxz

F(xy)—F(x;)= hm 1 ,—(p(t)dt. (3.2.2)
oo 27T it

3.3 Uniqueness of distribution

Theorem 3.3.1. If two probability measures (or two distribution functions) have
the same characteristic function, then the probability measures (or the distribution

functions) are the same.
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Proof. If x; and x, are not atoms of u (or F) then (3.2.2) gives us the value
of u((x;,x5)) which is determined by the characteristic function. Therefore,
given y, and u, with the same characteristic function we have that u,((a, b)) =
us((a, b)), where a and b are not atoms of ; nor u,. Since the set of atoms of
a probability measure is at most countable, the points in R which are not atoms
for both the measures u; and u, is dense in R. Now, from Theorem 1.3.5 it
follows that u; = u,. o

Theorem 3.3.2. If ¢ € L'(R), then F € C'(R) and

21

—0Q

1 [
F'(x)= —f e ™ p(t)dt,

that is ¢ is the characteristic function of an absolutely continuous r.v.

Proof. To prove the result, we apply the previous theorem for x = x, and x; =
x —h where h > 0. Then the theorem says that

ith __ )
G =, 20) + () + S (xR = J et dr.
R

The term on the left hand side of last equality is equal to

F(x)+F(x_)_F(x—h)+F((x—h)_)
2 2 '

Note that since ¢ € L!(R) the previous integral exists since the integrand func-
tion is bounded by |hp(t)|. From the Dominated Convergence Theorem, we
can send h — 0 and we conclude that the integral is equal to 0. Therefore we
obtain that

F(x)+F(x7) ~ lim F(x—h)+F((x—h)")

2 h—0 2 ’
from where we conclude that F is left continuous. Since F is a distribution
function, it is continuous at the right and then F is continuous. Going back we

can rewrite

1 —itx
- t)dt
h 21 e elndt,

F(x)—F(x—h) _ 1 [ ¢
z ith
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and the limit exists when h — 0, so that F has a derivative from the left at x

and

Fl(x) = %f eI () dt.
R

Analogously we can show that F has a derivative at x from the right and
/0yt 1 —itx
F'(xT)=— | e ™ p(t)dt.
21 )p

We conclude that F’ exists and it is a continuous function, since the right hand
side of the previous equality is continuous. Since F’ is continuous we conclude
that for all x € R F(x) = ffoo F’(u)du, so that F’ is a probability density. I

Corollary 3.3.3. If ¢ € L}(R), then p(x) € L*(R) where

1 (™
p(x) = —f e *o(t)dt
21

—o0
and

p(x) =J e'*p(x)dx.

—00

.

| Exercise: do the proof of the corollary.

Theorem 3.3.4 (Atoms of u).

e For each x, we have that

T

lim — | e ou(r)dt = u({xo}). (3.3.1)
—T

e It holds that

T
Jim = J_le(t)lzdt=2(u({x}))2-

x€R



TECNICO
LISBOA

Characteristic functions 121

Proof. To prove the first affirmation we repeat the proof of Theorem 3.2.1 and
we obtain that the left hand side of (3.3.1) is equal to

J sin(Tlx=xo)) 1) +J u(dx). (3.3.2)
R\{xo} T(X - xO) {xo}

The integrand function at the left hand side in the previous expression is bounded
by 1 and goes to 0 when T — +00, then by the Dominated Convergence The-
orem the integral vanishes as T — 400, from where the result follows.

To prove the second affirmation we note that since the number of atoms
of u is at most countable, all the terms (except at most a countable number of
them) are equal to O so that the series above makes sense.

Also note that |¢(t)|? is a characteristic function. We have seen above that
it is the characteristic function of the r.v. X —Y where X and Y are i.i.d.. The
distribution measure of |p(t)|? is u* u’ where u’(B) = u(—B) for each B € 4.
Applying the first affirmation with xy = 0 and with the characteristic function
lp(t)|? we get that

T
. 1
Jim ﬁf lp(O)?dt = px p'({0}) = J ' (u(dx) = Z p({xPu({x})
- -T R xeR
and the proof ends. Above we used the fact that the integrand is non-zero when
X is an atom of u. o

Corollary 3.3.5. u is atomless (F is continuous) iff

1 T
lim — t)|?dt =0.
Am o f_Tltp( )

Definition 3.3.6 (Symmetric random variable).
We say that a r.v. X is symmetric around O iff X and —X have the same distri-

bution.

Remark 3.3.7. For a symmetric r.v. its distribution u has the following property
w(B) = u(—B) for any B € . Such probability measure is said to be symmetric
around 0. Equivalently, for the distribution function, we have that for any x € R,
F(x)=1—F(x™).
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Theorem 3.3.8. Arv. X or a p.m. u is symmetric iff its characteristic function is
real-valued (for all t.)

Proof. If X and —X have the same distribution, then they determine the same
characteristic function. Therefore, px(t) = ¢_x(t) = @x(—t) = m Re-
ciprocally, if ¢y is real, then from the previous equalities we conclude that
ex(t) = ¢_x(t). From (3.3.1) we conclude that X and —X have the same
distribution and therefore, X is symmetric. |

Theorem 3.3.9 (Lévy’s converging Theorem).

Let {u,},>1 be probability measures on R with characteristic function {¢,} ;>1-

o If U is a probability measure on R and p, =" Ueo, then ¢, (t) =, 00

Poo(t), Where o is the characteristic function of Ueo-

o If P (t) 2 psoo Poolt) forall t € R, and ¢ (t) is continuous at t = 0,
then

— U, =V Ueo Where U is a probability measure,

— Qoo Is a characteristic function of Ueo-
Proof. Let us prove the first affirmation. Note that
@, (t) = E[e™*n] = E[cos(tX,,)] + iE[sin(tX,)].

From Theorem 2.2.9 which in fact holds if we take functions in Cy (prove it!)
and since the functions sin(-) and cos(-) are continuous and bounded, we have
that

nEELnOO E[cos(tX,,)] = E[cos(tX)], nggnoo E[sin(tX,)] = E[sin(tX)]

and we are done.

Now let us suppose that ¢,(t) =, 100 Poolt) for all t € R. Fix € > 0.
Since ¢, is a continuous function we know that there exists an a > 0 such that
%ffa(l —p(t))dt < €. Then, since |¢,(t)| < 1 for all n > 1, by the Dominated
Convergence Theorem, we have that

n—+0o
—a —

lim f (1—cpn(t))dt=J nl}grnoo(l—gan(t))dt=f (1—(t))dt <e.
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Therefore, there exists an ny € N such that for all n > n it holds that

1f (1= ())dt < e.
a

—a

From the next lemma, we conclude that

2 2+¢
-, S &
m([-5-2])
for all n > n,. Since for the values of n = 1,--- ,ny — 1 the measure u, is a

probability measure, we also conclude that

2 2+¢
([ -53])=e
for all n > 1 by changing the interval if necessary. Then the sequence {u,},>1
is tight, that is, any subsequence {u,, };>; has a converging subsequence. To
show that the whole sequence converges we need to show that the limit point is
a probability measure. Let us suppose that {u,, };>1 converges weakly to o, as
k — +00. The previous measure U, is a subprobability measure. We will show
that it is a probability measure. Note that, for 6 such that —2/5,2/6 are not
atoms of oo, then oo (R) = Ueo ([—2/6,2/6]) = lim,_, 4 oo un([—2/5,2/6]) =
1—e¢. Since ¢ is arbitrary we conclude that u is a probability measure. Now let
 be the characteristic function of y,. Now, from the first part of the theorem
we know that ¢, (t) = tc0 Poolt), from where it follows that every weak
limit of u,, has characteristic function ¢ ,. Them from the uniqueness theorem
it follows that p, —4_40 oo and since all subsequence converges weakly to

the same measure, we are done. ]

Lemma 3.3.10. For each a > 0 if holds that

w([-22]) =2 L(l — (0.

Proof. Note that

1f (l—ga(t))dt=lf (1—J eifXdu)dt=1J f(l—e“")d,udt.
a —a a —a R a —a JR

(3.3.3)
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From Fubini’s theorem last integral writes as

lj f (1—cos(tx)—isin(tx))dtd,u:lf J (1—-cos(tx))dtdu.
a RJ—a a RJ—a
(3.3.4)

Above we used the fact that the sin(x) is an odd function and the domain of
integration is symmetric. Computing the time integral above, last expression

equals to

2JR(1—%”))duzzf (1—M)du. (3.3.5)

[x[=2/a X

Since |ax| > 2 then sin(ax) < ax and from this we bound from below the

previous expression by

1 2 21
2 szz/a Sdp>p([ - - E] ). (3.3.6)

Cl

Corollary 3.3.11. If {u,} n > 1 and u are probability measures with character-

istic functions {pn}ys1 and @, then i, =" pieo iff @a(t) =poco @(t), for all
teR

Example 19. Exercises:
1) Take u, which gives mass 1/2 to 0 and to n and analyze it.

2) Take u,, as Uniform in [—n, n] and analyze it.

Theorem 3.3.12. If F has finite absolute moment of order k, with k > 1, then ¢

has a continuous k-th derivative which is given by:

ok(t) = J (ix) el dF(x).
R
Proof. We do the proof for k = 1. Note that

Lp(t—l—h)—(p(t) B pllt+h)x __ pitx B " ethx _ 1
- = - dF(x) = Re”( . )dF(x)
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Since .
elhx -1 .
h —h—0 X
and since ‘
elhx -1
< Ix|,

and by the hypothesis of the theorem we can use the Dominated Convergence
Theorem to conclude that

ren o pt+h)—p(t) er e —1 I T
So(t)—}lll_l)r(l)—h —}111_r>r(1) Re (—h )dF(x)— Rlxe dF(x).

Now the proof goes by induction. We leave this exercise to the reader. O

Theorem 3.3.13. If F has finite absolute moment of order k, with k > 1, then ¢
has the following expansion around a neighbourhood of t = 0:

k S

p(0) =y =mit) +o(|t[%)
— j|
j=0

S b1
_NU iy Yk kg k
o(t) Zﬂm o+ el
j=0
where m/ is the moment of order j, u is the absolute moment of order k and
0, <1

.4

| Exercise: do the proof of the result above.

In what follows {X,},>1 is a sequence of i.i.d.r.v. with distribution function F
and S, = Z;ZlX j- Now we are going to reprove the weak law of large numbers
by using the powerful tool of the characteristic function.

Theorem 3.3.14 (The weak law of large numbers).

If F has finite mean m < 0o, then S;” — m in probability.
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Proof. Note that since the limit is a constant m, then the convergence in prob-
ability is equivalent to the convergence in distribution. Therefore, from Levy’s
converging theorem we just have to show that the corresponding characteristic

functions converge, that is
P51 (t) =pospoo € (3.3.7)

Note that e!'™ is the characteristic function corresponding to the r.v. X = m or
the measure u = §,,(-), the Dirac supported on the set {m}. But, by the i.i.d.
hypothesis we have that

o (t) = ()" (3.3.8)

and from the previous theorem the last expression equals to
itm n
(1+ — o(I£D)

and by the next lemma with ¢, = itm + o(%)n, last expression converges, as
n — +00, to e!!™ and we are done. |

Lemma 3.3.15. If {c,},>1 is a sequence of complex numbers with

lim ¢, =ceC,
+00o

n—

then
nlgrnoo (1 + %")n =e°
Theorem 3.3.16 (The central limit theorem).
If F has finite mean m < oo and variance o2 such that 0 < 02 < +00, then
S,—mn

ovn

in distribution, where ® is the distribution function of A4(0, 1).

—

Proof. Let us suppose that m = 0 and at the end we can simply consider Y; =
X; —m. From Levy’s converging theorem it is enough to show the convergence
of the corresponding characteristic functions. Note that

¢ s (0) = (=" (3.3.9)
ov/n
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and from Theorem 3.3.13 last expression equals to

202 ( ¢ )2 e 2\
(1 + T(Uﬁ) +O( oyVn ))
2
and by the previous lemma with ¢, = —5 + o(o;ﬁ)n, last expression converges,
2

2
t
asn — +00,toe 2 and we are done since e~ 2 corresponds to the character-

istic function of A4(0, 1) and by the uniqueness theorem. |

3.4 Exercises

Exercise 1:

Compute the characteristic function of each one of the following random

variables:
(@) X suchthatP(X =a)=1and P(X #a)=0.
(b) XsuchthatP(X=1)=1/2and P(X =—-1)=1/2.
(c) X with Bernoulli distribution with parameter p.
(d) X with Binomial distribution with parameter n and p.
(e) X with Geometric distribution with parameter p.
(f) X with Poisson distribution with parameter A.
(g) X with exponential distribution with parameter A.
(h) X with uniform distribution on [—a, a], with a > 0.
(i) X with triangular distribution on [—a, a], with a > 0.

() X with Gaussian distribution with mean u and variance o2.

Exercise 2:
(a) Show that for X and Y independent random variables it holds that

Px+y = PxPy-
(b) Show that if ¢ is a characteristic function, then |p|? is also a charac-

teristic function.

Exercise 3:
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Let ¢ be a characteristic function. Show that ¢ (t) = M=) with A > 0
is also a characteristic function.

Suggestion: Let N, X;,X,, - - - be independent random variables with N ~Poisson(A)
and (X,),>1 identically distributed with py = ¢ for alln > 1. Let Y := Sy,
with S, =X; +---+X,. Then ¢y = 1.

Exercise 4:

Let ¢y be a characteristic function of a random variable X with Binomial dis-
tribution with parameter n and p. Find ¢y and E[X ] and verify that i ! ¢y (0) =
E[X]=np.

Exercise 5:

Let (X,),>1 be a sequence of random variables with Uniform distribution
%[—n,n]. Find ¢ such that

Pn(t) ——— (1),

for all t € R where for each n > 1, ¢,, is the characteristic function of X,,. Verify
if ¢ is a characteristic function.

Exercise 6:

(@) Show that if Y := aX + b for a,b € R and a # 0 then py(t) :=
e oy (at).

(b) Is p(t) := 1} 00)(t) a characteristic function? Justify.

(© Is p(t) :=t1[1(t) + 11 o0)(t) a characteristic function? Justify.

(d) Show that X is a symmetric if and only if its characteristic function
px, takes values in R.

(e) Letp(t)= H%S(?’t) Find X such that ¢ is its characteristic function.
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Exercise 7:

(a) Using characteristic functions show that if X and Y are independent
and identically distributed random variables and if X ~ A4(0,1) then X +Y ~
A(0,2).

(b) Obtain the previous result using convolutions. Justify.

(c) Compute the 3-rd centered moment of the random variable X +Y, i.e.
compute E[(X + Y)3]. Suggestion: use characteristic functions.

(d) Let Xy,---,X, be independent and identically distributed random
variables such that X; ~ A4/(0,1). Using characteristic functions, show that

in probability, where S, :=X; +--- + X,,.

Exercise 8:

Let X4,--+,X, be independent random variables with Poisson distribution
with parameter A4, -, A,,, respectively, where A; > 0, for all i > 1.

(a) Verify that E[X;] = A;.

(b)  Compute the characteristic function yy, of X;.

(c) Verify that d,log(px, (t)) = Aqie’* and conclude that i_lcp)'(l(O) =
E[X,].

(d) Compute the characteristic function of S, =X; +--- +X,.

Exercise 9:

(a) Let X be a constant random variable and let ¢y be its characteristic
function.

Show that |py(t)|?> =1 for all t €R.

(b) Let X be a random variable independent of itself. Show that X is
constant a.e.

(c) LetX beasymmetric random variable that takes only two values 6 and
—6, with 6 > 0. Show that there is no 6 € R such that py(t)=1forallt € R

where ¢y denotes the characteristic function of X. Show that ¢} (0) = —62.
Conclude that Var(X) = 62.
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Exercise 10:

Find the distribution of the random variable X + Y + Z, knowing that X, Y
and Z are independent and identically distributed random variables and such
that X has Bernoulli distribution with parameter p, i.e. X induces the measure

px :=p&yy +(1—p)&g;-
Solve the exercise in two different ways: using the convolution and character-

istic functions.

Exercise 11:

(a) LetX be asymmetric random variable that takes the values a # b # c.
Knowing that P(X = 0) = 1/5, compute ¢y i.e. the characteristic function
of X.

(b) Verify that there is no a € R such that px(t) =1 for all t € R.
() Compute ¢y (t) and verify that i ¢4 (0) = E[X].
(d) Find a such that ¢(0) = —1. Conclude that Var(X) =1.

Exercise 12:

ita
Justify if o(t) := ¢ 2“ is the characteristic functions of a symmetric random
variable?

Find the random variable whose characteristic function is ¢.

Exercise 13:

Find the distribution of the random variable X + Y, knowing that X has
Poisson distribution of parameter A; and Y is independent of X and has Poisson
distribution of parameter A,. Solve in two different ways: using the convolution
and characteristic functions.

Exercise 14:

Let X and Y be independent and identically distributed random variables

such that X induces the measure uy := p&y) +q6(_1; wherep+q=1.
(a) Compute the characteristic function of X.
(b) Show that X is symmetric if and only if p = 1/2.

(c) Take p =1/2. Let px,y be the characteristic function of the random
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variable X + Y. Verify that ¢y, (t) := cos?(t), for all t € R.

(d) Using the convolution, determine the distribution function of the ran-
dom variable X +Y. Show that X +Y is symmetric if and only if p = 1/2. In this
case, compute again the characteristic function of the random variable X +Y
and conclude that for all t € R

1+ cos(2t)

2
cos™(t):=
(t) >

Exercise 15:

Let X and Y be independent and identically distributed random variables
with X ~ A0, 1).

(a) Using characteristic functions and the convolution, show that X +Y ~
A(0,2).

(b) Show, using characteristic functions, that if Z := ¢X + u then Z ~
N (u,02).

() Let ¢, be the characteristic function of Z. Compute |¢,|? and verify
that |¢,|?> < 1. Is the random variable Z symmetric?

(d) Show that i 1¢(0) := u and that —p/(0) = p? + o*. Conclude that
Var(Z) = o?.
Exercise 16:

(a) LetX be arandom variable with exponential distribution with param-
eter a > 0. Compute 5 (t), where @y is the characteristic function of X and
verify that i ' ¢ (0) = E[X].

(b)  Find a such that ¢{/(0) = —1/8. Compute Var(X).

Exercise 17:

(a) Find the random variable X such that ¢(t) := cos(t) is its character-
istic function. Justify.

(b) Show that a symmetric random variable has all its odd moments equal

to zero.

(@ Is p(t) := 1;_; 11(t) a characteristic function?
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. . lt . . . . .
(d) Justify if p(t) := ¢ 2+ L js the characteristic function of a symmetric
random variable? Find the random variable whose characteristic function is ¢.

Compute |¢|%.

Exercise 18:

Using characteristic functions, show that for g : R — R a continuous func-

tion, if

X, — X, weakly

then
g(Xy) — s g(X), weakly.

Exercise 19:
Using characteristic functions prove Slutsky’s Theorem:

Let (X,,),>1 and (Y,),>1 be two sequences of random variables and let X be
a random variable. Suppose that

Xp——>X, weakly and Y,——>c, in probability,

where c is a constant. Then

(@

X, +Y, mX +c¢, weakly.
(b)

X,—Y, — s X —c, weakly.
©

X, Y, = Xc, weakly.
X, X

(d) ifc#0andP(Y,#0)=1,foralln>1,then ?nm - weakly.

Exercise 20:

Show;, using characteristic functions that if (X, ),>; is a sequence of i.i.d.r.v.
. Sy . .1: _\"m
with E(X;) = u < 0o, then = — M in probability, where S,, = Zj:lXj‘
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Exercise 21:

(a) Show, using characteristic functions that if X ~ B(m,p) and Y ~ B(n, p),
and if X and Y are independent then X +Y ~ B(n + m, p).

(b) Show that if X has standard Cauchy distribution, then @,y = (¢x)?. Use
(without showing) that

T o 1+x2

+00
lf cos(tx) g = e ltl

(c) Itis true that if X and Y are independent random variables then px_,y =
px ¢y-. And the reciprocal, is it true? Prove and present a counter-example.

Exercise 22:
(a) Let ¢(t) = cos(at) with a > 0. Show that ¢ is a characteristic function.

(b) Let ¢(t) = cos?(t). Find X such that ¢ is its characteristic function.

Exercise 23:

Let X and Y beii.d.r.v. with E(X) =0 and Var(X)=1. Show thatif X +Y
and X —Y are independent then X,Y ~ A0, 1).
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Chapter 4

Discrete time Martingales

4.1 Conditional expectation

Definition 4.1.1 (Conditional probability).
Given a set A€ & with P(A) > 0 we define P4(-) in the following way:

P(ANE)
P(A)
P, is a probability measure and it is called the conditional probability with re-

]PA(E) =

spect to A. The expectation with respect to this probability is called the conditional
expectation wrt A:

1
EAlX]|=] X P =—— | X P .
AlX] JQ (w)P4(dw) FA) JA (w)P(dw)
Definition 4.1.2. Ifwe take now a partition of Q that is (A,);>1 With Q = U514,

A, € Z and A, NA,, = D if m # n, then given a set E € & we have that

P(E)= > P(ENA,) = > P, (E)P(A,).

n>1 n=1

Definition 4.1.3. As above we have that (if E[X] is finite)

E[X] :f X(w)P(dw) = J U 14X (w)P(dw)
Q

5 f X(@)B(dw) = > B(A, By, [X].
n>1JA,

n>1

135
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Example 20. Suppose that we have a card deck with 52 cards and that we take
one out and it is spades. What is the probability of taking another card of the deck

and that it is also spades?

Theorem 4.1.4 (Wald’s equation).

Let {X, } nen be a sequence of i.i.d.r.v. with finite mean. For k > 1 let ; be the
o-algebra generated by X; with j = 1,--- , k. Suppose that N is a random variable
taking positive integer values such that for all k > 1 we have that {N < k} € Z
and E[N] < oco. Then E[Sy]=E[X;]E[N].

Proof. To prove it note that

E[Sy] :J SyP(dw) =J SyP(dw) =ZJ SyP(dw)
) =1} =1 (N=k}

k
{N=k} {N=k}

k>1j=1 j=1 k>j
=>" J X;P(dw) = > (E[X;] —J X;P(dw))-
j=1J {N=j} j=1 {N<j-1}

Now we note that the set {N < j— 1} and the r.v. X; are independent
(remember that {N < j—1} e Z j—1 and note the definition of &;_,), therefore
we get

E[Sy]= Y ELX;IP(N > /) =E[X,]1D P(N > j) = E[X, JE[N].
=1 j>1
To justify that we can interchange summations we have to repeat the compu-
tations taking |X;| and we will see that we get the result E[|X;|]JE[N ] which is
finite by hypothesis. |

Now, let X be a discrete r.v. and let A, = {X = a,}. Given an integrable r.v.
Y we define the function E[Y|¥] in Q as

E[Y|9]= )1, ()E[YIA,],

n>1
this means that E[Y|¥] is a discrete r.v. that takes the value E[Y|A,,] on the set
A,
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We can rewrite the expression above as

E[Y]= ZJ E[Y|9]P(dw) = f E[Y|9]P(dw)
n>1JA, Q

Analogously for any A € ¢, A is a union of subcolletion of the A,’s, so that, for

every A € ¢ we have that

f YP(dw) = J E[Y|4]P(dw)
A A

Attention to the measurability of the functions involved.
Now, we suppose that we have two functions ¢; and ¢, both ¢ measurable
and such that

J YP(dw) = J p1P(dw) = J poP(dw).
A A A

If we take the set A= {w € Q: p;(w) > py(w)}, then A € ¢4 and we conclude
that P(A) = 0. Repeating the argument exchanging ¢, with ¢, we conclude
that ¢, = p, a.e.

This means that E[Y|¥] is unique up to a equivalence and we are going
to denote E4[Y] or E[Y|¥] to denote that class. The results holds for any
o-algebra.

Theorem 4.1.5. IfE[|Y]|] < oo and ¥ is a o-algebra contained in &, then, there
exists a unique equivalence class of integrable r.v. E[Y|¥] belonging to ¢ such that
for any A € ¢ it holds that fA YP(dw) = fA]E[YIEﬁ]]P’(dw).

Definition 4.1.6 (Conditional expectation).

Given an integrable rv. Y and a o-algebra ¥, the conditional expectation
Ey[Y] of Y with respect to % is any one of the equivalence class of r.v. on Q such
that:

1. it belongs to ¥;

2. it has the same integral as Y over any set in 4.
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Note that for Y = 1, with A € & we write P(A|¥¢) = E[1,|%] and this is the
conditional probability of A relatively to ¢. This is any one of the equivalence

class of r.v. belonging to ¢ and satisfying

VBe 9 :P(BNA)= J P(A|9)P(dw).
B

Theorem 4.1.7. Let Y and ZY be integrable r.v. and let Z € 4. Then

E[YZ|9]=ZE[Y|¥9], ae.

.4

| Exercise: do the proof of the theorem.

Let us note that E[X|Z ] = E[X], where & is the trivial o-algebra, that is
T ={@,0}.

4.2 Properties of the conditional expectation

Let X and X,, be integrable r.v.
1. If X € ¢, then E[X|¥] =X a.e., thisis true also if X = a a.e.,
2. E[X, +X,|9] =E[X,|9]+E[X,|9],
3. If X; <X, then E[X;|¥9] < E[X,|¥],
4. |[E[X|9]l <E[IX]|¥9],
5. If X, T X, then E[X,|9] 1 E[X|¥],
6. If X, | X, then E[X,|¥] | E[X|¥4],
7. If |X,| <Y, Y is integrable and X,, — X, then E[X,|¥4] — E[X|¥],

8. E[|IXY||9]? < E[X?|¥4]E[Y?|¥]. (Cauchy-Schwarz inequality)
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.4

| Exercise: do the proof.

Theorem 4.2.1 (Jensen’s inequality). If ¢ is a convex function on R and X and
¢ (X) are integrable r.v., then for each ¥:

p(E[X]|9]) <E[e(X)|¥].

.4

| Exercise: do the proof.

Note that when A = , the defining relation for the conditional expectation
says that

E[E[Y|9]|7]=E[Y|7]=E[E[Y|T]¥]
This can be generalized and it is called the tower law.
Theorem 4.2.2 (Tower law). If Y is integrable and &, C &, then:
o E[Y|7]=E[Y|Z,] iff E[Y|F;] € F1.
o B[E[Y|%,]1%] = E[Y|#,] = B[E[Y]Z;]|,]
As a particular case we note that
E[E[Y|X1,X,]1X1]1=E[Y|X,] = E[E[Y|X;]IX;,X5].

Proof. We start with the first assertion. Let start by assuming that E[Y|%] =
E[Y|Z,], then by 1) in page 128 we have that E[Y|Z,] € Z;.

Now let us assume that E[Y|%,] € &;. Then, for A € £, 2) in page 128
holds, from where the result follows.

Now let us prove the second assertion. Note that E[Y|%;] € &,, and from
the first assertion applied to E[Y|%;] we conclude the second equality. Let us
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prove the first equality now. For that purpose note that if A € &, then A € &,,
so that

f E[E[w%]@l]ﬁ»(dw):J E[Y |7, P(dw) = f YP(dw).
A

A A
Moreover, E[E[Y|Z,]|Z,] € Z; so that, both properties defining the condi-
tional expectation are verified and we are done. o

4.3 Conditional independence

Let & be a g-algebra and let {Z,},c4, Where A is a index set, be contained in

Z.

Definition 4.3.1. The collection {Z,}4ea is said to be conditionally independent
to a o-algebra 9 iff for any finite collection of sets Ay, - -+ ,A, with A; € F; and
with a;s distinct indices of A we have

n
p(nr_ 45l9) =] [p@a19).
j=1
Note that if ¢ = & then the previous condition is just the usual indepen-
dence.

Theorem 4.3.2. For each a € A, let F® be the smallest o-algebra containing all
Fp with 3 € A\{a}. Then, the Z,’s are conditionally independent relatively to a
o-algebra 4 iff for each a and A, € &, we have

P(Aalﬁv‘("‘) Vv %) =P(A,]¥9),
where F(® V & denotes the smallest o-algebra containing Z® and .

Note that if in the previous theorem ¥ = & and &, is generated by a r.v.
say X, then we have

Corollary 4.3.3. Let (X,)qea be a collection of rv. and for each a let F® be the
o-algebra generated by all ther.v. except by X,. Then, therv. X,’s are independent
iff for each a and B € 9B we have

P(X, € B|F®)=P(X,€B) ae.
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Now, let X; and X, be two independent r.v. What happens if we condition
X]_ +X2 by Xl?

Theorem 4.3.4. Let X; and X, be two independent r.v. with probability measures
uq and U, respectively. Then, for each B € A:

]I‘D(Xl +X2 EB|X1):]P(X1 +X2€B|g1):.U:2(B—X1) a.e.

where & is the o—algebra generated by X;.
More generally, let (X,),en be a sequence of independent r.v. with probability
measures (U, )ney and let S, =X, +---+X,,. Then, for each B € %:

P(S, € B|Sq, "+ ,Sp—1) = un(B _Snl) =P(S, €B|S,—1) ae.

4

| Exercise: Prove all the results above.

Let us look quickly at the proof of the previous theorem.

Remember that P(X; + X, € B|X;) = E[1{x,1x,ep1X1]. Now using the
Theorem of page 76 we have that, for A € &; (note that this set is such that
A=X l_l(A), where A € &, to prove this use the trick with monotone classes,
see the Theorem in page 4)

[ u2(B—X1)P(dw) = J (B — x1)up(dxq)
A

A
([
= | wildxy) | g txeppta(dxy) = ty X pg(dxq,dxs,)
Ja Q {x1€A,x1+x,€B}

J J{X,€AX,+X,eB)}

= | lx+x,epP(dw).
JA

Since uy(B —X;) € &; and since the previous relation is true for any A € 4,

the result follows. As an exercise, prove the second assertion of the theorem.
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4.3.1 Conditional distribution of X given a set A.

Given a r.v. X in a probability space (2, &,P) and for an event A with P(A) > 0
we define the conditional distribution of X given A as:

P((X € B)NA)

P(X € B|A) = =

.

Exercise: Check that this gives a probability measure on the Borel o-

algebra.

Now, we can define the conditional distribution function of X given the set A on
x €R as

Fy (x]A) = P(X < x|A) = W

The conditional expectation of X given the set A is the expectation of the
conditional distribution given by

E[X|A] = f x dFy (x]A)

if it exists. As above, if we take now a partition of 2 that is (4,),>; with Q =
Ups14n, A, € F and A, NA,, = @ if m # n, then

P(X €B)= Y P(X € B|A,)P(A,).

n>1

Also forany x, Fy(x) =P(X < x) =2, o P(X < x|A)P(A,) = D Fx(x|A)P(A,)
and analogously

E[X]= J xdFy(x) = > P(A,)E[X|A,].
n>1

1) Let X ~ U[—1,1] and let A = {X > 0}. What is the conditional distribu-
tion of X given A?
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4.3.2 Conditional distribution of X given a discrete r.v. Y

Let us suppose now that the partition is generated by a discrete r.v. Let Y be a
discrete r.v. defined on a probability space (2, #,P) taking the values (a,),ex-
Then the events {Y = a,,} form a partition of 2. In this case P(X € B|Y = a,,) is
called the conditional distribution of X given Y = a,, and we have that

P(X €B|Y =a,)= > P(X €B|Y =a,)P(Y =a,).

n>1

Also for any x,

Fx(x) =P(X < x)= > P(X < x[Y = a,)P(Y =a,)

n>1

= ZFX()ClY = an)P(X = an)

n>1

and analogously E[X] = fxdFX(x) = an1 P(Y = a,)E[X|Y =a,].

Note that for B fixed we have that P(X € B|Y = a,,) is a function of a,, let us
say g(a,). Defining g(y) = P(X € B|Y = y) we have that P(X € B) = fIP’(X €
B|Y = y)dFy(y) = [ g(y)dFy(y). Moreover,

Fx(x) = J Fx(x|Y =y)dFy(y) E[X]= f E[X]Y = y]dFy(y).

When X is integrable the function ¢(y) = E[X|Y = y] is finite. In this case, the
r.v. p(Y) is called the conditional expectation of X given Y: (V) = E[X|Y].
We note that E[X|Y = y] is the value of the random variable E[X|Y'] when

Y = y. The last formula can be interpreted as
E[X]=E[¢(Y)] =E[E[X|Y]].

2) Consider the following experience: a player tosses a fair coin n times obtain-
ing k heads with 0 < k < n. After that a second player tosses the same coin k
times. Let X be the number of heads obtained by the second player. What is the

expectation of X supposing that all the events are independent?
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4.3.3 Conditional distribution: general case

Let us define now the conditional expectation for general r.v. X and Y. Before
we defined the conditional distribution of X when Y was discrete, so that P(Y =
y) =0 for all y # a,. But now we want to extend this to the continuous case
in which the probability above is null for all y € R. How to do it? We define by
approximation. Take I an interval containing y with size Ay and define

P(X €B,Y €1)

PXeBlY =y)~PXeB|lYel)=
(X €BIY =)~ B €BIY €N == o

If P(X € B|Y €1) has a limit when Ay — 0 we call to the limit P(X € B|Y =
y):

Jim P(X €B|Y €I) =P(X €B|Y = ).
y—)

Let us go back to the case in which X is discrete.
Then we have

Fan(6y)=PX <x,Y<y)= D PX<x,Y=a,)

n:a,<y
— Z P(X < x|Y = a,)P(Y = a,)
n:a, <y
= 37 RxIY = a)B(Y = a,)
n:a,<y
y
= f Fx(x|Y = a)dFy(a).
—00

Note that in the discrete case, the joint distribution is like a composition of the
marginal distribution of Y with the conditional distribution of X given Y. Let
use then the last equality!

Definition 4.3.5. Let X and Y be two r.v. defined on the same probability space.
A function P(X € B|Y = y) defined for each borelian B and y € R is a (regular)

conditional distribution for X given Y if:

1. for each y fixed, P(X € B|Y = y) defines a probability measure in %,
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2. for any B € A fixed, P(X € B|Y = y) is a measurable function of y,

3. for any (x,y) € R? it holds that

y
PX<x,Y<y)= J Fx(x|Y = a)dFy(a).

—00

P(X € B|Y = y) is called the conditional probability of X belonging to B given
that Y =y and Fx(-|Y = y) =P(X < -|Y = y) is the conditional distribution of
X givenY =y.

Theorem 4.3.6. Let X and Y be two r.v. defined on the same probability space.
There exists a (regular) conditional distribution for X given Y. In fact there exists
only one in the sense that they are equal a.e.: that is, if P{(X € B|Y = y) and
P,(X € B|Y = y) are conditional distributions for X given Y, then there exists a
borelian By such that P(Y € Bj) =1 and P1(X € B]Y = y) =Py(X € B|lY = y)
forall B€ 98 and y € By.

Theorem 4.3.7. For each B € & fixed, the limit
lim P(X €BJY €I)=P(X €B|Y =a)
a—

exists a.e. Moreover, for each B € & fixed, the limit is equal to P(X € B|X = y)

as given in the definition above, a.e.

1) What is the conditional distribution of Y given Y? Let us guess it. If it
is given that Y = y, then Y = y! So the candidate is P(Y = y|Y = y) = 1 the
distribution which gives weight 1 to the point y. Check that for B = (q;,95)
with g; € Q it holds that

(Y €B|Y =y) = lim B(Y €B|Y €1),
a—

which proves the result.
Note however that if we take B = {y,} then

B(Y = yolY = y) = lim P(Y = y,|Y €1)=0!
a—

This does not contradict our result but contradicts our intuition!
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2) Given Y = y what is the conditional distribution of Z = g(Y)? Recall
that above we have seen that if Y = y, then P(Y = y|Y = y) = 1. Here it is
analogous. In this case we have that P(g(Y)=g(y)|Y =y)=1.

3) Let X be a symmetric r.v. around 0. What is the conditional distribution
of X given the r.v. |X|? Given that |[X| =y > 0, then X = y or —y, there are no
other possibilities and from symmetry we have that:

1
JP’(X=y||X|=y)=§=P(X=—yIIX|=y), y >0,

and P(X = 0[|X| = 0) = 1.
Let us do it now in a different way. Suppose y > 0. Take B = (q;,a,) with
g; € Q and take I C B. Then
1 1
P(X €B||X|e)=P(X €1) = 5(JP>(X eN+PX e-I))= SB(X| D).
And

P(X € —B||X| € ) =P(X € —I) = %]P’(|X| en.

Since I C B we have that

1
P(X eB||X|eI)=5=IF’(X€—B||X|€I).

Therefore,
. 1
PX €B||X|=y)= lim PX €B||X|€I)=—,
Ay—0 2

1
P(X € -B||X|=y)= lim P(X € -B||X| €)= .
Ay—0 2

Taking B decreasing to {y} we see that the conditional probability gives
weight 1/2 to each one of the points y and —y. The proof that P(X = 0||X| =
0) =1 can be reached by taking B = (q;,q5) as above with g; < 0 < q5.

4) Let X and Y be independent r.v. each one with law N (0, o?) with o > 0.
What is the conditional distribution of (X,Y) given vX2 +Y2?

For z > 0, VX2 +Y2 = z iff (X,Y) is in the circle centered at (0,0) with
radius z. Therefore the conditional distribution is concentrated in that circle,
that is, in the set of points of R? given by ¢ := {(x,y) : x> + y? = z}.
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Note that the joint density function of (X,Y) is given by

1 242

Oy = goge

Note that the density is constant on the circle 6. Therefore, before the experi-

ence all the points in the circle 4 had the same "chance" and our guess for the
distribution is the uniform distribution on the circle, that is, for B € %2 and
z>0:

P((X.Y) € BVX2 1 72 = z) = Sz of (BN €)

21z

Prove it!

4.4 Discrete time Martingales

Let (X,)ey be independent r.v. with mean zero and let S, = Z?:l X;. Then

IEI:“S'n+1|X1: e ’Xn] = IE[Xl +- X, +Xn+1|X1’ e :Xn]
= STl + ]E[Xn+1|X1, e ,Xn] == Sn + E[Xn+1]
=S,.
Historically, the equation above gave rise to consider dependent r.v. which

satisfy E[X,,.1 /X1, - ,X,] = 0 and this opened a way to define a class of stochas-
tic processes which are extremely useful - the martingales.

Definition 4.4.1 (Smartingale: martingale, submartingale, supermartingale).
The sequence of .v. and o—algebras (X,,, Z,)nen s said to be a martingale iff
for each n € N we have that

1. #,C P and X, € Z,, (this means that X,, is adapted to &)
2. E[|X,|] < oo for each n € N, (this means that X,, is integrable)

3. for each n € N, we have that

X, =E[X,1|%,] ae (martingale)
X, <E[X,411Z,] ae (submartingale)
X, > E[X,11Z,] ae. (supermartingale)
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Example 21. Check that (Y, &, )qen is a (sub)martingale in each case below:

1. let (X,), be a sequence of independent r.v. with mean zero, &, = o(Xq,-+-,X,,)
and Y, =S,

2. let (X,), be a sequence of independent r.v. with mean one, &, = o(Xy,--,X,,)

and Y, =[[}_, Xi

3. let X be an integrable rv. and let , ¢ &, C --- C &, Y, = E[X|Z,],
(GOOD FOR CREATING MARTINGALES!)

4. let (X,), be a sequence of non-negative integrable r.v., &, = o(X1,- -+ ,X,,)
and Y, =S,, (sub)

Note that the condition for martingale implies that for n < m we have that
X, =E[X,|Z,] ae.

Theorem 4.4.2 (Jensen’s inequality).

Let (X,,, Zn)nen be a submartingal and let ¢ be an increasing convex function
defined on R. If ¢(X,) is integrable for any n, then (¢(X,), Z)ney is also a
submartingal.

Corollary 4.4.3. If (X,,, Z,)nen is a submartingal then (X}, Z,)ey is a sub-
martinagle' If(Xn’ gn)nGN isa TTlClT'tiTlg(ll, then (anl, gn)neN and (|Xn|p, 9n)n€N
for 1 < p < oo if X, € LP are also submartingales.

4

| Exercise: Prove the theorem.

4.4.1 Martingales in Game theory

Let (X,) ey be a sequence of i.i.d.r.v. taking the value 1 with probability p and
—1 with probability 1—p. The interpretation is that X,, = 1 represents a success
while X,, = —1 represents a failure of a player at the n-th time he is playing a

game. Let us suppose that the player can win or lose a certain amount V,, at
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the n-th time he plays the game, that is, V,, is the amount of the bet at time n.

Then, at time n the player possesses
n
Y= D ViX; =Yg + VX,
i=1

It is quite natural to assume that the amount V,, may depend on the previous
amounts, that is, of V;,---,V,_; and also of X;,---,X,_;. In other words, let
Zo = 12,9} and &, = o(Xq, -+ ,X,,). Then, V, is a function &,_; measur-
able, that is, the sequence that determines the player’s strategy is said to be
predictable.

LetS,=X;+---+X,. Then

n
Y,= > VAS,
i=1

where AS; = S; —S,_;. Then, the sequence (Y,,, Z,),en is said to be the trans-
form of S by V.

From the player’s point of view, the game is said to be fair (favorable or
unfavorable) if at each step if E[Y,,,; —Y,,|[Z,]=0 (=0 or <0)

We want to analyze in which conditions the game is fair? A simple compu-
tation shows that :

1. The game is fairif p=1—p =1/2. (Y,,, Z,)nen is @ martingale.
2. The game is favorable if p > 1 —p. (Y, Z,)qey is @ submartingale.

3. The game is fair if p < 1 —p. (Y,, %, )ney iS a supermartingale.

Let us now consider another strategy. Take (V,,, Z,_1),>1 with V; = 1 and
for n > 1 we have that V, = 2" 1 if X; =—1,---,X,_; = —1 and 0 otherwise.
Under this strategy, a player starts to bet 1 euro and doubles the bet in the
next play if he had lost or leaves immediately the game in case he had won.
IfX; =—1,---X, = —1, then the total loss after n plays is Z?:l 271 =2on—1,
Therefore, if X,,,; =1then Y, =Y, + X, 1 V1 =—(2"—1)+ 2" =1.
Let T :=inf{n > 1:Y, = 1}, that is the first time that Y, = 1. If p = %, then

the game is fair and
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P(r=n)=P(Y,=1,Y #LVk=1, ,n—1)=(1)”.

From where we conclude that

P(t <0o0)=PU,>1T=n)= Z(%)n _1
n>1
Moreover, P(Y, =1)=1and E[Y,] = 1.

Therefore, even in a fair game, applying the strategy described above, a
player can, in finite time, complete the game with success, that is, increase his
capital in one unity: E[Y.] = 1 > Y, = 0. In game theory this type of system
- double the bet after a loss and leave the game immediately after a win - is
called a martingale.

We note however that p = 1/2, so that (Y, Z,).ey iS @ martingale and
E[Y,,] = E[Y,] =0 for all n > 1. Above the same is not true for a random time

(above we took the random time 7.)

Definition 4.4.4 (Markov time).

A rv. T which takes values in the set {0,1,---,00} is said to be a Markov
time wrt a o-algebra &, if for each n > 0 we have that {t = n} € &,. When
P(7 < 00) = 1, the Markov time is said to be a stopping time.

If (X,,, Z,)nen is @ sequence of r.v. and o-algebras with &, € Z,,, and if
T is a Markov time wrt %,,, then we write X, = ZSZO X, 1{z=p}. Note that since

P(t < 00) =1 we have that X, = 0 in the set T = 00. Prove that X is a r.v.

Example 22 (Prove it!). Let (X, Z,)nen be a martingale (or submartingale)
and © a Markov time wrt Z,. Then the stopping process X* = (X,r¢, %) 1s also

a martingale (or submartingale).

4.5 Exercises

Exercise 1: Show that:

(@) if (X,,)>1 is a sequence of independent r.v. with E[X,]=0foralln>1,
then (S,,, Z,)n>1 Where S, = Z;.llej and &, = o(Xq,---,X,) is a martingale
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(b) if (X,,)>1 is a sequence of independent r.v. with E[X,]=1foralln>1,
then (X,,, Z,)n>1 where X, = n?=1Xj and 7, = o(Xy, -+ ,X,), isamartingale.

(c) given an integrable r.v. X, that is with E[|X,|] < +oo and a set of o-
algebras #, & Z; € --- & Z,, then (X, #,),>1 where X,, = E[X|Z,] is a
martingale.

Exercise 2: Show that:

(@) if (X,,)>1 is a sequence of non-negative integrable r.v., then (S, Z,,)>1

where S, = Z?Zl X;and #, = 0(Xq, - ,X,) is a submartingale.

(b) if (X, Z,)n>1 1 @ martingale and g : R — R is a convex function with
E[|g(X,)|] < +oo for all n > 1, then (g(X,,), Z,)n>1 is a submartingale.

Exercise 3: Let (X,),>1 beii.d. rv. withP(X; =1)=pand P(X; =—1) =q
with p +q = 1. If p # q, show that if §,, = Z?ZlXj and Z, = o(Xq, -+ ,X,),
then

Sn
(@) (Y, Z.)n>1 is a martingale, where Y, = (%) .

(b) (Z,, Z1)n>1 is a martingale, where Z, =S, —n(p —q).
Exercise 4: Show that if (X,,),>1 is a sequence of i.i.d. r.v. with E[X,]=0

and Var(X,) = o2 for all n > 1, then (#,,, Z,),>1 is a martingale, where &, =
O-(Xla e JXH) and

(a) .
W, = (ij)z —no?.
j=1
(b)
elZ;zle

" (B[

Exercise 5: Let (X,),>1 be a sequence of i.i.d. r.v. that take values on a
finite set .#. For each y € .4, let fo(y) =P(X; = y) and let f; : # — [0,1] be
a non-negative function such that Zye 4 f1(y) =1. Show that (#},, Z,)n>1 is a

martingale, where &, = (X4, -+ ,X,) and
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_ f(Xq) - f1(X)
T foX1) - foX)

The r.v. #;, are known as likelihood ratios.

Exercise 6: Let (X, Z,),>1 be a martingale.
(a) Show that, for all n < m it holds that X,, = E[X,,|.Z,].
(b) Conclude that E[X;] =E[X,] for all n > 1.

(c) Foreachn>2letY, =X, —X,_; and take Y; = X;. We observe that Y,
is called the increment of the martingale. Show that E[Y,,] =0 for all n > 0.

(d) Assume that E[Xs] < 400 for all n > 1. Show that the increments of
the martingale are non correlated.

(e) Show that Var(X,) = Z};l Var(Y;).

Exercise 7: Let (X,,, Z,)n>1 and (Y, Z,).>1 be two martingales with X; =
Y; = 0. Show that

E[X,Y,] = D E[(Xx — X)) (Vi — Yeer)]
k=2

Exercise 8: Let (X,,Z,),>1 be a martingale (or submartingale) and 7 a

Markov time (with respect to %,). Then, the stopping time
X" = Xminfn,1}> Fn)
is also a martingale (or a submartingale).
Exercise 9:

(a) Prove Wald’s inequality. Let (X,),>1 be a sequence of integrable i.i.d. r.v.
and let T be a stopping time with respect to #, = o(X;,--- ,X,) and E[7] < oo.
Then, E[X; +---+ X, ] =E[X;]JE[7T].

(b) Analyze the case in which P(X; = 1) =1/2 =P(X; = —1) and 7 =
inf{ln>1:X;+---+ X, =1}. What do you conclude about E[7]?
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Exercise 10: Let (X,),>1 be a sequence of i.i.d.r.v. such that P(X; =1) =
p=1—P(X; =—1). Interpret X, = 1 as a success and X,, = —1 as the lost of a
player in its n-th play. Assume that the player can win or lose in the n-th play
the amount V,, (so that V, is the amount of the bet in the n-th play). The total
amount of the player at the n-th play is given by Y,, = Z?:lX ;V:. Assume that
V; is predictable with respect to &, = o(Xq, -+, X,).

a) Verify in which conditions the game is fair, favorable or unfavorable. In
each case, verify if (Y,,, &,),, is a martingale, sub-martingale or supermartingale.

b) Now consider the following strategy V; = 1 and

Vn = 2n_1 1{X1:_1,"'»Xn—1:_1}'

Say by words what means that strategy. Is (V,,),, predictable with respect to Z,,?
Let

T=inf{ln>1:Y,=1}.

Take p = 1/2, compute the probability function of T and express P(1 < 00).
Compute E[Y,]. What can you say about the game?
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