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Chapter 1

Measurable spaces

1.1 Set theory

Let Ω be an abstract space and we shall denote its elements by ω.

Definition 1.1.1 (Algebra).

An non-empty collection F of subsets of Ω is an algebra if and only if:

• E ∈ F ⇒ Ec ∈ F

• E1, E2 ∈ F ⇒ E1 ∪ E2 ∈ F

Note that we shall refer to the first (resp. second) property above as saying

that an algebra is stable for the complementary (resp. for finite unions).

Definition 1.1.2 (Monotone class).

An non-empty collection F of subsets of Ω is a monotone class if and only if:

• E j ∈ F , E j ⊂ E j+1 , ∀ j⇒∪ j≥1E j ∈ F

• E j ∈ F , E j ⊃ E j+1 , ∀ j⇒∩ j≥1E j ∈ F

Remark 1.1.3. We will use the notation E j ↑ for E j ⊂ E j+1 , ∀ j and E j ↓ for

E j ⊃ E j+1.

Definition 1.1.4 (σ-algebra).

An non-empty collection F of subsets of Ω is a σ-algebra if and only if:
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6 Set theory

• E ∈ F ⇒ Ec ∈ F

• E j ∈ F , ∀ j⇒∪ j≥1E j ∈ F

Note that we shall refer to the first (resp. second) property above as saying

that a σ-algebra is stable for the complementary (resp. for countable unions).

Theorem 1.1.5. An algebra is a σ-algebra if and only if it is a monotone class.

Proof. Let us first prove that if F is an algebra and a monotone class, then F
is a σ-algebra. For that it is enough to show that F is stable for the countable

union. Take a collection {E j} j≥1 ∈ F and for each n≥ 1 let Fn = ∪n
j=1E j . Since

F is an algebra then Fn ∈ F and on the other hand Fn ⊂ Fn+1 and since F is a

monotone class, we have that ∪n≥1Fn = ∪ j≥1E j ∈ F .

Let us now prove that ifF is an algebra and a σ-algebra, thenF is a monotone

class. For any collection {E j} j≥1 ∈ F it holds that ∪ j≥1E j ∈ F because F is a

σ-algebra. Now for a collection {E j} j≥1 ∈ F with E j ↓ we have that

∩ j≥1E j =
�

∪ j≥1 Ec
j

�c
.

Since E j ∈ F , then Ec
j ∈ F , and since F is a σ-algebra we conclude that

∪ j≥1Ec
j ∈ F . From this we get that

�

∪ j≥1 Ec
j

�c
∈ F and we are done.

Example 1. The collection S of all subsets of Ω is a σ-algebra and it is called

the total σ-algebra. The collection {∅,Ω} is a σ-algebra and is it called the trivial

σ-algebra.

Remark 1.1.6.

1. If A is an index set and if for α ∈ A,Fα is a σ-algebra (or a monotone class),

then ∩α∈AFα is a σ-algebra (or a monotone class).

2. Given a non empty collection of sets C , there exists a minimal σ-algebra (or

algebra or monotone class) containing C , which consists in the intersection

of all σ-algebras (or algebras or monotone classes) containing C . There is

at least one, namely the total σ-algebra S . This σ-algebra (or algebra or

monotone class) is called the σ-algebra generated by C .
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Theorem 1.1.7. LetF0 be an algebra, C the minimal monotone class containing

F0 and F the minimal σ-algebra containing F0. Then F =C .

Proof. To show the equality we will show first that C ⊂ F and second that

F ∈ C . Since a σ-algebra is an algebra and a monotone class, then F is a

monotone class which containsF0 and since C is the minimal monotone class,

we conclude that C ⊂ F . Now we will prove that F ⊂ C . For that purpose,

it is enough to show that C is a σ-algebra and from the previous theorem it is

enough to show that C is an algebra. We need to prove two things: C is stable

for finite intersections and for the complementary. Let us define the following

subsets of C :

C1 := {E ∈ C : E ∩ F ∈ C , ∀F ∈ F0}

C2 := {E ∈ C : E ∩ F ∈ C , ∀F ∈ C}.
(1.1.1)

Note that from the definition of C1 and C2 above, we have that Ci ⊂ C for

i = 1,2. Let us show first that C1 and C2 are monotone classes. We start with

C1. Therefore, we need to show that for a collection {E j} j≥1 ∈ C1 with E j ↑ we

have that ∩ j≥1E j ∈ C1. This means that ∀F ∈ F0 we need to have

�

∪ j≥1 E j

�

∩ F ∈ C .

Let us check that this is indeed true. Well,

�

∪ j≥1 E j

�

∩ F = ∪ j≥1(E j ∩ F).

Since E j ∈ C1, then E j ∩ F ∈ C ,∀F ∈ F0. But since E j ⊂ E j+1, this implies that

E j∩ F ⊂ E j+1∩ F and since C is a monotone class, then ∪ j≥1(E j∩ F) ∈ C . From

this we conclude that C1 fulfils the first property for being a monotone class.

The second property is proved in a completely similar way, just by taking into

account that F ∩
�

∩ j≥1 E j

�

= ∩ j≥1(F ∩ E j). We can also do a similar argument

to show that C2 is a monotone class. Now recall that F0 is an algebra so that

F0 ⊂ C1 ⊂ C . But then C ⊂ C1 since C is the smallest monotone class that

contains F0. From here we conclude that

C1 =C .
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This means that ∀F ∈ F0 and E ∈ C we have that F ∩E ∈ C , which means that

F0 ⊂ C2. But sinceC2 is a monotone class containingF0 we have thatC2 =C .

This implies that ∀E ∈ C and F ∈ C it holds that E∩ F ∈ C , so that C is stable

for the intersection. Now let us prove that C is stable for the complementary.

Let

C3 := {E ∈ C : Ec ∈ C}.

By definition C3 ⊂ C . Let us now prove that C3 is a monotone class. For that

purpose, let {E j} j≥1 ∈ C3 with E j ↑ and we have to show that ∩ j≥1E j ∈ C3.

For that purpose note that
�

∪ j≥1 E j

�c
= ∩ j≥1Ec

j . Now, since E j ⊂ E j+1, then

Ec
j+1 ⊂ Ec

j and ∩ j≥1Ec
j ∈ C , since C is a monotone class. Analogously, we

have for {E j} j≥1 ∈ C3 with E j ↓ that
�

∩ j≥1 E j

�c
= ∪ j≥1Ec

j ∈ C . From this we

conclude that C3 is a monotone class. But since F0 ∈ C3 (because F0 is an

algebra - so that it is stable for the complementary) and F0 ⊂ C , we conclude

that C ⊂ C3, from where it follows that C = C3. This means that ∀E ∈ C we

have that Ec ∈ C , so that C is stable for the complementary. This shows that

C is an algebra and we are done.

1.2 Probability measure

Definition 1.2.1. Let Ω be an abstract space and F a σ-algebra of subsets of Ω.

A probability measure P(·) in F is a function P :F −→ [0,1] which satisfies the

following properties:

1. ∀E ∈ F ,P(E)≥ 0.

2. If {E j} j≥1 is a countable collection of disjoint sets of F , then

P(∪ j≥1E j) =
∑

j≥1

P(E j) (countable additivity).

3. P(Ω) = 1.

The triple (Ω,F ,P) is called a probability space, Ω is called the sample space

and its elements ω are called the sample points.
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Prove, as a consequence of the previous definition, that

1. ∀E ∈ F ,P(E)≤ 1.

2. P(∅) = 0.

3. P(Ec) = 1− P(E).

4. P(E ∪ F) + P(E ∩ F) = P(E) + P(F).

5. E ⊂ F ⇒ P(E) = P(F)− P(F\E)≤ P(F).

6. Monotone property: If E j ↑ E or E j ↓ E, then P(E j)→ P(E).

7. Boole’s inequality P(∪ j≥1E j)≤
∑

j≥1 P(E j).

Exercise:

Recall that

1. If {E j} j≥1 is a countable collection of disjoint sets of F , then

P(∪ j≥1E j) =
∑

j≥1

P(E j) (countable additivity).

2. When above we have a finite collection we say it is the finite additivity

property.

3. If E j ↓∅, then P(E j)→ 0 (continuity).

Theorem 1.2.2. The finite additivity and the continuity together are equivalent

to countable additivity.

Proof. Let us first show that countable additivity implies finite additivity (which

is trivial) and continuity. Let {E j} j≥1 ∈ F such that E j ↓ ∅. We have the

following equality:

En = ∪k≥n(Ek|Ek+1)∪∩k≥1Ek.

If E j ↓∅ then ∩k≥1Ek =∅, from where we get that

P(En) = P(∪k≥nEk|Ek+1) =
∑

k≥n

P(Ek|Ek+1).
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Note that in the last equality we used the countable additivity and the fact that

the sets {Ek|Ek+1}k≥1 are disjoint. Since the series above is convergent (since it

equals P(En)) we have that

lim
n→∞
P(En) = 0

and continuity holds. Let us now prove that continuity and finite additive imply

countable additivity. Let {Ek}k≥1 be a collection of disjoint sets of F . Then

Fn+1 = ∪k≥n+1Ek ↓∅,

since ... ⊂ Fn+3 ⊂ Fn+2 ⊂ Fn+1 and from the continuity we have that limn→∞ P(Fn+1) =
0. Moreover, if finite additivity also holds, then

P(∪k≥1Ek) = P(∪n
k=1Ek) + P(∪k≥n+1Ek)

=
n
∑

k=1

P(Ek) + P(Fn+1)

≥
n
∑

k=1

P(Ek).

(1.2.1)

From this we conclude that the series
∑

k≥1 P(Ek) is convergent since it is bounded

from above by P(∪k≥1Ek). Sending n→∞we have that P(∪k≥1Ek)≥
∑

k≥1 P(Ek)
and from Boole’s inequality we also have that P(∪k≥1Ek) ≤

∑

k≥1 P(Ek), from

where we obtain that

P(∪k≥1Ek) =
∑

k≥1

P(Ek)

and countable additivity is proved.

Let Λ ∈ Ω. The trace of the σ-algebra F in Λ is the collection of all the sets

of the form Λ∩ F, where F ∈ F . It is easy to see that this is a σ-algebra that we

denote by Λ∩F . Suppose now that Λ ∈ F and P(Λ)> 0. Then we can define

PΛ in Λ∩F in the following way: for any E ∈ Λ∩F :

PΛ(E) =
P(E)
P(Λ)

.

And PΛ is a probability measure in Λ∩F . The triple (Λ,Λ∩F , PΛ) is called the

trace of (Ω,F ,P) in Λ.
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Example 2. Discrete sample space

LetΩ= {w j , j ∈ N} and letF be the totalσ-algebra inF . Choose a sequence

of numbers {p j , j ∈ N} such that for all j ∈ N, p j ≥ 0 and
∑

j∈N p j = 1 and let

P :F → [0,1] defined on E ∈ F by

P(E) =
∑

w j∈E

p j .

Show that P is a probability measure and that all the probability measures on

(Ω,F ) are of the form above.

Example 3. Continuous sample spaces

Let U = (0, 1] and let C := {(a, b] : 0 < a < b ≤ 1}, B the minimal

σ-algebra containing C , m the Lebesgue measure on B . Then (U ,B , m) is a

probability space. Analogously, consider in R the collection C of intervals of the

form (a, b], −∞ < a < b < +∞. The algebra B0 generated by C consists of

finite unions of disjoint sets of the form (a, b], (−∞, a] or (b,+∞). The Borel

σ-algebra is the σ-algebra, denoted hereafter by B , generated by B0 or by C .

Not that the Lebesgue measure m in R is NOT a probability measure.

1.3 Distribution function

Definition 1.3.1. A distribution function F : R −→ R is increasing, right contin-

uous and satisfies limx→−∞ F(x) = 0 and limx→∞ F(x) = 1 .

Example 4.

F1(x) =1[0,+∞)(x).

F2(x) =
1
21[0, 1

2 )
(x)+1[ 1

2 ,+∞).

F3(x) = x1[0,1)(x)+1[1,+∞).

F4(x) = x1[0, 1
2 )
(x)+1[ 1

2 ,+∞).

Pay attention to the graph of the functions.
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Lemma 1.3.2. Each probability measure µ in B defines a distribution function

F through the following correspondence:

∀x ∈ R,µ((−∞, x]) = F(x). (1.3.1)

Proof. First note that (−∞, x] ∈ B , since (−∞, x] = ∩n≥1(−∞, x + 1/n].
Now let us prove that F is increasing. take x1 ≤ x2. Then (−∞, x1] ⊂ (−∞, x2].
From property 5. of the probability measure µ given in the previous exercise,

we have that

µ((−∞, x1])≤ µ((−∞, x2]),

and this means that F(x1)≤ F(x2). Let us now prove that F is right continuous.

Let {xn}n≥1 be a sequence of real numbers such that xn ↓ x . Then (−∞, xn] ↓
(−∞, x] and from the monotone property 6. of a probability measure given in

the previous exercise, we have that

F(xn) = µ((−∞, xn]) ↓ µ((−∞, x]) = F(x).

Analogously, if x ↓ −∞ (resp. x ↑ +∞), then (−∞, x] ↓ ∅ (resp. (−∞, x] ↑
R) and again it follows that

lim
x→−∞

F(x) = lim
x→−∞

µ((−∞, x]) = µ(∅) = 0

(resp. lim
x→+∞

F(x) = lim
x→+∞

µ((−∞, x]) = µ(R) = 1.)
(1.3.2)

Remark 1.3.3. As a consequence of the previous lemma we have for −∞ < a <

b <∞ that

• µ((a, b]) = F(b)− F(a); µ([a, b)) = F(b−)− F(a−);

• µ((a, b)) = F(b−)− F(a); µ([a, b]) = F(b)− F(a−);

To show the equalities above we need to write the sets that appear in each case in

terms of sets of the form (−∞, x]. For example,

µ((a, b]) = µ((−∞, b]|(−∞, a]) = µ((−∞, b])−µ((−∞, a]) = F(b)− F(a).
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For a dense subset D of R the correspondence given in (1.3.1) is determined

for x ∈ D or if in the previous equalities we take a, b ∈ D.

Theorem 1.3.4. Each distribution function F determines a probability measure

µ inB through one of the correspondences given above.

Proof. Let us just give a sketch of the proof of this result. Let F be a given distri-

bution function and let us define for a, b ∈ R with a < b the weight µ((a, b]) =
F(b) − F(a). Let us see that µ defined in this way is countable additive. For

that purpose take E j = (a j , b j] disjoint and check that µ(∪ j≥1E j) =
∑

j≥1µ(E j).
Now increase the domain of µ preserving the countable additivity, that is if S =
∪ j≥1(a j , b j] then define µ(S) =

∑

j≥1µ((a j , b j]) =
∑

j≥1 F(b j) − F(a j). Here

we have to be careful because S can have several representations and we have

to check that the definition of µ(S) does not depend on the chosen representa-

tion. We also note at this point that any open interval (a, b) is in the extended

domain, since (a, b) = ∪ j≥1(a, b− 1/n]. Now, since we are defining a measure

inB plus the fact that any open set O can be written as the union of a countable

collection of disjoint open intervals, that is O = ∪ j≥1(a j , b j) and this represen-

tation is unique, we define µ(O) =
∑

j≥1µ((a j , b j)) =
∑

j≥1 F(b−j )− F(a j). The

notation F(b±) denotes the lateral limits from the right (+) or left (−) of b. Up

to now the measure µ is defined on open subsets of R. For closed sets, we use

the definition with the complementary, that is, if C is a closed subset of R, then

µ(C) = 1−µ(C c) and C c is open, so that µ(C c) is well defined. Now, for a ∈ R,

we define µ({a}) = µ((−∞, a])−µ((−∞, a)) = F(a)−F(a−). So, at this point

we also know the value of µ in countable sets. But we still have work to do to

characterize the measure in B . Now we make use of the exterior measure µ∗

and the interior measure µ∗ defined on S ∈B by

µ∗(S) = inf
O open
S⊂O

µ(O)

µ∗(S) = inf
C closed

C⊂S

µ(C).

Note that µ∗(S) ≥ µ∗(S), but the equality is not always true. When the values

coincide, we denote it by µ(S) and say that S is measurable for F . We need to

check that this definition agrees with the previous one, where µ had already
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been defined. The next tasks are: we need to verify that the measurable sets

form a σ-algebra let us say L and that in L the measure µ is a probability

measure. If we have this, then since L is a σ-algebra that contains all the sets

of the form (a, b], then B ⊂ L . Note that L can be bigger than B but this

is fine, since then the restriction of µ to B is a probability measure and this is

what we want to show.

The question now is: Is this probability measure µ unique?

Theorem 1.3.5. Let µ and ν be two probability measures defined in the same

σ-algebra F generated by the algebra F0. If µ(E) = ν(E) for any E ∈ F0 then

µ= ν.

Proof. Let C = {E ∈ F : µ(E) = ν(E)}. By hypothesis we have that F0 ⊂ C .

On the other hand we claim that C is a monotone class. To see that, take a

collection {E j} j≥1 with E j ∈ C such that E j ↑ or E j ↓, the proof being the same

in each case. Now note that

µ(∪≥1E j) = lim
j→∞

µ(E j) = lim
j→∞

ν(E j) = ν(∪≥1E j).

Above we used in the first and third equalities the monotone property of prob-

ability measures and in the second equality we used the fact that E j ∈ C . From

this we conclude that ∪≥1E j ∈ C and from a similar computation we also con-

clude that ∩≥1E j ∈ C . Since C is also a algebra, from Theorem 1.1.5 we con-

clude that C is a σ-algebra form where it follows that C =F and therefore µ

and ν coincide in F as we wanted to prove.

Now we are able to conclude the following result:

Theorem 1.3.6. Given a probability measure µ in B there exists a unique dis-

tribution function F which satisfies µ((−∞, x]) = F(x) ∀x ∈ R. Conversely,

given a distribution function F, there exists a unique probability measure µ inB
satisfying µ((−∞, x]) = F(x) ∀x ∈ R.

We shall call µ the probability measure of F and F the distribution function

of µ.
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Example 5. Instead of (R,B) we can consider a restriction to a fixed interval

[a, b]. As example take U = [0, 1]. Let us see how to define the distribution

function F.

Let F be a distribution function such that F(x) = 0, if x < 0 and F(x) = 1, if

x ≥ 1. The probability measure µ will have support [0,1] since µ(−∞, 0) = 0=
µ(1,+∞). The trace of (R,B ,µ) in U can be denoted by (U ,BU , m), where

BU is the trace of B in U and any probability measure in BU can be seen as

that trace. As example, we have the uniform distribution given by F3 above.

Definition 1.3.7. An atom of a measure µ defined in B is a singleton {x} such

that µ({x})> 0.

Definition 1.3.8. A measure is said to be atomic if and only if µ is zero on any

set not containing any atom.

Prove that if F is the distribution function of µ then

µ({x}) = F(x)− F(x−).

Prove that µ is atomless (that is µ does not have atoms) if and only if F

is continuous.

Exercise:

Let us now go for a small digression in monotone functions. For that pur-

pose, let f be an increasing function defined onR. This means that for all x ≤ y

it holds f (x)≤ f (y). Let us see some properties of these kind of functions.

1. Both lateral limits exist and are finite for any x ∈ R:

lim
y↓x

f (y) = f (x+) and lim
y↑x

f (y) = f (x−).

2. When x = ±∞ the limits above exist but can be equal to ±∞.

3. The function is continuous (resp. right-continuous) at x if and only if the

limits above are both (resp. f (x+) is) equal to f (x).
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4. We say that the function has a jump at x if the limits above exist but are

different. The value f (x) has to satisfy

f (x−)≤ f (x)≤ f (x+.)

5. When there is a jump at x , we say that x is a point of jump of f and

f (x+)− f (x−) is the size of the jump.

Lemma 1.3.9. The set of jumps of f is countable (can be finite).

Proof. To prove this, first associate to each point of jump x , the interval

Ix = ( f (x
−), f (x+)).

Then, if x ′ is another point of jump of f and x < x ′, then there exists x̃ such

that x < x̃ < x ′ and

f (x+)≤ f ( x̃)≤ f (x ′−).

As a consequence the intervals Ix and Ix ′ are disjoint and can be consecutive

if f (x+) = f (x ′−). Therefore we associate to the set of points of jump of f a

collection of disjoint intervals in the range of f . Now, this collection is, at most,

countable since each interval contains a rational number, so that the collection

of intervals is in one-to-one correspondence with a certain subset of the rational

numbers, being the latter countable. Since the set of points of jump of f is in

one-to-one correspondence with the set of intervals associated with it, then the

proof ends.

Example 6. Let {an}n≥1 be any given enumeration of the rational numbers and

let {bn}n≥1 be a sequence of non-negative real numbers such that

∑

n≥1

bn < +∞.

Consider

f (x) =
∑

n≥1

bnδan
(x)
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where for each n ≥ 1 we have δan
(x) = 1[an,+∞)(x), namely, the Heaviside func-

tion at an. Since 0 ≤ δan
(x) ≤ 1, the series above is absolutely and uniformly

convergent. Since δan
(x) is increasing, then if x1 ≤ x2 we have that

f (x2)− f (x1) =
∑

n≥1

bn(δan
(x2)−δan

(x1))≥ 0,

so that f is increasing. Then

f (x+)− f (x−) =
∑

n≥1

bn(δan
(x+)−δan

(x−)).

But for each n≥ 1, δan
(x+)−δan

(x−) is zero or one if x 6= an or x = an.

From this we conclude that f is discontinuous (jumps) in the rational numbers

and nowhere else.

The previous example shows that the set of points of jump of an increasing

function may be dense.

1.4 Random variable

Let (Ω,F ,P) be a probability space, R∗ := [−∞,∞] andB∗ be the extended

Borel σ-algebra, that is, its elements are sets inB with one or both +∞, −∞.

Definition 1.4.1. A function X with domain Λ ∈ F taking values in R∗ is a

random variable if: ∀B ∈B∗ we have that

X−1(B) ∈ Λ∩F , (1.4.1)

where Λ∩F is the trace of F in Λ, X−1(B) := {ω ∈ Ω : X (ω) ∈B}.

Remark 1.4.2. A random variable that takes values in the complex numbers is

a function from Λ ∈ F to the complex plane whose real and imaginary parts are

random variables taking finite values.

From now on we assume thatΛ= Ω and that X is real and takes finite values

with probability one. The general case can be reduced to this one, considering

the trace of (Ω,F ,P) in the set

Λ0 := {ω ∈ Ω : |X (ω)|<∞}
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and taking the real and imaginary parts of X .

Consider now the inverse application X−1 : R −→ Ω defined on A ⊂ R, by

X−1(A) = {ω ∈ Ω : X (ω) ∈ A}. The condition (1.4.1) tells us that X−1 takes

elements of B into elements of F : X−1(B) ∈ F . A function which satisfies

this property is said to be measurable wrt F . Therefore a random variable is a

measurable function from Ω to R (or R∗).

Theorem 1.4.3. For each function X : Ω −→ R (or R∗), the inverse application

X−1 satisfies the following properties:

• X−1(Ac) = (X−1(A))c ,

• X−1(∪αAα) = ∪αX−1(Aα),

• X−1(∩αAα) = ∩αX−1(Aα)

where α belongs to an index set not necessarily countable.

Prove last theorem.
Exercise:

Theorem 1.4.4. X is a random variable if and only if ∀x ∈ R (or x in a dense

subset of R) we have {ω ∈ Ω : X (ω)≤ x} ∈ F .

Proof. We note that last condition above, namely {ω ∈ Ω : X (ω)≤ x} ∈ F can

be written as X−1((−∞, x]) ∈ F . Let us also note that since X is a r.v. and

since (−∞, x] ∈ B , then trivially we have that X−1((−∞, x]) ∈ F . To prove

the theorem it then sufficient to show that the condition X−1((−∞, x]) ∈ F ,

with x ∈ R implies that for any Borelian B ∈B we have that X−1(B) ∈ F . For

that purpose let

A := {S ⊂ R : X−1(S) ∈ F}.

Let us check that A is a σ-algebra. We start by showing the stability for the

complementary. For that purpose, let S ∈A . Note that from the previous theo-

rem we have that X−1(Sc) =
�

X−1(S)
�c

, and since X is a r.v. then X−1(S) ∈ F .

Now, since F is a σ-algebra we have that
�

X−1(S)
�c
∈ F . Now we prove the
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stability for the countable union. Take a collection {S j} j≥1 ∈ A and note that

from the previous theorem we have that X−1(∪ j≥1S j) = ∪ j≥1X−1(S j). Since X

is a r.v. we have that X−1(S j) ∈ F and since F is a σ-algebra we conclude

that ∪ j≥1X−1(S j) ∈ F . From this we conclude that A is a σ-algebra which by

hypothesis contains the intervals of the form (−∞, x] which generateB (even

in the case where x is in a dense subset of R). ThereforeB ⊂A , which means

that ∀B ∈B it holds that X−1(B) ∈ F .

In this case since P is defined in F we denote the probability wrt P of the

set {ω ∈ Ω : X (ω) ∈ B} simply by P(X ∈ B), for B ∈B .

Theorem 1.4.5. Each random variable X defined on a probability space (Ω,F ,P)
induces a probability space (R,B ,µ) through the following correspondence

∀B ∈B ,µ(B) = P(X−1(B)) = P(X ∈ B).

Proof. Let us now prove that µ defined above is a probability measure. First

note that for B ∈ B we have that µ(B) = P(X ∈ B) ≥ 0, since P is a prob-

ability measure. Now let {B j} j≥1 be a collection of disjoint sets in B . Then

{X−1(Bn)} j≥1 are also disjoint. If not, suppose that there exists n, m such that

X−1(Bn) ∩ X−1(Bm) 6= ∅. This means that there exists ω ∈ X−1(Bn) and ω ∈
X−1(Bm) so that X (ω) ∈ Bn∩Bm, which is absurd since Bn∩Bm =∅. Therefore,

µ
�

∪n≥1 Bn

�

= P
�

X−1
�

∪n≥1 Bn)
�

= P
�

∪n≥1 X−1(Bn)
�

=
∑

n≥1

P(X−1(Bn)) =
∑

n≥1

µ(Bn).

Finally we note that

µ(R) = P(X−1(R)) = 1,

since P is a probability measure. This ends the proof.

Remark 1.4.6.

1. The collection of sets {X−1(S) ; S ∈ R} is a σ-algebra for any function X .
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2. In case X is a random variable, the collection {X−1(B) ; B ∈ B} is the σ-

algebra generated by X , which consists in the smallest sub σ-algebra of F which

contains all the sets of the form {ω ∈ Ω : X (ω)≤ x} with x ∈ R.

3. The measure µ is going to be denoted by µ := PoX−1 and it is called

the probability distribution measure of X and its associated F is the distribution

function of X : F(x) = µ((−∞, x]) = P(X ≤ x).

Note that X determines µ and µ determines F , the converse is false. Two

random variables which have the same distribution are said to be identically

distributed.

Example 7. Consider the probability space (U ,B , m), U = [0, 1], B is the

Borel σ-algebra in U and m is the Lebesgue measure; and the random variables

X i :U −→U given by X1(ω) =ω and X2(ω) = 1−ω.

We observe that X1 6= X2 but they are identically distributed since:

m(ω ∈ U : X1(ω)≤ x) = m(ω ∈ U :ω≤ x) = m([0, x]) = x

m(ω ∈ U : X2(ω)≤ x) = m(ω ∈ U : 1−ω≤ x)

= m(ω ∈ U : 1− x ≤ω)

= 1−m(ω< 1− x)

= 1−m([0, 1− x]) = 1− (1− x) = x .

Example 8. Let us now consider a r.v. X with Bernoulli distribution with pa-

rameter p ∈ (0,1). For that purpose consider Ω := {ω1,ω2} and the probability

measure given by P({ω1}) = p = 1−P({ω2}). The random variable X : Ω→ R is

given by X (ω1) = 1 and X (ω2) = 0. Then P(X = 1) = p and P(X = 0) =ω2. On

the other hand, the induced measure µX is atomic, with atoms {0} and {1} since:

µ({0}) = p > 0 µ({1}) = 1− p > 0.

A simple computation also shows that the distribution function is given by

FX (x) = (p− q)1[0,1) + 1[1,+∞).
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Find µX and FX for the r.v. X : Ω→ R, where Ω := {ω1, . . . ,ωn} and for

each k = 1, . . . , n P(X (ωk) = k) = pk with pk =
�n

k

�

pk(1− p)n−k.

Exercise:

Example 9. Given a distribution function F there exists a r.v. X such that FX = F?

The answer is yes. We already know how to define the measure µ associated to F,

through the following relation: F(x) = µ((−∞, x]) for all x ∈ R. Therefore,

defining X : R → R by X (ω) = ω we conclude that Fx(x) = P(X (ω) ≤ x) =
P(ω ≤ x) = µ((−∞, x]) = F(x). Note that we already know that such measure

µ exists.

Now we give a way to construct random variables.

Theorem 1.4.7 (Constructing random variables).

If X is a random variable and f : R −→ R is a Borel measurable function (that

is f −1(B) ∈B), then f (X ) is a random variable.

Proof. To prove the theorem is is enough to note that for B ∈ B it holds that

( f oX )−1(B) = X−1( f −1(B)), since f is Borel measurable then f −1(B) ∈B , and

since X is a r.v. we conclude that X−1( f −1(B)) ∈ F and we are done.

We note that according to the previous theorem if we compose a r.v. X with

any continuous function f : R→ R then f (X ) is a r.v.

1.5 Types of distribution functions

Recall the definition of a distribution function F . Let {a j} j≥1 be the countable

set of points of jump of F and let b j be the size of the jump at a j:

F(a+j )− F(a−j ) = F(a j)− F(a−j ) = b j .

Let

Fd(x) =
∑

j≥1

b jδa j
(x),
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where δa j
(x) is the Heaviside function at a j . The function Fd(x) represents

all the jumps of F in (−∞, x]. Note that Fd is increasing, right-continuous,

Fd(−∞) = 0 and

Fd(+∞) =
∑

j≥1

b j ≤ 1.

The function Fd is the jumping part of F .

Theorem 1.5.1. The function Fc(x) = F(x) − Fd(x) is positive, increasing and

continuous.

Proof. Let us first prove that F is increasing. Let x < x ′. Then, by the definition

of Fd we have that

Fd(x
′)−Fd(x) =

∑

j

b j(δa j
(x ′)−δa j

(x)) =
∑

j:x<a j<x ′
F(a j)−F(a′j)≤ F(x ′)−F(x).

Now since both Fd and F are increasing we conclude that 0≤ Fd(x ′)− Fd(x)≤
F(x ′)− F(x) which is equivalent to saying that 0≤ Fc(x ′)− Fc(x), so that Fc is

increasing. Note that taking x = −∞ in the first display above we can conclude

that Fd(x ′)≤ F(x ′), so that Fc(x ′)≥ 0. Let us now prove that Fc is continuous.

Note that Fd is right continuous since each δa j
is also right continuous and by the

Weierstrass test the series which defines Fd is uniformly converging in x . Since

F is also right continuous, we conclude that Fc is right continuous. Moreover,

Fd(x)− Fd(x−) = b j1{x=a j} and the same holds for F , that is F(x)− F(x−) =
b j1{x=a j}, by the definition of b j and a j . Then

Fc(x)− Fc(x
′) = F(x)− F(x ′)− (Fd(x)− Fd(x

′)) = 0.

From this we conclude that F is left continuous from where the continuity fol-

lows.

Theorem 1.5.2. Let F be a distribution function. Suppose that there exists a

continuous function Gc and a function Gd of the form Gd(x) =
∑

j≥1 b′jδa′j
(x),

where {a′j} j≥1 is a countable set of real numbers and
∑

j≥1 b′j <∞, such that

F = Gc + Gd . Then Gc = Fc and Gd = Fd where Fc and Fd were defined above.
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Proof. Let us suppose that Fd 6= Gd . Then, or the sets {a j} j≥1 and {a′j} j≥1 are

not equal or they are equal and then we can have a j = a′j for all j ≥ 1 but

b j 6= b′j for some j ≥ 1. In any case, we should have, for at least one j and one

ã j , that ã j = a j or ã j = a′j . Then, for that ã j = a j we have

Fd(ã j)− Fd(ã
−
j ) = b j 6= b′j = Gd(ã j)− Gd(ã

−
j )

(or the other way around). Since F = Fc + Fd and F = Gc + Gd , then

Fc(ã j) + Fd(ã j) = Gc(ã j) + Gd(ã j)

Fc(ã
−
j ) + Fd(ã

−
j ) = Gc(ã

−
j ) + Gd(ã

−
j ).

From the previous equalities we conclude that

Fc(ã j)− Fc(ã
−
j )− Gc(ã j) + Gc(ã

−
j ) = Gd(ã j)− Gd(ã

−
j )− Fd(ã j) + Fd(ã

−
j ) 6= 0.

But then Fc − Gc would not be a continuous function, which is absurd. From

this it follows that Fd = Gd so that Fc = Gc and the proof ends.

Definition 1.5.3. A distribution function that can be represented in the form

F =
∑

j≥1 b jδa j
, where {a j} j≥1 is a countable (or finite) set of real numbers b j > 0

for every j and
∑

j≥1 b j = 1 is called a discrete distribution function. A distri-

bution function that is continuous everywhere is called a continuous distribution

function.

Suppose that for a distribution function F we have that Fc 6= 0 and Fd 6= 0.

Let α= Fd(+∞) such that 0< α < 1 and let

F1 =
1
α

Fd and F2 =
1

1−α
Fc .

Then

F = Fd + Fc = αF1 + (1−α)F2, (1.5.1)

where F1 is a discrete distribution function and F2 is a continuous distribution

function and F is a convex combination of F1 and F2.

Remark 1.5.4. If Fc = 0 then F is discrete and we take α= 1, so that F1 = F and

F2 = 0; and if Fd = 0, then F is continuous and we take α = 0 and F1 = 0 and

F2 = F and in both cases (1.5.1) holds.
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The two previous theorems can be combined in one:

Theorem 1.5.5 (Convex combination of distribution functions).

Every distribution function can be written as the convex combination of a dis-

crete and a continuous distribution function. Such decomposition is unique.

Now let us see another type of distribution function.

Definition 1.5.6. A function f is in L1(R) iff
∫

R | f (y)| d y <∞.

Definition 1.5.7. A function F is said to be absolutely continuous (in R wrt the

Lebesgue measure) iff there exists a function f ∈ L1 such that ∀x < x ′ we have

that

F(x ′)− F(x) =

∫ x ′

x
f (y) d y.

There is a result in measure theory that says that such a function F has a

derivative equal to f almost everywhere (a.e.). This means that the derivative is

equal to zero on a set of full Lebesgue measure. In particular if F is a distribution

function then

f ≥ 0 a.e. and

∫

R
f (y) d y = 1. (1.5.2)

Such function above is called a density.

Conversely, given any f ∈ L1 satisfying the previous conditions in (1.5.2),

the function F defined for all x ∈ R as

F(x) =

∫ x

−∞
f (y) d y

is a distribution function that is absolutely continuous.

Theorem 1.5.8. Let F : R→ R such that for x ≤ x ′ and f a density function, we

have that

F(x ′)− F(x) =

∫ x ′

x
f (t)d t.

Then, F is a.e. differentiable and F ′ = f a.e.

Definition 1.5.9. A function F is called singular if and only if it is not identically

zero and F ′ exists and is equal to zero a.e.
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The next theorem can be seen in any book of measure theory and for that

reason the proof is omitted.

Theorem 1.5.10. Let F be bounded increasing with F(−∞) = 0 and let F ′ denote

its derivative whenever it exists. Then:

1. If S is the set of points x for which F ′(x) exists with 0≤ F ′(x)< +∞, then

m(Sc) = 0.

2. The function F ′ belongs to L1 and we have for every x < x ′ that

∫ x ′

x
F ′(y) d y ≤ F(x ′)− F(x).

3. If for all x ∈ R

Fac(x) =

∫ x

−∞
F ′(y) d y and Fs(x) = F(x)− Fac(x),

then F ′ac = F ′ a.e., so that F ′s = F ′ − F ′ac = 0 a.e. and consequently Fs is

singular if it is not identically zero.

Definition 1.5.11. Any positive function f that is equal to F ′ a.e. is called a

density of F. Fac is the absolutely continuous part of F and Fs is its singular part.

Remark 1.5.12. Note that:

1. the discrete part Fd defined above is part of the singular part Fs defined

above;

2. Fac is increasing and Fac ≤ F. (Check it!)

Moreover, if x < x ′ then Fs(x ′)− Fs(x) = F(x ′)− F(x)−
∫ x ′

x f (y) d y ≥ 0,

(from (2) of the previous theorem) therefore Fs is also increasing and Fs ≤ F.

(Check it!)

Theorem 1.5.13. Every distribution function F can be written as the convex com-

bination of a discrete, a singular and an absolutely continuous distribution func-

tion and such decomposition is unique.
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Proof. Note that if

β̃ :=

∫

R
F ′(t)d t = 0,

then F ′(t) = 0 for t a.e. so that Fac(x) = 0 for all x . Therefore, Fc = Fs, where

Fc is the continuous part of F . If β̃ = 1, then Fac(+∞) = 1 and Fac = Fc and

Fc is absolutely continuous. Now, if β̃ ∈ (0,1), then if α ∈ (0,1) and β ∈ (0,1),
then F can be written as

F = αF1 + βF2 + γF3,

where

β = (1−α)β̃ , γ= (1−α)(1− β̃)

F1 = Fd , F2 =
1

β̃
Fac , F3 =

1

(1− β̃)
Fs.

In the next section we are going to construct a singular distribution function.

It is called the Cantor distribution function.

1.5.1 The Cantor distribution function

Let us construct the ternary Cantor set. This is a construction which is done by

induction. It goes like this. From the closed interval [0, 1] remove the central

interval (1
3 , 2

3). Then in the two remaining intervals remove the central intervals

(1
9 , 2

9) and (7
9 , 8

9). After the 1st step we remain with two intervals of size 1
3 . In

the 2nd step we remain with four intervals of size 1
32 and so on. After n steps

we have removed 1+2+4+8+ · · ·+2n−1 = 2n−1 disjoint intervals and remain

2n closed intervals of size 1
3n . Let us order these intervals, by order from left to

right and denote them by Jn,k, where 1≤ k ≤ 2n−1 and denote their union by

Un. Note that

m(Un) = 1−
�2

3

�n
.

As n increases the set Un increases to an open set U and let C := U c (the

complementary wrt [0, 1]) be the Cantor set. Then

m(C ) = 1−m(U) = 1− lim
n→∞

m(Un) = 1− 1= 0.
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Now we define the Cantor distribution function. For each n, k, with n ≥ 1

and k = 1, · · · , 2n − 1 let cn,k =
k
2n and let us define F in U in the following

way: if x ∈ Jn,k then F(x) = cn,k. In each Jn,k the function F is constant and it

is strictly greater on any Jn,k′ at the right of Jn,k. Therefore, F is increasing and

F(0+) = 0 and F(1−) = 1. Now we complete the definition by setting F(x) = 0

for x ≤ 0 and F(x) = 1 for x ≥ 1. Up to here the function F is defined on the

domain

D = (−∞, 0]∪ U ∪ [1,+∞)

and is increasing.

Now, since each Jn,k is at a distance which is greater or equal than 1/3n from

any other Jn,k′ and since the total variation of F over each of the 2n disjoint

intervals that remain after removing Jn,k is 1
2n , it follows that

0≤ x ′ − x ≤
1
3n
⇒ 0≤ F(x ′)− F(x)≤

1
2n

.

Then, the function F is uniformly continuous on D. Note that it is known

that D is dense in R. Now, to define the function in the full space R we need

the following result.

Lemma 1.5.14. Let f be increasing on a dense subset D of R. If for any x ∈ R

f̃ (x) = inf
x<t∈D

f (t),

then f̃ is increasing and right continuous everywhere. If f uniformly continuous,

then f̃ is uniformly continuous.

By Lemma 1.5.14 there exists a continuous and increasing function F̃ de-

fined on R that coincides with F on D. This function F̃ is a continuous distri-

bution function that is constant on each Jn,k so that F̃ ′ = 0 on U and also on

R\C , which means that F̃ is singular. Below we see the graph of F after some

steps of the induction procedure.

Definition 1.5.15. A random variable X is said to be discrete if it takes values in

a finite or countable set, that is, if there exists a finite or countable set B ∈ R such

that P(X ∈ B) = 1.
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1.5.2 Types of random variables

Definition 1.5.16. A random variable X whose distribution function F has a

density f is said to be absolutely continuous.

Note that,

1. If X is discrete, then P(X ∈ B) =
∑

i:x i∈B P(X = x i);

2. If X is absolutely continuous with density f , then P(X ∈ A) =
∫

A f (y) d y ,

for any A∈B .

Let X be a r.v. with density given by

f (x) =
1

(1+ x)2
1(0,+∞)(x).

Let Y = max(X , c), where c is a strictly positive constant.

a) Find the distribution of X and Y and do the graphical represen-

tation.

b) Decompose the distribution function of Y in its discrete, abso-

lutely continuous and singular parts.

Note that the distribution function of X is given by FX (x) =
∫ x
−∞ f (t)d t,

that is

FX (x) =

¨

0, if x < 0 ,
x

1+x , otherwise.

Exercise:
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The distribution function of Y is given by:

FY (y) =

¨

0, if y < c ,
y

1+y , otherwise.

The distribution function of Y decomposes into its discrete part

Fd(y) =

¨

0, if y < c ,
c

1+c , otherwise.

and the absolutely continuous part:

Fac(y) =

¨

0, if y < c ,
−1

1+y +
1

1+c , otherwise.

Since for all y ∈ Rwe have that Fd(y)+Fac(y) = FY (y), then the singular

part fo F is null, that is Fs(y) = 0. The random variable Y is of mixed type.

1.6 Random vectors

A random vector is just a vector whose components are random variables. We

focus on the case d = 2. Basically here we just rewrite what we have seen before

in a 2-dimensional setting. Note that the Borel σ-algebra in R2 is the σ-algebra

generated by rectangles of the form

{(x , y) : a < x ≤ b ; c < y ≤ d}

and it is also generated by products sets of the form

B1 × B2 = {(x , y) : x ∈ B1 ; y ∈ B2},

where B1, B2 ∈ B . A function f : R2 −→ R is Borel measurable iff f −1(B) ∈
B2.

Definition 1.6.1. Let X and Y be two random variables defined on the same prob-

ability space (Ω,F ,P). The random vector (X , Y ) induces a probability measure
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ν ∈B2 such that for A∈B2

ν(A) = P((X , Y ) ∈ A) = P(ω ∈ Ω : (X (ω), Y (ω)) ∈ A).

The measure ν is called the distribution measure of (X , Y ).

We also define the inverse application (X , Y )−1 in the following way:

∀A∈B2 : (X , Y )−1(A) = {ω ∈ Ω : (X (ω), Y (ω)) ∈ A}.

We note that the results that we have seen above for X−1 are also true for

(X , Y )−1.

Theorem 1.6.2. If X and Y are random variables and if f : R2 −→ R is Borel

measurable, then f (X , Y ) is a random variable.

The proof of last result is analogous to the proof of Theorem 1.4.7.

Example 10.

1. If X is a random variable and if f : R −→ R is continuous, then f (X ) is a

random variable. Therefore:

• X r ; |X |r for positive real r; e−λX , for real λ, ei tX , for real t are random

variables;

2. If X and Y are random variables then all these are random variables:

• X ± Y ; X .Y ; X/Y ; X ∧ Y := min(X , Y ); X ∨ Y := max(X , Y );

Theorem 1.6.3. If {X j} j≥1 is a sequence of random variables, then

inf
j

X j; sup
j

X j; lim inf
j

X j; limsup
j

X j;

are random variables not necessarily finite but a.e. defined and lim j→+∞ X j is a

random variable on the set where there is convergence or divergence to ±∞.

Proof. Note that for all x ∈ R we have that

{sup
j

X j ≤ x}= ∪ j{X j ≤ x}.
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Since {X j ≤ x} ∈ F , because X is a r.v. then {sup j X j ≤ x} ∈ F . From Theorem

1.4.4 we conclude that sup j X j is a r.v. Analogously, since all x ∈ R we have

that

{inf
j

X j > x}= ∩ j{X j > x}.

Since {X j > x} ∈ F , because X is a r.v. then {inf j X j > x} ∈ F . From Theorem

1.4.4 we conclude that inf j X j is a r.v. Now for the limsup X j note that

limsup
j
= inf

n

�

sup j≥nX j

�

.

From the previous arguments we know that sup j≥nX j is a r.v. and also that

infn

�

sup j≥nX j

�

is a r.v., from where the proof ends.

Definition 1.6.4. The distribution function of a random vector (X , Y ) is defined

on (x , y) ∈ R2 by

F(x , y) = P(X ≤ x , Y ≤ y).

F is also called the joint distribution function of the r.v. X and Y .

The distribution function just defined satisfies the following properties:

1. F is increasing in each variable.

2. F is right-continuous in each variable.

3. limx→−∞ F(x , y) = 0 and limy→−∞ F(x , y) = 0.

4. limx→+∞,y→+∞ F(x , y) = 1

Prove the previous properties.
Exercise:
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Note that the distribution function of X (resp. Y ) is obtained from the joint

distribution function by taking the limit:

lim
y→∞

F(x , y) = F(x)

(resp. limx→∞ F(x , y) = F(y)).
The properties above are not sufficient to guarantee that a function F : R2→

R is the distribution function of a random vector. Let us see an example.

Example 11. Let

F(x , y) = 1{x≥0,y≥0,x+y≥1}.

It is easy to see that F satisfies the properties above, nevertheless it is not the

distribution function of a random vector. Suppose it is. Then we would have, for

example, that: P(X ∈ (0, 1], Y ∈ (0, 1]) = −1, which cannot happen since P is a

probability measure.

We need to introduce some extra condition, in order to avoid what we have

seen in the previous example. That condition is the following: • For any a1 < b1

and a2 < b2 we have

P(X ∈ (a1, b1], Y ∈ (a2, b2])≥ 0.

A function F satisfying the properties above is the distribution function of a

random vector.

Definition 1.6.5. A random vector (X , Y ) is discrete iff it takes a finite or count-

able number of values.

Definition 1.6.6. Let (X , Y ) be a random vector and let F be its distribution

function. If there exists a function f : R2 → R such that f (x , y) ≥ 0 and
∫∫

R2 f (x , y) d x d y = 1 and if for any (x , y) ∈ R2

F(x , y) =

∫ x

−∞

∫ y

−∞
f (u, v) du dv,

then f is called the density function of the random vector (X , Y ) or the joint density

of the r.v. X and Y . In this case, we say that the random vector is absolutely

continuous.
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1.7 Stochastic Independence

Definition 1.7.1. The collection of random variables {X j} j=1,··· ,n are said to be

independent iff for any {B j} j=1,··· ,n with B j ∈ B , for any j = 1, · · · , n, we have

that

P
�

∩n
j=1 (X j ∈ B j)

�

= Πn
j=1P(X j ∈ B j). (1.7.1)

Remark 1.7.2.

1. The r.v. of an infinite family are said to be independent iff the r.v. in any

finite subfamily are independent.

2. The r.v. are said to be pairwise independent iff every two of them are inde-

pendent.

3. Note that (1.7.1) implies that any of its subfamilies is independent, since

P
�

∩k
j=1(X j ∈ B j)

�

=P
�

∩n
j=1(X j ∈ B j)

�

=Πn
j=1P(X j ∈ B j)=Π

k
j=1P(X j ∈ B j)

Remark 1.7.3. We note that (1.7.1) is equivalent to

P
�

∩n
j=1 (X j ≤ x j)

�

= Πn
j=1P(X j ≤ x j), (1.7.2)

for every set of real numbers {x j}nj=1. To prove this it is enough to check that the

set

C = {B : P((X1, X2, . . . , Xn) ∈ B) =
n
∏

i=1

P(X i ∈ B)}

where B = B1×B2×· · ·×Bn and Bi ∈B for each i = 1, . . . , n, forms a σ-algebra

that contains the sets of the form (−∞, x1]× (−∞, x2]× . . . (−∞, xn]. This is

left as an exercise to the reader.

We can rewrite (1.7.1) in terms of the probability measure µ(X1,··· ,Xn) in-

duced by the random vector (X1, · · · , Xn) on (Rn,Bn) as

µ(X1,··· ,Xn)(B1 × · · · × Bn) = Π
n
j=1µ j(B j) = µ1(B1)× · · · ×µn(Bn),

where µ j := µX j
is the probability measure induced by each random variable X j

in (R,B). Note that the induced measure in this case is the product measure!
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Remark 1.7.4. We can define the n-dimensional distribution function F(X1,··· ,Xn)

as

F(X1,··· ,Xn)(x1, · · · , xn) =P(X1 ≤ x1, · · · , Xn ≤ xn)

=µ(X1,··· ,Xn)((−∞, x1]× · · · × (−∞, xn]).

and the condition (1.7.2) is rewritten as F(x1, · · · , xn) = Πn
j=1F j(x j).

Example 12. Let X1 and X2 be independent r.v. given by

X1 =







1, 1/2

−1, 1/2
and X2 =







1, 1/2

−1, 1/2.

Then, the three r.v. {X1, X2, X1X2} are pairwise independent but they are not to-

tally independent. To prove the assertion check that the r.v. X1X2 satisfies:

X1X2 =







1, 1/2

−1, 1/2.

Then

P(X1 = 1, X1X2 = 1) = P(X1 = 1, X2 = 1) = P(X1 = 1)P(X2 = 1) = 1/4

and

P(X1 = 1)P(X1X2 = 1) = 1/4.

Doing some similar computation we conclude that X1 and X1X2 are independent.

Analogously we can conclude that X2 and X1X2 are independent. Now note that

X1, X2, X1X2 are not independent, since

P(X1 = 1, X2 = −1, X1X2 = 1) = P(∅) = 0

but

P(X1 = 1)P(X2 = −1)P(X1X2 = 1) 6= 0.

Whenever a probability space (Ω,F ,P) is fixed, the sets in F will be called

events. We have seen above the notion of independent r.v. but what about

independent events?



Measurable spaces 35

Definition 1.7.5. We say that the events {E j}nj=1 are independent iff their indi-

cators are independent, that is, for any subset { j1, · · · , j`} of {1, · · · , n} we have

that

P
�

∩`k=1 E jk

�

= Π`k=1P(E jk).

Theorem 1.7.6. If {X j}nj=1 are independent r.v. and { f j}nj=1 are Borel measurable

functions, then { f j(X j)}nj=1 are independent r.v.

Proof. <for j = 1, · · · , n let B j ∈B . Then F−1
j (B j) ∈B . Therefore

∪n
j=1{ f j(X j) ∈ B j}= ∪n

j=1{X j ∈ f −1
j (B j)}

and

P(∪n
j=1{ f j(X j) ∈ B j}) = P(∪n

j=1{X j ∈ f −1
j (B j)}) =

n
∏

j=1

P(X j ∈ f −1
j )(B j))

=
n
∏

j=1

P( f j(X j) ∈ B j)

and we are done.

We have seen above that if X1, · · · , Xn are independent r.v. then

F(X1,··· ,Xn)(x1, · · · , xn) = Π
n
j=1FX j

(x j).

Now let us see the reciprocal.

Proposition 1.7.7. If there exist functions F1, · · · , Fn such that

lim
x j→∞

F j(x j) = 1

for all j = 1, · · · , n and if for all (x1, · · · , xn) ∈ Rn

F(X1,··· ,Xn)(x1, · · · , xn) = Π
n
j=1F j(x j),

then {X j}
n
j=1 are independent and F j := FX j

for all j = 1, · · · , n.
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Proof. To prove the proposition it is enough to see that FX i
= Fi , then it follows

from the definition. Note that

FX i
(x i) = lim

x→+∞
FX1,··· ,Xn

(x , · · · , x , x i , x · · · )

= lim
x→+∞

F1(x) · · · Fi(x i) · · · Fn(x)

= lim
x→+∞

F1(x) · · · Fi(x i) · · · lim
x→+∞

Fn(x)

= Fi(x i).

Finally the reader can check that the r.v. are independent. This ends the proof.

Proposition 1.7.8.

• If {X j}
n
j=1 are independent r.v. with densities fX1

, · · · , fXn
, then the function

f (x1, · · · , xn) = Π
n
j=1 fX j

(x j)

is the joint density of {X j}
n
j=1 or the density of the random vector (X1, · · · , Xn)

.

• On the other hand, if X1, · · · , Xn has a joint density f which satisfies

f (x1, · · · , xn) = Π
n
j=1 f j(x j)

for all (x1, · · · , xn) ∈ Rn with f j(x)≥ 0 and
∫

R f j(x)d x = 1, then X1, · · · , Xn

are independent and f j is the density of X j .

Proof. Since X1, · · · , Xn are independent, then

F(X1,··· ,Xn)(x1, · · · , xn) =
n
∏

i=1

FX i
(x i) =

n
∏

i=1

∫ x i

−∞
fX i
(t i)d t i

=

∫ x1

−∞
· · ·
∫ xn

−∞
fX1
(t1) · · · fXn

(tn)d t1 · · · d tn

so that fX1
(t1) · · · fXn

(tn) is the joint density function of X1 · · · , Xn.
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Now note that

F(X1,··· ,Xn)(x1, · · · , xn) =

∫ x1

−∞
· · ·
∫ xn

−∞
f (t1, · · · , tn)d t1 · · · d tn

=

∫ x1

−∞
· · ·
∫ xn

−∞
f1(t1) · · · fn(tn)d t1 · · · d tn

=
n
∏

i=1

∫ +∞

x i

fi(t i)d t i .

taking Fi(x i) =
∫ +∞

x i
fi(t i)d t i we have that limx i→∞ Fi(x i) = 1, so that by

the previous proposition X1, · · · , Xn are independent and Fi = FX i
and fi is the

density of X i .

Constructing independent r.v.

Let (Ω1,F1,P1) and (Ω2,F2,P2) be discrete probability spaces and where F j

is the total σ-algebra. We define the product space Ω2 := Ω1 ×Ω2 as the space

of points ω = (ω1,ω2) with ω1 ∈ Ω1 and ω2 ∈ Ω2. The product σ-algebra F 2

is the collection of all the subsets of Ω2. We know from the beginning of the

course that the probability measures P1 and P2 are determined by their values

in ω1, ω2 respectively. Since Ω2 is also countable we can define a probability

measure P2 in F 2 as

P2({(ω1,ω2)}) = P1({ω1})P2({ω2})

which is the product measure of P1 and P2. Check that it is a probability mea-

sure! It has the property that if S1 ∈ F1 and S2 ∈ F2, then

P2(S1 × S2) = P1(S1)P2(S2).

Now, let X1 be a r.v. on Ω1 and X2 a r.v. on Ω2; B1 and B2 Borel sets and

S1 = X−1
1 (B1) := {ω1 ∈ Ω1 : X1 ∈ B1} and S2 = X−1

2 (B2). Note that S1 ∈ F1 and

S2 ∈ F2. Then

P2(X1 ∈ B1 × X2 ∈ B2)

=P2(S1 × S2) = P1(S1)P2(S2) = P1(X1 ∈ B1)P2(X2 ∈ B2).
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To X1 on Ω1 and X2 in Ω2, we associate the function X̃1 and X̃2 defined on

ω ∈ Ω2 as X̃1(ω) = X1(ω1) and X2(ω) = X2(ω2). Now we have

∩2
j=1{ω ∈ Ω

2 : X̃ j(ω) ∈ B j}

= Ω1 × {ω2 ∈ Ω2 : X2(ω2) ∈ B2} ∩ {ω1 ∈ Ω1 : X1(ω1) ∈ B1} ×Ω2

= {ω1 ∈ Ω1 : X1(ω1) ∈ B1} × {ω2 ∈ Ω2 : X2(ω2) ∈ B2}.

From where we conclude that

P2(∩2
j=1{X̃ j ∈ B j}) = P2(X̃1 ∈ B1)P2(X̃2 ∈ B2),

so that the random variables X̃1 and X̃2 are independent!

Now we extend the construction to n discrete probability spaces. Let n ≥ 2

and (Ω j ,F j ,P j) be n discrete probability spaces whereF j is the totalσ-algebra.

We define the product space Ωn := Ω1 × Ω2 × · · · × Ωn as the space of points

ω= (ω1, · · · ,ωn) with ω j ∈ Ω j . The product σ-algebra F n is the collection of

all the subsets of Ωn. We know from the beginning of the course that for each

j, the probability measure P j is determined by its value in ω j . Since Ωn is also

countable we can define a probability measure Pn in F n as

Pn({(ω1, · · · ,ωn)}) = Πn
j=1P j({ω j})

which is the product measure of the {P j}nj=1. Check that it is a probability

measure. It has the property that if S j ∈ F j , then

Pn(S1 × · · · × Sn) = Π
n
j=1P j(S j).

Now, let X j be a r.v. on Ω j , B j a Borel set and S j = X−1
j (B j) := {ω j ∈ Ω j :

X j ∈ B j} . Note that S j ∈ F j . Then

Pn(X1 ∈ B1×· · · × Xn ∈ Bn)

=Pn(S1 × · · · × Sn) = Π
n
j=1P j(S j) = Π

n
j=1P j(X j ∈ B j).

To each function X j on Ω j we associate the function X̃ j on Ωn defined onω ∈ Ω
as X̃ j(ω) = X j(ω j). Now we have

∩n
j=1{ω ∈ Ω

n : X̃ j(ω) ∈ B j}

= ∩n
j=1Ω1 × · · · ×Ω j−1 × {ω j ∈ Ω j : X j(ω j) ∈ B j} ×Ω j+1 × · · · ×Ωn

= Πn
j=1{ω j ∈ Ω j : X j(ω j) ∈ B j}
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From where we conclude that

Pn(∩n
j=1{X̃ j ∈ B j}) = Πn

j=1P
n(X̃ j ∈ B j),

so that the random variables {X̃ j}nj=1 are independent! LetU n = {(x1, · · · , xn) :

0 ≤ x j ≤ 1,1 ≤ j ≤ n}. The trace on U n of (Rn,Bn, mn) is a probability

space. For j = 1, · · · , n, let f j : R→ R be a Borel measurable function and let

X j(x1, · · · , xn) = f j(x j). Then, the r.v. {X j}nj=1 are independent. If f j(x j) = x j

then we get the n-coordinate variables in the cube.

Theorem 1.7.9 (Existence of product measures).

Let {µ j} j be a finite or infinite sequence of probability measures on (R,B) or

equivalently, let their distribution functions be given. There exists a probability

space (Ω,F ,P) and a sequence of independent r.v. {X j} j defined on it such that

for each j, the measure µ j is the probability measure of X j .

The proof of this theorem is omitted since it can be found in any book on

measure theory.

1.8 Mathematical Expectation

Mathematical expectation is integration on a probability space (Ω,F ,P) with

respect to the probability measure P. To avoid complications we assume that

the r.v. are finite everywhere.

Definition 1.8.1. A countable partition of Ω is a countable family of disjoint sets

A j with A j ∈ F and such that Ω = ∪ j≥A j . In this case we have that 1 = 1Ω =
∑

j 1A j
.

Definition 1.8.2. A r.v. X is said to belong to the weighted partition {A j , b j} is

for all ω ∈ Ω we have that X (ω) =
∑

j b j1A j
(ω). Note that X is a discrete r.v.

Remark 1.8.3. Every discrete r.v. belongs to a weighted partition: take {b j} j as

the countable set of the possible values of X and A j = {ω ∈ Ω; X (ω) = b j}. If j

ranges over a finite set the r.v. is said to be simple.
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If X is a positive discrete r.v. belonging to the weighted partition {A j , b j},
then its expectation is defined as

E[X ] =
∑

j

b jP(A j).

Note that E[X ] is a number, in this case, since b j ≥ 0, positive or +∞. Suppose

now that X is a positive random variable and for each positive integers m, n, let

Amn =
¦

ω :
n

2m
≤ X (ω)≤

n+ 1
2m

©

= X−1
�� n

2m
,

n+ 1
2m

��

,

so that Amn ∈ F . For each m, let Xm be the random variable that takes the value
n

2m in Amn, that is

Xm(ω) =
n

2m
iff

n
2m
≤ X (ω)≤

n+ 1
2m

.

It is easy to see that for each m we have that for all ω ∈ Ω, Xm(ω) ≤
Xm+1(ω). Now let ω ∈ Ω and note that if n

2m ≤ X (ω)≤ n+1
2m , then Xm(ω) =

n
2m ,

so that

0≤ X (ω)− Xm(ω)<
1

2m
,

from where we get that limm→∞ Xm(ω) = X (ω). So the sequence of r.v. {Xm}m
is increasing and converges pointwisely to X .

Note that

E[Xm] =
∞
∑

n=0

n
2m
P
� n

2m
≤ X <

n+ 1
2m

�

.

If E[Xm] = +∞ then we define E[X ] = +∞, otherwise, we define E[X ] =
limn→∞E[Xm]. Note that the limit can be infinite.

For a general r.v. X we take X = X+ − X−, where X+ = X ∨ 0 and X− =
(−X ) ∨ 0. Both X+, X− are positive, so their expectation is defined and unless

both expectations are +∞ we define E[X ] = E[X+]−E[X−]. We set that X has

finite or infinite expectation according to E[X ] is finite or infinite.

When the expectation of X exists we use the notation

E[X ] =
∫

Ω

X (ω)P(dω) =
∫

Ω

X (ω)dP.
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For Λ ∈ F we have

E[X1Λ] =

∫

Λ

X (ω)P(dω) =
∫

Ω

1Λ(ω)X (ω)dP

and it is called the integral of X wrt P over the set Λ. When the integral above

exists and is finite we say that X is integrable in Λ wrt P.

Example 13 (Lebesgue-Stietjes integral).

For (R,B ,µ) and X = f and ω= x we have

∫

Λ

X (ω)P(dω) =
∫

Λ

f (x)µ(d x) =

∫

Λ

f (x)dµ.

When F is the distribution function of µ we also write (for Λ= (a, b])
∫

(a,b]
f (x)dF(x).

To distinguish the intervals (a, b], [a, b], (a, b) and [a, b) we use the notation

∫ b+0

a+0

,

∫ b+0

a−0

,

∫ b−0

a+0

,

∫ b−0

a−0

.

For (U ,B , m) the integral is
∫ b

a f (x)m(d x) =
∫ b

a f (x)d x . Since µ is atomless

we do not need to distinguish the intervals.

Let us now see some properties of the mathematical expectation. We prove

some of them but the rest are left to the reader. In what follows X and Y are

r.v. and a, b ∈ R and Λ ∈ F .

(1) Absolute integrability:
∫

Λ
X dP is finite iff

∫

Λ
|X |dP is finite.

Note that |X | = X+ + X−. Suppose that
∫

Λ
|X |dP <∞. Then

∫

Λ
X±dP <

∞. Therefore,
∫

Λ
X dP =

∫

Λ
X+dP −

∫

Λ
X−dP < ∞. On the other hand if

∫

Λ
X dP<∞, then

∫

Λ
X±dP<∞ and this implies that

∫

Λ
|X |dP<∞.

(2) Linearity:
∫

Λ
(aX + bY )dP = a

∫

Λ
X dP+ b

∫

Λ
Y dP, as long as the right

hand side makes sense, that is, it is not +∞−∞ nor −∞+∞.
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(3) Set additivity: If {Λn}n≥1 are disjoint, then

∫

∪n≥1Λn

X dP=
∑

n≥1

∫

Λn

X dP.

(4) Positivity: If X ≥ 0 a.e. on Λ (this means there is a subset of Λ with

weight one wrt P where X is positive), then

∫

Λ

X dP≥ 0.

(5) Monotonicity: If X1 ≤ X ≤ X2 a.e. in Λ, then

∫

Λ

X1dP≤
∫

Λ

X dP≤
∫

Λ

X2dP.

To prove it, apply the previous item for X − X1 and for X2 − X .

(6) Mean value Theorem: If a ≤ X ≤ b a.e. in Λ, then

aP(Λ)≤
∫

Λ

X dP≤ bP(Λ).

To prove it, apply the previous item for X1 = a and for X2 = b.

(7) Modulus inequality:
�

�

�

∫

Λ
X dP

�

�

�≤
∫

Λ
|X |dP.

To prove the result note that
∫

Λ
X dP=

∫

Λ
X+−X−dP=

∫

Λ
X+dP−

∫

Λ
X−dP.

Then
�

�

�

∫

Λ
X dP

�

�

�=
�

�

�

∫

Λ
X+dP

�

�

�+
�

�

�

∫

Λ
X−dP

�

�

�=
∫

Λ
X+dP+

∫

Λ
X−dP=

∫

Λ
|X |dP.

(8) Dominated convergence Theorem: If limn→∞ Xn = X a.e. on Λ and if

for n≥ 1 |Xn| ≤ Y a.e. on Λ and
∫

Λ
Y dP<∞, then

lim
n→∞

∫

Λ

XndP=
∫

Λ

X dP=
∫

Λ

lim
n→∞

XndP.
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To prove the result note that |Xn| ≤ Y implies that if Xn ≥ 0, then Xn ≤ Y

and if Xn < 0, then −Xn ≤ Y . Then, from Fatou’s lemma we have that
∫

Λ

Y dP+
∫

Λ

X dP=
∫

Λ

Y + X dP≤ lim inf
n

∫

Λ

Y + XndP

=

∫

Λ

Y dP+ lim inf

∫

Λ

XndP

From here we conclude that
∫

Λ

X dP≤ lim inf

∫

Λ

XndP

Now we repeat the argument with −Xnand we conclude that
∫

Λ

−X dP≤ lim inf

∫

Λ

−XndP

so that
∫

Λ

X dP≥ limsup

∫

Λ

XndP

from where the equality follows.

(9) Bounded convergence Theorem: If limn→∞ Xn = X a.e. on Λ and there

exists a constant M such that n≥ 1 |Xn| ≤ M a.e. on Λ, then the result of (8) is

true.

(10) Monotone convergence Theorem: If Xn ≥ 0 and Xn ↑ X a.e. on Λ, then

the previous equality is true if we allow +∞ as a value.

To prove the theorem we note at first that since Xn ↑ X , then the limit

limn→∞ Xn(ω) exists for each ω, being possibly equal to infinity. Note that, by

a previous Theorem X is a r.v. On the other hand, by the monotonicity property

we have
∫

Λ
XndP ≤

∫

Λ
X dP,∀n and note that {

∫

Λ
XndP}n∈N is an increasing

sequence. Let Φ := limn

∫

Λ
XndP, which exists and note that Φ≤

∫

Λ
X dP. Now

we have to prove the reversed inequality. Let α ∈ (0, 1) and let ϕ be a simple

function which is positive with ϕ ≤ X . Let En = {ω : Xn(ω) ≥ αϕ(ω)}. Note

that {En}n∈N is an increasing sequence of sets inF , whose union isΩ. Moreover
∫

XndP≥
∫

En

XndP≥ α
∫

En

ϕdP.
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Note that if I(·) =
∫

·ϕdP, then I(·) is a measure and the limit limn I(En) exists

and

lim
n

I(En) =

∫

ϕdP.

Then Φ ≥ α
∫

ϕdP for all α ∈ (0, 1). Sending α to 1 we obtain that Φ ≥
∫

ϕdP
for all ϕ simple and positive with ϕ ≤ X and this implies that Φ≥

∫

X dP, since
∫

X dP= sup
¦

∫

ϕdP : 0≤ ϕ ≤ X ; ϕ simple and positive
©

;

so that the proof ends.

(11) Integration term by term: If
∑

n≥1

∫

Λ
|Xn|dP <∞, then

∑

n≥1 |Xn| <
∞ a.e. on Λ, so that

∑

n≥1 Xn converges a.e. on Λ and

∫

Λ

∑

n≥1

XndP=
∑

n≥1

∫

Λ

XndP.

(12) Fatou’s Lemma: If Xn ≥ 0 a.e. on Λ, then

∫

Λ

(lim inf
n→∞

Xn)dP≤ lim inf
n→∞

∫

Λ

XndP.

To prove Fatou’s lemma we do the following. For k ∈ Z+ if j ≥ k then

infn≥k Xn ≤ X j . Then, from the monotonicity property we have for all j ≥ k

that
∫

Λ

inf
n≥k

XndP≤
∫

Λ

X jdP,

which implies that
∫

Λ

inf
n≥k

XndP≤ inf
j≥k

∫

Λ

X jdP.

Since infn≥k Xn ↑ lim inf Xn when k→∞, then taking k→∞ we have that
∫

Λ

lim inf
n→∞

XndP=
∫

Λ

lim
k→∞

inf
n≥k

XndP= lim
k→∞

∫

Λ

inf
n≥k

XndP

≤ lim
k→∞

inf
n≥k

∫

Λ

XndP= lim inf
n→∞

∫

Λ

XndP.

Note that in the previous inequality we used the Monotone Convergence Theo-

rem.
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- Digression on the Riemann-Stieltjes integral

Let f be a continuous function defined on [a, b] and let F be a distribution

function. The Riemann-Stieltjes integral of f on [a, b] wrt F is defined as the

limit of the Riemann sums of the form
n
∑

i=1

f ( x̃ i)(F(x i+1)− F(x i)), (1.8.1)

where x1 = a, xn = b, x i < x i+1 and x̃ i is an arbitrary point in [x i , x i+1]. The

limit is takes by making the norm of the partition {x i}i tending to 0, that is

maxi=1,··· ,n(x i+1 − x i) → 0. The limit exists, when f is continuous, and it is

denoted by
∫ b

a f (x)dF(x). Note that

∫

R
f (x)dF(x) = lim

a→−∞,b→+∞

∫ b

a
f (x)dF(x).

Example 14. Compute
∫

R F0(x)dF0(x), for F0(x) = δ0(x), the Heaviside func-

tion at 0.

Note that the integral above does not exist since the limit in (1.8.1) does not

exist. This is because if we take x i < 0< x i+1 for some i, then F0(x i+1)− F0(x i) =
1 and as a consequence, the value of the sum:

n
∑

i=1

F0( x̃ i)(F(x i+1)− F(x i)),

depends on whether x̃ i ∈ [x i , x i+1] is such that F0( x̃ i) is 0 or 1.

To avoid the previous cases, in order to extend the definition to discontinu-

ous functions we do it like this. Let f be a Borel measurable function f : R→ R.

We want to define
∫

R f (x)dF(x) for a distribution function F . First we define

it for f (x) = 1[a,b](x) as
∫

R f (x)dF(x) = F(b) − F(a). Then we extend the

definition as we did before.

Remark 1.8.4.

• When F is the distribution function of a discrete random variable X taking

values {x i}i≥1 then
∫

R
f (x)dF(x) =

∑

i≥1

f (x i)P(X = x i)
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and
∫

(a,b]
f (x)dF(x) =

∑

i:a<x i≤b

f (x i)P(X = x i).

•When F is the distribution function of an absolutely continuous random vari-

able X with density fX , then
∫

R
f (x)dF(x) =

∫

R
f (x) fX (x)d x

and
∫ b

a
f (x)dF(x) =

∫ b

a
f (x) fX (x)d x .

• When F = αFd + βFac + γFs, then
∫

R
f (x)dF(x) = α

∫

R
f (x)dFd + β

∫

R
f (x)dFac + γ

∫

R
f (x)dFs.

• When F does not have singular part we have

∫ b

a
f (x)dF(x) =

∑

i:a<x i≤b

f (x i)P(X = x i) +

∫ b

a
f (x) fX (x)d x .

Proposition 1.8.5. For a r.v. X with distribution function F we have that

E[X ] =
∫ +∞

0

(1− F(x))d x −
∫ 0

−∞
F(x)d x .

Proof. Note that E[X ] =
∫

R xdF(x).
First we claim that

∫ +∞
0 xdF(x) =

∫ +∞
0 (1− F(x))d x . Since d(x F(x)) =

xdF(x) + F(x)d x we have, for b > 0, that

∫ b

0

d(x F(x)) =

∫ b

0

xdF(x) +

∫ b

0

F(x)d x .

The term on the left hand side of last expression is equal to bF(b) so that we

obtain
∫ b

0

xdF(x) =

∫ b

0

F(b)− F(x)d x ≤
∫ b

0

(1− F(x))d x ≤
∫ +∞

0

(1− F(x))d x .
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From here it follows that
∫ +∞

0

xdF(x) = lim
b→+∞

∫ b

0

xdF(x)≤
∫ +∞

0

(1− F(x))d x .

On the other hand let a > 0 and with b > a. Then
∫ b

0

F(b)− F(x)d x ≥
∫ a

0

F(b)− F(x)d x =

∫ a

0

F(b)− 1d x +

∫ a

0

1− F(x)d x

= a(F(b)− 1) +

∫ a

0

1− F(x)d x

From here it follows that
∫ +∞

0

xdF(x) = lim
b→∞

∫ b

0

xdF(x) = lim
b→+∞

∫ b

0

F(b)− F(x)d x

≥ a(F(b)− 1) +

∫ a

0

1− F(x)d x =

∫ a

0

1− F(x)d x .

Since last inequality holds for any a > 0 we get that

∫ +∞

0

xdF(x)≥ lim
a→+∞

∫ a

0

1− F(x)d x =

∫ +∞

0

1− F(x)d x .

Putting together the previous two inequalities we prove the claim. Analogously

we can show that
∫ 0
−∞ xdF(x) = −

∫ 0
−∞ F(x)d x . This is left to the reader.

An alternative proof consists in first showing that for any non-negative r.v. we

have that E[X ] =
∫ +∞

0 1− F(x)d x . Once this is proved we take X = X+ − X−

and use the fact that both X+ and X− are positive to conclude that E[X ] =
E[X+]− E[X−] =

∫ +∞
0 1− FX+(x)d x −

∫ +∞
0 1− FX−(x)d x . Then we need to

relate FX+(x) and FX−(x). This is left to the reader.

Corollary 1.8.6. For a non-negative r.v. X , we have that

E[X ] =
∫ +∞

0

P(X > x)d x .

Proof. It is enough to note that r.v. X we have that F(x) = 0 for x < 0, since X

is non-negative. From this observation the result follows.
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Theorem 1.8.7. Let k ∈ N, then

E[X k] = k
�

∫ +∞

0

(1− FX (x))x
k−1d x −

∫ 0

−∞
FX (x)x

k−1d x
�

.

Proof. We do the proof for k even but we note that for k odd it is completely

analogous. Since k is even we note that X k is a non-negative r.v., therefore from

last corollary it follows that

E[X k] =

∫ +∞

0

P(X k > x)d x =

∫ +∞

0

P(X > x1/k)d x +

∫ +∞

0

P(X < −x1/k)d x

=

∫ +∞

0

1− FX (x
1/k)d x +

∫ +∞

0

FX ((−x1/k)−)d x .

Now doing the change of variables x = yk, last expression writes as

∫ +∞

0

1− FX (y)k yk−1d y +

∫ +∞

0

FX ((−y)−)k yk−1d y.

Now note that FX (−y) and FX ((−y)−) are monotone functions which are equal

except in a set of points which are the jump points, therefore they are equal

except at most on a countable set of points, so that the last expression coincides

with
∫ +∞

0

1− FX (y)k yk−1d y +

∫ +∞

0

FX (−y)k yk−1d y,

and doing the change of variables −y = u last expression equals to

∫ +∞

0

1− FX (y)k yk−1d y −
∫ 0

−∞
FX (u)kuk−1du.

This ends the proof.

Theorem 1.8.8 (Integrability criterion). For a r.v. X we have that

∑

n≥1

P(|X | ≥ n)≤ E[|X |]≤ 1+
∑

n≥1

P(|X | ≥ n),

so that E[|X |]<∞ iff the series above converges.
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Proof. Let Λn := {ω : X (ω) ∈ [n, n+ 1)}. Note that Λn are disjoint sets so that

E[|X |] =
+∞
∑

n=0

∫

Λn

|X |dP.

Applying the mean value theorem to each integral we obtain that
+∞
∑

n=0

nP(Λn)≤ E[|X |]≤
+∞
∑

n=0

(n+ 1)P(Λn) = 1+
+∞
∑

n=0

nP(Λn). (1.8.2)

To finish the proof it is enough to show that
+∞
∑

n=0

nP(Λn) =
+∞
∑

n=0

P(|X | ≥ n) (1.8.3)

being its value finite or infinite. For that purpose let us fix m. Then, truncating

the series at m we have that
m
∑

n=0

nP(Λn) =
m
∑

n=0

n
�

P(|X | ≥ n)− P(|X | ≥ n+ 1)
�

=
m
∑

n=0

nP(|X | ≥ n)− P(|X | ≥ n)−
m+1
∑

n=1

(n− 1)P(|X | ≥ n)

=
m
∑

n=1

P(|X | ≥ n)−mP(|X | ≥ m+ 1)

Then, since mP(|X | ≥ m+ 1)≥ 0, we have that
m
∑

n=1

nP(Λn)≤
m
∑

n=1

P(|X | ≥ n) =
m
∑

n=1

nP(Λn) +mP(|X | ≥ m+ 1).

On the other hand mP(|X | ≥ m+ 1) ≤
∫

{|X |≥m+1} |X |P, so that if E[X ] < +∞,

then the term on the right hand side of last equality vanishes as n→∞. Then

(1.8.3) follows with both series finite. Now, if E[|X |] = +∞, since (1.8.2)

holds, then
+∞
∑

n=1

nP(Λn) = +∞.

From here it follows that
∑m

n=0 nP(|X | ≥ n) = +∞ diverges with m since
m
∑

n=1

nP(Λn)≤
m
∑

n=1

P(|X | ≥ n)≤
m
∑

n=1

nP(Λn) +mP(|X | ≥ m+ 1).

This ends the proof.
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Lemma 1.8.9. If X is a non-negative r.v. which takes only integer values, then

E[X ] =
∑

n≥1

P(X ≥ n).

Proof. From Corollary 1.8.6 we have that

E[X ] =
∫ +∞

0

P(X > x) =
+∞
∑

n=0

(1− F(n)) =
+∞
∑

n=0

P(X > n) =
+∞
∑

n=1

P(X ≥ n).

This result can also be seen as a corollary to the previous Theorem. To do that

note

E[X ] = E[|X |]≤ 1+
+∞
∑

n=1

P(|X | ≥ n) =
+∞
∑

n=0

P(X ≥ n).

Now we write the term at the right hand side of last expression as

+∞
∑

n=0

+∞
∑

j=n

P(X = j)

and we use Fubini’s Theorem to get that

E[X ]≤
+∞
∑

j=0

j
∑

n=0

P(X = j) =
+∞
∑

j=0

jP(X = j) =
+∞
∑

j=1

jP(X = j).

Repeating these arguments and noting that

+∞
∑

j=1

jP(X = j) =
+∞
∑

n=1

P(X ≥ n),

we obtain from (1.8.2) that

+∞
∑

n=1

P(X ≥ n)≤ E[X ]≤
+∞
∑

n=1

P(X ≥ n),

from where the result follows.

There is a basic relation between an integral wrt P over sets of F and the

Lebesgue-Stieltjes integral wrt to µ over sets ofB .
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Theorem 1.8.10. Let X be a r.v. defined on a probability space (Ω,F ,P) which

induces the probability space (R,B ,µ) and let f : R→ R be a Borel measurable

function. Then,
∫

Ω

f (X (ω))P(dω) =
∫

R
f (x)µ(d x)

as long as both sides exist.

Proof. To prove the result we use the classical argument as we used in the con-

struction of the integral. First we prove the result for a function f = 1B with

B ∈B . In this case we have that

∫

R
f (x)µ(d x) = µ(B) and

∫

Ω

f (X (ω))P(dω) = P(X ∈ B)

and the equality holds from the definition of µ which was defined as the push-

forward of P. Now, from linearity the equality is going to be true for functions

of the form f =
∑

j b j1B j
where b j ∈ R and B j ∈ B . In the case where f is

a general positive Borel-measurable function we take a sequence { fm}m∈N of

functions of the form fm =
∑

j bm
j 1Bm

j
as above, in such a way that fm ↑ f and

for each fm we have that

∫

Ω

fm(X (ω))P(dω) =
∫

R
fm(x)µ(d x)

and from the monotone convergence Theorem we conclude the result for posi-

tive functions. To prove it for general f we use the decomposition f = f +− f −

and the equality follows.

In higher dimensions the result is the same. We state it for d = 2 as

Theorem 1.8.11. Let (X , Y ) be a random vector defined on a probability space

(Ω,F ,P) which induces the probability space (R2,B2,ν) and let f : R2 → R be

a Borel measurable function. Then,

∫

Ω

f (X (ω), Y (ω))P(dω) =
∫∫

R2

f (x , y)ν(d x , d y).
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We do not show the previous theorem here since it is exactly the same proof

as in the one-dimensional case.

From the previous theorem, for a r.v. X with distribution function FX and

distribution measure µX , it holds that

E[X ] =
∫

R
xµX (d x) =

∫

R
xdFX (x)

and more generally E[ f (X )] =
∫

R f (x)µX (d x) =
∫

R f (x)dFX (x).

Remark 1.8.12. An important consequence of the previous theorem is that for

f (x , y) = x + y we obtain that (linearity of the integral)

E[X + Y ] = E[X ] +E[Y ].

To prove the previous equality we note that for f : R2 → R defined by f (x , y) =
x + y we have that

E[X + Y ] =

∫

Ω

X + YP(dω) =
∫∫

R2

(x + y)ν(d x , d y).

The integral at the right hand side of last equality is equal to
∫∫

R2

xν(d x , d y) +

∫∫

R2

yν(d x , d y).

On the other hand if f (x , y) = x we obtain that

E[X ] =
∫

Ω

XP(dω) =
∫∫

R2

xν(d x , d y)

and the same is true when we take f (x , y) = y from where the result follows.

Definition 1.8.13. Let a ∈ R and r ≥ 0. The absolute moment of a r.v. X of order

r about a is defined as E[|X − a|r].

Remark 1.8.14. If µX and FX are the distribution measure and the distribution

function of X , then

E[|X − a|r] =
∫

R
|x − a|rµ(d x) =

∫

R
|x − a|r dFX (x),
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E[(X − a)r] =

∫

R
(x − a)rµ(d x) =

∫

R
(x − a)r dFX (x).

When r = 1 and a = 0, the previous moment is E[X ]. The moments about a =
E[X ] are called central moments and the one of order 2 is called the variance:

Var(X ) = E[(X −E[X ])2] = E[X 2]− (E[X ])2.

Definition 1.8.15 (The space Lp = Lp(Ω,F ,P)). For a positive number p, we

say that X ∈ Lp iff E[|X |p]<∞.

Theorem 1.8.16. Let X and Y be random variables and p, q such that 1< p <∞
and 1

p +
1
q = 1 (p and q are said to be conjugate). Then

1. (Holder’s Inequality)

|E[X Y ]| ≤ E[|X Y |]≤ (E[|X |p])1/pE[|Y |q])1/q (1.8.4)

2. (Minkowski’s inequality)

(E[|X + Y |p])1/p ≤ (E[|X |p])1/p + (E[|Y |p])1/p

Remark 1.8.17. When p = 2, (1.8.4) is called the Cauchy-Schwarz’s inequality.

Do the proof of the previous result.

Theorem 1.8.18 (Jensen’s inequality). If ϕ : R→ R is a convex function and X

and ϕ(X ) are integrable r.v. then

ϕ(E[X ])≤ E[ϕ(X )].

Proof. To prove the theorem first note that since ϕ is convex then it is contin-

uous. Then, we know that ϕ(X ) is a r.v. Now convexity means that there exist

{λ j} j=1,··· ,n and {y j} j=1,··· ,n such that

ϕ
�

n
∑

j=1

λ j y j

�

≤
n
∑

j=1

λ jϕ(y j).
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We prove this theorem by using the classical argument that we used in the con-

struction of the integral. First, we prove it for a simple r.v. X , then we approx-

imate a positive r.v. X by a sequence of simple functions and use Monotone’s

convergence theorem and finally we use the equality X = X+ − X−. To prove it

for a simple r.v. suppose that X is a r.v. taking the values y j with probability λ j

with j = 1, · · · , n. Since E[X ] =
∑n

j=1 y jλ j and since E[ϕ(X )] =
∑n

j=1ϕ(y j)λ j ,

then we result follows by convexity of ϕ.

Example 15.

1. ϕ(x) = |x |;

2. ϕ(x) = x2;

3. ϕ(x) = |x |p, p ≥ 1.

Theorem 1.8.19 (Tchebychev’s Basic inequality). Let X be a non-negative r.v.

For any λ > 0,

P(X ≥ λ)≤
E[X ]
λ

.

Proof. To prove the result note that

E[X ] =
∫

Ω

X dP=
∫

{X≥λ}
X dP+

∫

{X<λ}
X dP.

Since X is non-negative we obtain that

E[X ]≥
∫

{X≥λ}
X dP≥ λP(X ≥ λ).

Theorem 1.8.20 (Tchebychev’s Classic inequality). Let X be a r.v. with finite

variance. For any λ > 0,

P(|X −E[X ]| ≥ λ)≤
Var(X )
λ2

.

Proof. To prove the result it is enough to note that |X −E[X ]| ≥ λ implies that

|X −E[X ]|2 ≥ λ2 and use the previous Theorem.
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Theorem 1.8.21 (Markov’s inequality). Let X be a r.v. with E[|X |]t <∞. For

any λ > 0,

P(|X | ≥ λ)≤
E[|X |t])
λt

.

Proof. To prove the result follow the same argument as in the previous proof.

Let ϕ : R→ R be a strictly positive and increasing function in (0,+∞),
such that ϕ(u) = ϕ(−u) and let X be a r.v. such that E[ϕ(X )] < +∞.

then, for each u> 0 it holds that

P(|X | ≥ u)≤
E[ϕ(X )]
ϕ(u)

.

General Tchebychev’s inequality

Theorem 1.8.22. If X and Y are two independent r.v. with finite expectation,

then

E[X Y ] = E[X ]E[Y ].

Proof. We prove again this theorem using the classical argument starting by

showing it for discrete r.v. For that purpose, let X , Y be discrete such that

Λ j = {ω : X (ω) = b j}

Λ̃k = {ω : Y (ω) = ak}.

Then E[X ] =
∑

j b jP(Λ j) and E[Y ] =
∑

k akP(Λ̃k). Now note that X Y is a

discrete r.v. and X Y (ω) = ak b j for ω ∈ Λ j ∩ Λ̃k. Then,

E[X Y ] =
∑

j,k

ak b jP(Λ j ∩ Λ̃k).

Since P(Λ j ∩ Λ̃k) = P(X = b j , Y = ak) and by independence we obtain that

E[X Y ] =
∑

j,k

ak b jP(X = b j)P(Y = ak) =
∑

j

b jP(X = b j)
∑

k

akP(Y = ak)

= E[X ]E[Y ].

(1.8.5)
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Now we extend the result to positive r.v. with finite mean. Then, we know

(recall the argument that we used when constructing the integral) that there

exist Xm and Ym discrete r.v. such that E[Xm] ↑ E[Y ] and E[Ym] ↑ E[Y ]. To see

that they are also independent note that

P
�

Xm =
j

2m , Ym =
k

2m

�

= P
�

j
2m ≤ X < j+1

2m , k
2m ≤ Y < k+1

2m

�

= P
�

j
2m ≤ X < j+1

2m

�

P
�

k
2m ≤ Y < k+1

2m

�

= P
�

Xm =
j

2m

�

P
�

Ym =
k

2m

�

.

(1.8.6)

In the second equality above we used the independence of X and Y . Another

way to show that Xm and Ym are independent is to see that Xm =
[2mX ]

2m and

Ym =
[2mY ]

2m and since they are functions of X and Y , their independence follows.

Finally, we have that 0 ≤ X Y − XmYm = X (Y − Ym) + Ym(X − Xm) and by the

Monotone Convergence Theorem we conclude that

E[X Y ] = lim
m→+∞

E[XmYm] = lim
m→+∞

E[Xm]E[Ym] = E[X ]E[Y ].

So far the result is true for positive r.v. For the general case we take X = X+−X−

and Y = Y+ − Y−. Since X and Y are independent we get that X+ and Y+ are

independent and also X− and Y−. To conclude note that

E[X Y ] = E[(X+ − X−)(Y+ − Y−)]

and expand the product and use the independence.

Remark 1.8.23. We note that a short proof of the previous result can be derived

by using Fubini’s Theorem. For that purpose, use that

E[X Y ] =

∫

Ω

X Y dP=
∫∫

R2

x yν(d x , d y).

Since ν= µX ×µY the term at the right hand side of last equality is equal to
∫∫

R2

x yµX (d x)µY (d y) =

∫

R
xµX (d x)

∫

R
yµY (d y) = E[X ]E[Y ].

Corollary 1.8.24. If {X j} j=1,··· ,n are independent r.v. with finite mean, then

E
�

n
∏

j=1

X j

�

=
n
∏

j=1

E[X j].
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We leave the proof of the previous result to the reader. Now we introduce

the notion of correlation which measure how r.v. can affect each other.

Definition 1.8.25. Let X and Y be r.v. with finite expectation. The covariance

between X and Y is defined as

Cov(X , Y ) = E[(X −E[X ])(Y −E[Y ])].

When Cov(X , Y ) = 0, we say that X and Y are uncorrelated.

Remark 1.8.26. Be careful: uncorrelation does NOT imply independence.

Example 16. Analyze the case when (X , Y ) has density given by

f (x , y) =
1

2πσ1σ2

p

1−ρ2
e
− 1

2(1−ρ2)

��

x−µ1
σ1

�2

−2ρ
x−µ1
σ1

y−µ2
σ2
+
�

y−µ2
σ2

�2�

and take ρ = 0.

Proposition 1.8.27. Let X1, · · · , Xn be integrable r.v. such that Cov(X i , X j) = 0

for i 6= j. Then

Var(X1 + · · ·+ Xn) =
n
∑

i=1

Var(X i).

Proof. First let us suppose that the X j ’s have zero mean. Then

Var
�

n
∑

j=1

X j

�

= E
��

n
∑

j=1

X j

�2�
= E

�

n
∑

j=1

X 2
j

�

+E
�

n
∑

i 6= j=1

X iX j

�

.

Since the r.v. have Cov(X i , X j) = 0 for i 6= j then the term at the right hand side

of last equality is equal to zero so that we conclude the proof. Now for general

X j we take Yj = X j −E[X j] and note that Yj ’s are mean zero. So, apply the first

part of the proof to Yj and conclude.

Example 17. Let X and Y be r.v. with finite variance: show that if X and Y are

independent, then

Var(X Y ) = Var(X )Var(Y ) + (E[X ])2Var(Y ) + (E[Y ])2Var(X ).
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1.9 Exercises

1.9.1 Exercises on set theory

Exercise 1:

Show that, ifA andB are twoσ-algebras, thenA
⋂

B is also aσ-algebra.

Exercise 2:

Let Ω := {ω1,ω2,ω3} be a sample space.

1. Exhibit all the σ-algebras of Ω.

2. Compute σ({ω1}). Check that it is a σ-algebra.

Exercise 3:

Recall that, for a topological space S the Borel σ-algebra B(S) is gener-

ated by the family of open subsets of S. Prove that the Borel σ-algebra of R is

generated by π(R) = {(−∞, x] : x ∈ R}.

Exercise 4:

Let X be a random variable defined on a sample space Ω. Compute σ(X ),
that is the σ-algebra generated by X , when

1. Ω := {ω1,ω2,ω3} and X (ω1) = X (ω2) = X (ω3) = 1.

2. Ω := {ω1,ω2,ω3} and X (ω1) = 0, X (ω2) = 1 and X (ω3) = 2.

3. Ω := {ω1,ω2,ω3} and X (ω1) = 0, X (ω2) = 0 and X (ω3) = 1.

4. Ω := {ω1,ω2,ω3,ω4} and X (ω1) = 0, X (ω2) = 0, X (ω3) = 1 and

X (ω4) = 2.

Exercise 5:

Let Ω be a sample space, F be a σ-algebra of subsets of Ω.

Assume that µ(·) is a set map defined on Ω satisfying the following condi-

tions:
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1. ∀E ∈ F , µ(E)≥ 0;

2. If {E j} j≥1 is a countable collection of disjoint sets in F , then

µ
�⋃

j≥1

E j

�

=
∑

j≥1

µ(E j);

3. µ(Ω) = 1.

Prove that

1. ∀E ∈ F , µ(E)≤ 1;

2. ∀E ∈ F , µ(;) = 0;

3. ∀E ∈ F , µ(E) = 1−µ(Ec);

4. ∀E, F ∈ F , µ(E
⋃

F) +µ(E
⋂

F) = µ(E) +µ(F);

5. ∀E, F ∈ F such that E ⊆ F , µ(E) = µ(F)−µ(F \ E)≤ µ(F);

6. Let {E j} j≥1 be an increasing (decreasing) sequence of sets in F that is

E j ⊆ E j+1 (E j ⊇ E j+1) for all j ≥ 1. Prove that, if {E j} j≥1 is an increasing

(decreasing) sequence of sets in F such that E j ↑ E (E j ↓ E), that is

E =
⋃

j≥1 E j (E =
⋂

j≥1 E j), then lim j→+∞µ(E j) = µ(E);

7. (Boole’s inequality): µ
�

⋃

j≥1 E j

�

≤
∑

j≥1µ(E j).

Exercise 6:

Let {E j} j≥1 be random events belonging toF , aσ-field of events of a sample

space Ω.

Let µ(·) be a probability measure defined on F . Show that for all n≥ 1

1. µ
�

⋂n
j=1 E j

�

≥ 1−
∑n

j=1µ(E
c
j );

2. If µ(E j)≥ 1− ε, for j ∈ {1, · · · , n}, then µ
�

⋂n
j=1 E j

�

≥ 1− nε;

3. µ
�

⋂

j≥1 E j

�

≥ 1−
∑

j≥1µ(E
c
j );
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Exercise 7:

Prove the following properties:

1. If µ(E j) = 0 for all j ≥ 1, then µ
�

⋃

j≥1 E j

�

= 0;

2. If µ(E j) = 1 for all j ≥ 1, then µ
�

⋂

j≥1 E j

�

= 1;

Exercise 8:

Take {E j} j≥1 and {F j} j≥1 belonging to the same probability space (Ω,F ,µ).

Suppose that lim j→+∞µ(E j) = 1 and lim j→+∞µ(F j) = p, with p ∈ [0, 1].

Show that lim j→+∞µ(E j
⋂

F j) = p.

Exercise 9:

Let

limsup
n

En =
⋂

n≥1

⋃

k≥n

Ek, (1.9.1)

lim inf
n

En =
⋃

n≥1

⋂

k≥n

Ek. (1.9.2)

If (1.9.2) and (1.9.1) are equal we write

lim
n

En = lim inf
n

En = lim sup
n

En.

Let {En}n≥1 belong to a probability space (Ω,F ,µ). Show that

1.

µ
�

lim inf
n

En

�

≤ lim inf
n
µ(En)≤ lim sup

n
µ(En)≤ µ

�

lim sup
n

En

�

.

2. If limn→+∞ En = E, then limn→+∞µ(En) = µ(E).

1.9.2 Exercises on Random variables and distribution functions

Exercise 1:

Specify the distribution function and the distribution measure of the random

variable X .
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(a) If X has probability function defined on k ∈ {0,1} and given by

P(X = k) = pk(1− p)1−k.

That is X has Bernoulli distribution of parameter p.

(b) If X has probability function defined in k ∈ {0, · · · , n} and given by

P(X = k) = Cn
k pk(1− p)n−k.

That is X has Binomial distribution of parameter n and p.

(c) If X has probability function defined in k ∈ {0,1, · · · } and given by

P(X = k) =
e−ααk

k!
,

α > 0. That is X has Poisson distribution of parameter α.

(d) If X has probability function defined in k ∈ {0,1, · · · } and given by

P(X = k) = p(1− p)k.

That is X has Geometric distribution of parameter p.

(e) If X has probability density function given by

f (x) = αe−αx1[0,+∞)(x),

with α > 0. That is X has Exponential distribution with parameter α.

(f) If X has probability density function given by

f (x) =
1

b− a
1[a,b](x)

for a, b ∈ R with a < b. That is X has Uniform distribution in [a, b].

(g) If X has probability density function given by

f (x) =
1

π(1+ x2)
,

x ∈ R. That is X has Cauchy distribution.

(h) If X has probability density function given by

f (x) =
1
p

2π
e−x2/2,

x ∈ R. That is X has Gaussian distribution.
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Exercise 2:

Let σ > 0. Let X be a random variable with probability density function

f : R→ R given by f (x) = 1
σ
p

2π
e−

x2

2σ2 .

(a) Prove that f (·) is indeed a probability density function. How does the

graph of f look like when σ is very small?

(b) Compute E[X ] and E[X 2].

Exercise 3:

Let X be a random variable with probability density function given by f (x) =
cx21[−1,1](x).

(a) Determine the value of the constant c.

(b) Exhibit the distribution function FX (·) and find x1 such that FX (x1) =
1/4.

Exercise 4:

Let X be a random variable with distribution function given by FX (x) =
x31[0,1](x) + 1(1,∞](x).

(a) Find the probability density function of X .

(b) Prove that it is indeed a probability density function.

Exercise 5:

A random variable X is said to be symmetric around µ if P(X ≥ µ+ x) =
P(X ≤ µ− x) for all x ∈ R. If µ= 0 we simply say that X is symmetric.

Let X be a random variable symmetric around the point b ∈ R and suppose

that X takes the values a, b and 2b− a, with a < 0 and b > 0.

(a) Show that E[X ] = b.

(b) Suppose that E[X ] = 1, a = −1, Var(X ) = 3 and determine the

distribution function of X and its induced measure µX .

(c) Compute µX ((−∞,−1]), µX ((−∞, 3/2]) and µX ({1}).

Exercise 6:
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Let X be a symmetric random variable that takes the values a 6= b 6= c.

Suppose that P(X = 0) = 1/5.

Give the results in terms of a 6= 0.

(a) Exhibit the distribution function and the distribution measure of X .

(b) Compute E[X ] and Var(X ).

Exercise 7:

Let X be a random variable with probability density function fX (·) and for

b > 0 and c ∈ R let Y = bX + c.

(a) Prove that the probability density function of Y is given by fY (y) =
1
b fX

� y−c
b

�

.

(b) Let X be a random variable with Cauchy distribution.

Compute the probability density function of Y = bX +M , where b > 0 and

M ∈ R.

(c) Let X be a random variable with standard Normal distribution.

Compute the probability density function of Y = σX +µ, where σ > 0 and

µ ∈ R.

(d) Let X be a random variable with Gamma distribution with parameter

α and 1.

Compute the probability density function of Y = X
β .

What is the distribution of Y when α= 1?

Exercise 8:

Let X be a random variable with density function given by f (x) = (1 +
x)−21(0,+∞)(x).

Let Y =max(X , c), where c is a positive constant c > 0.

(a) Show that f (·) is a probability density function.

(b) Exhibit the distribution function of X and Y . Justify that FX is in fact

a distribution function.

(c) Decompose FY (·) in its discrete, absolutely continuous and singular

parts.
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(d) Compute E[X ] and E[Y ].

Exercise 9:

Let X be a random variable uniformly distributed on the interval [0,1].

Let Y be the random variable defined as Y = min(1/2, X ).

(a) Determine the distribution function of X and Y and represent their

graph.

(b) Decompose FY (·) in its discrete, absolutely continuous and singular

parts.

(c) Compute E[X ] and E[Y ].

Exercise 10:

Let X be a random variable with exponential distribution with parameter

λ > 0. Let Y =max(X ,λ).

(a) Determine the distribution function of X and Y and represent their

graph.

(b) Decompose FY (·) in its discrete, absolutely continuous and singular

parts.

Exercise 11:

Let X be a random variable uniformly distributed on [0, 2].

Let Y be the random variable defined by Y = min(1, X ).

(a) Determine the distribution functions of X and Y and represent their

graph.

(b) Decompose FY (·) in its discrete, absolutely continuous and singular

parts.

Exercise 12:

Let X be a random variable with Cantor distribution:

(a) Describe the construction of its distribution function FX (·).

(b) Justify that X is a singular random variable.
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(c) Compute P
�

X = 1
3

�

. Justify.

(d) Compute P
�

1
3 < X < 2

3

�

, P(X ≤ 2
3) and P(1

9 < X ≤ 8
9).

(e) Compute E[X ]. Justify.

Exercise 13: Let U be a random variable uniformly distributed in [0, 1].

(a) Find a function f : [0,1] → R such that f (U) is a random variable

uniform in [0,2].

(b) Find a function f : [0,1]→ R such that f (U) is a random variable with

Bernoulli distribution of parameter p, where p ∈ (0, 1).

(c) Find a function f : [0, 1]→ R such that f (U) is a random variable with

exponential distribution of parameter λ > 0.

(d) Let 0 < p < q < 1. Construct a random vector (X , Y ) such that X

has distribution Bernoulli with parameter p, Y has distribution Bernoulli with

parameter q and X ≤ Y almost surely.

(e) Let 0 < λ1 < λ2. Construct a random vector (X , Y ) such that X has

exponential distribution with parameter λ1, Y has exponential distribution with

parameter λ2 and X ≥ Y almost surely.

1.9.3 Exercises on Random vectores and Stochastic Independence.

Exercise 1:



66 Exercises

Select a point uniformly in the unitary circle C = {(x , y) : x2 + y2 ≤ 1}.
Let X and Y be the coordinates of the selected point.

(a) Determine the joint density of X and Y .

(b) Determine P(X < Y ), P(X > Y ) and P(X = Y ).

(c) What is probability of finding the point in the first quadrant? Justify.

Exercise 2:

Suppose that X and Y are random variables identically distributed with sym-

metric distribution around zero and with joint distribution given by

X \ Y −1 0 ...

−1 ... 0 ...

0 0 ... 0

... θ 0 θ

(a) If P(X = −1) = 2/5, complete the table.

(b) Compute E[X ], E[Y ] and Var(X ).

(c) Are the random variables X and Y independent? Justify.

(d) Find the probability functions of the random variables X +Y and X Y .

Justify if X + Y and X Y are symmetric random variables around zero.

(e) Represent the graph of the distribution function of the random vari-

able X + Y .

(f) Explicit the measure µX+Y .

(g) Compute µX+Y ({0}) and µX+Y ((−∞, 0]).

Exercise 3:

Suppose that X and Y are random variables with joint distribution given by:

X \ Y 1 2 3

1 0 1/5 0

2 1/5 1/5 1/5

3 0 1/5 0
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(a) Compute the marginal probability functions of X and Y .

(b) Compute E[X ], E[Y ] and Var(X ).

(c) Are the random variables X and Y independent? Justify.

(d) If Z and W are independent random variables, thenE[ZW ] = E[Z]E[W ].

Is the opposite true? Prove or exhibit a counter example.

(e) Find the distribution function of X and represent its graph.

(f) Exhibit the distribution measure µX of X .

(g) Compute the distribution function of X + Y .

(h) Compute the distribution function of X − Y .

Exercise 4:

Suppose that X and Y are random variables with joint distribution given by:

X \ Y 1 0 −1

1 0 a 0

0 b c b

−1 0 a 0
where a, b, c > 0.

(a) Compute the marginal probability functions of X and Y .

Justify that 2a+ 2b+ c = 1.

(b) Compute E[X ], E[Y ] and Var(X ).

(c) Verify that the random variable X Y is such that X Y = 0 almost surely.

(d) Are the random variables X and Y independent? Justify.

(e) If Z and W are independent random variables, thenE[ZW ] = E[Z]E[W ].

Is the opposite true? Prove or exhibit a counter example.

(f) Take c = 1/4 and a, b such that a = 2b.

( f1) Find the distribution function of X and represent its graph.

( f2) Exhibit the distribution measure µX of X .
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Exercise 5:

Let X be a random variable such that X ∼U [0,1]. Compute the distribution

of Y = − log(X ).

Exercise 6:

Let X and Y be i.i.d. random variables with X ∼ U [0, 1]. Compute the

distribution of Z = X/Y .

Exercise 7:

Let X and Y have joint density given by f (x , y). Show that

fX+Y (u) =

∫

R
f (u− t, t)d t.

Moreover, if X and Y are independent with densities fX and fY , respectively,

then

fX+Y (u) =

∫

R
fX (t) fY (u− t)d t.

Exercise 8:

Let X be a r.v. with density f (x) = 1
4 e−|x |/2, for x ∈ R. Compute the distri-

bution of Y = |X |.

Exercise 9:

Show that the function

F(x , y) =

(

1− e−(x+y), x ≥ 0 and y ≥ 0

0, otherwise

is not the distribution function of a random vector.

Exercise 10:

Show that the function

F(x , y) =

(

(1− e−x)(1− e−y), x ≥ 0 and y ≥ 0

0, otherwise
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is the distribution function of a random vector.

Exercise 11:

Let X and Y be i.i.d. random variables with uniform distribution on [θ −
1/2,θ + 1/2], with θ ∈ R. Compute the distribution of X − Y .

Exercise 12:

Let X1, X2, . . . , Xn be i.i.d. random variables with Rayleigh distribution with

parameter θ , that is, the density of X1 is given by

f (x) =















x

θ2
e
−

x2

2θ2 , x > 0

0, otherwise

(a) Compute the joint density of Y1, . . . , Yn, where for each i = 1, . . . , n it

holds that Yi = X 2
i .

(b) Compute the distribution of U =min1≤i≤n X i .

(c) Compute the distribution of Z = X1/X2.

Exercise 13:

Let X1, X2, . . . , Xn be independent random variables with exponential distri-

bution with parameter α1, . . . ,αn, respectively.

(a) Compute the distribution of Y =min1≤i≤n X i and Z =max1≤i≤n X i .

(b) Show that for each p = 1, . . . , n it holds that

P(Xp = min
1≤i≤n

X i) =
αp

α1 + · · ·+αn
.

(Hint: Consider the event {Xp <mini 6=p X i}).

Exercise 14:

Let X1, X2, . . . , Xn be independent random variables with distribution func-

tions F1, F2, · · · , Fn respectively. Find the distribution functions of the random

variables min1≤i≤n X i and max1≤i≤n X i .
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Exercise 15:

Let X and Y be independent random variables each assuming the values 1

and −1 with probability 1/2. Show that {X , Y, X Y } are pairwise independent

but not totally independent.

1.9.4 Exercises on Mathematical Expectation

Exercise 1:

In each case, compute E(X ) and Var(X ), if they exist:

(a) If X has probability function defined on k ∈ {0,1} and given by P(X =
k) = pk(1− p)1−k.

That is X has Bernoulli distribution of parameter p.

(b) If X has probability function defined in k ∈ {0, · · · , n} and given by

P(X = k) = Cn
k pk(1− p)n−k.

That is X has Binomial distribution of parameter n and p.

(c) If X has probability function defined in k ∈ {0,1, · · · } and given by

P(X = k) = e−ααk

k! , α > 0.

That is X has Poisson distribution of parameter α.

(d) If X has probability function defined in k ∈ {0, 1, · · · } and given by

P(X = k) = p(1− p)k.

That is X has Geometric distribution of parameter p.

(e) If X has probability density function given by f (x) = αe−αx1[0,+∞)(x),
with α > 0.

That is X has Exponential distribution with parameter α.

(f) If X has probability density function given by f (x) = 1
b−a 1[a,b](x) for

a, b ∈ R with a < b.

That is X has Uniform distribution in [a, b].

(g) If X has probability density function given by f (x) = 1
π(1+x2) , x ∈ R.

That is X has Cauchy distribution.

(h) If X has probability density function given by f (x) = 1p
2π

e−x2/2, x ∈
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R.

That is X has Normal distribution.

Exercise 2:

Prove that:

(a) For any random variable X with distribution function FX , it holds that

E[X ] =

∫ +∞

0

1− FX (x)d x −
∫ 0

−∞
FX (x)d x

(b) and for any k ∈ N

E[X k] = k

∫ +∞

0

(1− FX (x))x
k−1d x − k

∫ 0

−∞
FX (x)x

k−1d x .

(c) If X is non-negative, then

E[X ] =

∫ +∞

0

1− FX (x)d x .

(d) If X is discrete and takes non-negative integer values, then

E[X ] =
+∞
∑

n=1

P(X ≥ n).

(e) If X has Exponential distribution with parameter λ > 0, then E[X k] =
k!/λk, for any k ∈ N.

(f) Let X and Y be random variables, such that Y is stochastically dom-

inated by X , that is for all x ∈ R it holds that FX (x) ≤ FY (x). Show that

E[X ]≥ E[Y ], if both expectations exist.

Exercise 3:

Show that:

(a) if X is a constant random variable, then Var(X ) = 0.

(b) if a ∈ R then Var(X + a) = Var(X ).



72 Exercises

(c) if a, b ∈ R then Var(aX + b) = a2Var(X ).

Exercise 4:

Prove:

(a) Basic Tchebychev’s inequality:

If X is a non-negative random variable (that is X ≥ 0), then for all λ > 0:

P(X ≥ λ)≤
1
λ

E(X ).

(b) Classical Tchebychev’s inequality:

If X is an integrable random variable, then for all λ > 0:

P(|X − E(X )| ≥ λ)≤
1
λ2

Var(X ).

(b) Markov’s inequality:

If X is a random variable, then for all t > 0 and λ > 0:

P(|X | ≥ λ)≤
1
λt

E(|X |t).

Exercise 5:

(a) Let X be a non-negative random variable, that is X ≥ 0, such that

E(X ) = 0.

Show that P(X = 0) = 1, that is, X = 0 almost surely.

(b) Let X be a random variable independent of itself.

Show that X is constant with probability 1 (that is, there exists a constant c

such that P(X = c) = 1).

Exercise 6:

Let X1, · · · , Xn be integrable random variables, such that for i 6= j,

Cov(X i , X j) := E[X iX j]− E[X i]E[X j] = 0.

Show that

Var(X1 + · · ·+ Xn) = Var(X1) + · · ·+ Var(Xn).
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Exercise 7:

Let X1, · · · , Xn be independent random variables with distribution function

FX1
, · · · , FXn

, respectively.

(a) Find the distribution function of max1≤ j≤n X j and min1≤ j≤n X j .

(b) Suppose that the random variables are identically distributed with fi-

nite mean. Show that

lim
n→+∞

1
n

E
�

max
1≤ j≤n

|X j|
�

= 0.

Exercise 8:

Let X and Y be random variables defined on a probability space (Ω,F , P),
both with finite expectation. Show that

(a) E[X + Y ] = E[X ] + E[Y ].

(b) if X and Y are independent, then E[X Y ] = E[X ]E[Y ].

Exercise 9:

Let (X , Y ) be a random vector with density function given by

fX ,Y (x , y) =
1

2πσ1σ2

p

1−ρ2
exp

¦ −1
2(1−ρ2)

�� x −µ1

σ1

�2
− 2ρ

� x −µ1

σ1

�� y −µ2

σ2

�

+
� y −µ2

σ2

�2�©
.

(a) Find the marginal distributions of X and Y .

(b) Assume that X and Y are independent. Compute the distribution of

X + Y .

(c) Show that X and Y are independent if and only if ρ = 0.

Exercise 10:

Let X and Y be random variables taking only the values 0 and 1. Show that,

if E[X Y ] = E[X ]E[Y ] then X and Y are independent.

Exercise 11:
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Let X and Y be random variables with finite variance. Show that, if Var(X ) 6=
Var(Y ) then X + Y and X − Y are not independent.

Exercise 12:

Let X and Y be i.i.d. random variables with Uniform distribution in [0, 1].
Compute the expectation of min(X , Y ) and max(X , Y ).

Exercise 13:

Prove Wald’s equation, that is, show that E[St] = E[Nt]E[X1], where S(t) is

a compound stochastic process, or else, S(t) :=
∑Nt

i=1 X i , where Nt is a counting

process (i.e. Nt takes values in N) and {X i}i≥1 is a sequence of i.i.d. random

variables and independent of Nt for all t.

Exercise 14:

Let X be a random variable and FX (·) its distribution function. Prove that,

for any a ≥ 0, we have
∫

R

�

FX (x + a)− FX (x)
�

d x = a.

Exercise 15:

Show that if Cov(X , Y ) =
p

Var(X )
p

Var(Y ), then there exist constants a

and b such that

P(Y = aX + b) = 1.



Chapter 2

Convergence of sequences of r.v.

2.1 Convergence a.e., Lp and in probability

Recall that we have seen that if {Xn}n≥1 is a sequence of r.v. then limn→+∞ Xn

is a r.v. The notion of convergence we use is of convergence to a finite limit:

if we say {Xn}n∈N converges in Λ ∈ F , this means that for all ω ∈ Λ we have

that the sequence {Xn(ω)}n∈N converges. When Λ= Ω we say the convergence

holds everywhere.

Definition 2.1.1 (Almost everywhere convergence). The sequence {Xn}n∈N is

said to converge almost everywhere to X iff there exists a null set N such that

∀ω ∈ Ω \ N : lim
n→∞

Xn(ω) = X (ω) finite.

Theorem 2.1.2. A sequence of r.v. {Xn}n∈N converges a.e. to X iff for every ε > 0

we have that

lim
m→∞
P(|Xn − X | ≤ ε for all n≥ m) = 1

or equivalently

lim
m→∞
P(|Xn − X |> ε for some n≥ m) = 0 (2.1.1)

Proof. Let us suppose that there is convergence a.e. and let Ω0 = Ω \ N where

N is the set where the convergence does not hold. For ε > 0 and m ≥ 1, let

Am(ε) be the set inside the first probability above:

Am(ε) = ∪+∞n=m{|Xn − X | ≤ ε}. (2.1.2)
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Then, Am(ε) ⊂ Am+1(ε), so that Am(ε) ↑. Fix ω0 ∈ Ω0 and note that the con-

vergence of X (ω0) to X (ω0) implies that given ε > 0, there exists an order

m(ω0,ε) such that for any n ≥ m(ω0,ε) it holds that |Xn(ω0) − X (ω0)| ≤ ε.
Then, ω0 belongs to some Am(ε). Since this property holds for any ω0 we have

that

Ω0 ⊂ ∪+∞m=1Am(ε).

By the monotone property of the measure P it holds that

lim
m→+∞

P(Am(ε))≥ P(Ω0) = 1.

Since P is a probability measure it follows that

lim
m→+∞

P(Am(ε)) = 1.

This proves the first result. Reciprocally, suppose that

1= lim
m→∞
P(Am(ε)) = P(∪+∞m=1Am(ε)) = P(A(ε)).

For ε > 0 and ω0 ∈ A(ε) we have that there exists an order m such that for all

n≥ m it holds that |Xn(ω0)− X (ω0)| ≤ ε. Let ε = 1/n and let A= ∩+∞n=1 A(1/n)
and note that P(A) = P(∩+∞n=1 A(1/n)) = 1 for all n ≥ 1. If ω0 ∈ A then the

property: there exists an order m such that for all n≥ m it holds that |Xn(ω0)−
X (ω0)| ≤ ε holds for any ε = 1/n. Now we prove that in fact it holds for

any ε > 0. Fix ε > 0 not necessarily of the form 1/n. Then take n such that

1/n< ε. Then since there exists an order m such that for all n≥ m it holds that

|Xn(ω0)− X (ω0)| ≤
1
n < ε. Since the property holds for any ε > 0 and for all

ω0 ∈ A with P(A) = 1, it follows the a.e. convergence.

Definition 2.1.3 (Convergence in probability). The sequence {Xn}n∈N is said to

converge in probability to X , iff for every ε > 0 it holds that

lim
n→∞
P(|Xn − X |> ε) = 0.

Theorem 2.1.4 (Convergence a.e. implies convergence in probability). Con-

vergence a.e. to X implies convergence in probability to X .
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Proof. Note that (2.1.1) implies the previous limit. To see that note that (2.1.1)

means that for all ε > 0

lim
m→+∞

P(|Xn − X |> ε) = 0.

But

lim
n→∞
P(|Xn − X |> ε)≤ P(∪n≥m|Xn − X |> ε) = 0

so that the proof ends.

Definition 2.1.5 (Convergence in Lp, 0 < p <∞). The sequence {Xn}n∈N is

said to converge in Lp to X , iff Xn ∈ Lp, X ∈ Lp and

lim
n→∞
E[|Xn − X |p] = 0. (2.1.3)

Definition 2.1.6. We say that X is dominated by Y if |X | ≤ Y a.e. and that the

sequence is dominated by Y , if this is true for any n with the same Y . Moreover, if

above Y is constant we say that X or Xn is uniformly bounded.

Above we can suppose X = 0 since the definitions hold for Xn − X .

Theorem 2.1.7 (Convergence in Lp implies convergence in probability). Con-

vergence in Lp implies convergence in probability. The converse is true if the se-

quence is dominated by some Y ∈ Lp.

Note that in the two previous sentences we can take X = 0 since Xn→ X in

Lp is such that {Xn}n≥1 is dominated by Y , then {Xn − X }n≥1 is dominated by

|Xn|+ |X | ≤ Y + |X | ∈ Lp.

Proof. To prove the first affirmation we use the general Tchebychev’s inequality

with ϕ(u) = |u|p. Then,

P(|X | ≥ ε)≤
E[|X |p]
εp

→n→+∞ 0.

Now, suppose that |Xn| ≤ Y a.e. and that E[Y p]< +∞. Then,

E[|Xn|p] =
∫

{|Xn|≤ε}
|Xn|pdP+

∫

{|Xn|>ε}
|Xn|pdP

≤ εp +

∫

{|Xn|>ε}
Y pdP.

(2.1.4)
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Now, since P(|Xn| > ε)→ 0 as n→ +∞ and since Y p is integrable, we have,

from a result from measure theory that the term at the right hand side of last

expression vanishes as n→ +∞. Then we take ε→ 0 and the result follows.

Remark 2.1.8.

• Convergence in probability does not imply convergence in Lp and conver-

gence in Lp does not imply convergence a.e.

• Convergence a.e. does not imply convergence in Lp.

Theorem 2.1.9 (Scheffé’s Theorem). Let {Xn}n∈N be a sequence of r.v. with

densities f1, f2, · · · and let X be a r.v. with density f . If limn fn = f , holds a.e.

then limn→∞
∫

R | fn − f |d x = 0.

Exercise: do the proof of the previous theorem.

Definition 2.1.10 (limsupn and lim infn). Let {En}n∈N be a sequence of subsets

of Ω. The limsupn En and the lim infn En are defined by

limsup
n

En = ∩∞m=1 ∪
∞
n=m En and lim inf

n
En = ∪∞m=1 ∩

∞
n=m En (2.1.5)

Remark 2.1.11.

• Note that a point belongs to lim supn En iff it belongs to infinitely many

terms of the sequence {En}n∈N and belongs to lim infn En iff it belongs to all

the terms of the sequence from a certain point on. To see this note that a

point belongs to an infinite number of sets En iff that point does not belong

to all the Ec
n from a certain order on. Then, the second affirmation is a

consequence of the first. Let ω be a point that belongs to infinitely many

En, then ω belongs to Fm = ∪+∞n=mEn for all m ≥ 1 and so ω belongs to

∩+∞m=1Fm = lim supn En. Reciprocally, let ω ∈ lim supn En i.e. suppose that

ω ∈ ∩+∞m=1Fm. Then ω ∈ Fm for all m ≥ 1. If ω belongs only to a finite
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number of En’s then there would exist an m≥ 1 such thatω /∈ En for n≥ m

and we would have that ω /∈ ∪+∞n=mEn = Fm which is absurd. Therefore, ω

belongs to infinitely many En’s.

• Also note that (limsupn Ec
n)

c = lim infn En.

• The event lim supn En occurs iff the events En occur i.o.

• If each En ∈ F , then P(lim supn En) = limm→∞ P(∪∞n=mEn). To prove this

result note that if Fm = ∪+∞n=mEn then Fm ↓. Therefore,

P(∩+∞m=1Fm) = lim
m→+∞

P(Fm).

As an exercise show that P(lim infn En) = limm→∞ P(∩∞n=mEn).

Lemma 2.1.12 (Borel-Cantelli - the convergent part). For {En}n∈N arbitrary

events, if
∑∞

n=1 P(En)<∞, then P(En i.o.) = 0.

Proof. Let Fm = ∪+∞n=mEn. From Boole’s inequality we have that

P(Fm)≤
+∞
∑

n=m

P(En).

Now note that the hypothesis of the theorem implies that limm→+∞ P(Fm) = 0,

since the series
∑∞

n=1 P(En) is converging. Then

0≤ P(limsup
n

En)≤ lim
m→+∞

P(Fm) = 0,

from where the result follows.

We can rephrase Theorem 2.1.2:

Theorem 2.1.13. A sequence of r.v. {Xn}n≥1 converges a.e. to 0 iff ∀ε > 0 we

have that

P({|Xn|> ε} i.o.) = 0.

Proof. Let us denote Am = ∪+∞n=m{|Xn| ≤ ε}. Then

{{|Xn|> ε} i.o.}= ∩+∞m=1 ∪
+∞
n=m {|Xn|> ε}= ∩+∞m=1Ac

m.
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From Theorem 2.1.2 we know that Xn →n→+∞ 0 iff for all ε > 0 we have

that P(Ac
m) →n+∞ 0. Since Ac

m ↓, since Ac
m = ∪

+∞
n=m{|Xn| > ε} and last limit is

equivalent to (2.1.1).

Theorem 2.1.14. If {Xn}n≥1 converges in probability to X , then there exists a

sequence {nk} of integers growing to∞ such that Xn → X a.e. This means that

convergence in probability implies converges a.e. along a subsequence.

Proof. Let us take X = 0. Then, as a particular case of the convergence in

probability, it follows that for all k ∈ N we have that

lim
n→+∞

P(|Xn|> 1/2k) = 0.

Then for all k ∈ N there exists nk such that limn→+∞ P(|Xnk
|> 1

2k )<
1
2k . So we

have that
∑

k∈N
P
�

|Xnk
|>

1
2k

�

≤
∑

k∈N

1
2k
< +∞.

Now, having nk fixed, let τk :=
¦

|Xnk
| > 1

2k

©

and from the Borel-Cantelli’s

Lemma (converging part) we have that P
�¦

|Xnk
|> 1

2k

©

i.o.
�

= 0 and this implies

the a.e. convergence of Xnk
to 0 as k→ +∞. To see this we do it as we have

already done before, we fix ε > 0 and we choose k such that 1
2k < ε.

If we add independence to the Borel-Cantelli’s Lemma, then we have

Lemma 2.1.15 (Borel-Cantelli - the divergent part). For independent events

{En}n∈N, if
∑∞

n=1 P(En) = +∞, then P(En i.o.) = 1.

Proof. Note that

P(lim inf
n

Ec
n) = P(∩

+∞
n=mEc

n).

Moreover, since the events {En}n∈N are independent, then the events {Ec
n}n∈N

are also independent. Therefore, if m′ > m, then

P
�

∩m′
n=m Ec

n

�

=
m′
∏

n=m

P(Ec
n) =

m′
∏

n=m

(1− P(En)).
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Now, we use the fact, that for all x ≥ 0 it holds that 1− x ≤ e−x . As a conse-

quence last probability is bounded from above by

m′
∏

n=m

e−P(En) = e−
∑m′

n=m P(En)

and taking the limit m′ → +∞ we have that e−
∑m′

n=m P(En) → 0, since the series
∑∞

n=1 P(En) is diverging. Now, from the monotonicity property of P we have

that

P
�

∩+∞n=m Ec
n

�

= lim
m′→+∞

P
�

∩m′
n=m Ec

n

�

= 0.

Then P(lim infn Ec
n) = 0 ⇐⇒ P(limsupn En) = 1.

Remark 2.1.16. Removing the independence assumption, the result is false. To

see that, take En = A for all n ≥ 1 with 0 < P(A) < 1. Then
∑

n≥1 P(An) =
∑

n≥1 P(A) = +∞. But the event {An i.o.}= A and P(A)< 1.

We observe that the previous result also holds with pairwise independence.

Lemma 2.1.17. For events {En}n∈N which are pairwise independent, if
∑∞

n=1 P(En) =
+∞, then P(En i.o.) = 1.

Proof. Let In = 1En
and in that case the pairwise independence hypothesis can

be written as

E[Im In] = E[Im]E[In]

for m 6= n. Consider the series
∑

n≥1 In(ω). This series diverges iff an infinite

number of terms is equal to 1, that it if ω belongs to an infinite number of En’s.

Then, the conclusion of the theorem can be written as

P
�∑

n≥1

In = +∞
�

= 1.

The other hypothesis can be written as
∑

n≥1E[In] = +∞. Consider the partial

sum Jk =
∑k

n=1 In. From Tchebychev’s inequality we have that

P
�

|Jk −E[Jk]|> Aσ(Jk)
�

≤
σ2(Jk)

A2σ2(Jk)
=

1
A2

.
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From here it follows that

P
�

|Jk −E[Jk]| ≤ Aσ(Jk)
�

≥ 1−
1
A2

.

Above σ2(Jk) denotes the variance of Jk. Now, let pn = E[In] = P(En). Then

E[J2
k ] = E

�

k
∑

n=1

I2
n

�

+ 2E
� ∑

1≤m<n≤k

Im In

�

=
k
∑

n=1

E[I2
n] + 2

∑

1≤m<n≤k

E[Im]E[In]

=
k
∑

n=1

�

E[In]
�2
+ 2

∑

1≤m<n≤k

E[Im]E[In] +
n
∑

k=1

(E[I2
n]− (E[In])

2)

=
�

k
∑

n=1

pn

�2
+

k
∑

n=1

(pn − p2
n).

(2.1.6)

Therefore, σ2(Jk) =
∑k

n=1σ
2(In). Since

k
∑

n=1

pn =
k
∑

n=1

P(En) =
k
∑

n=1

E[In] = E[Jk]→k→+∞ +∞,

thenσ2(Jk) =
∑k

n=1(pn−p2
n)≤

∑k
n=1 pn, so thatσ(Jk)≤

�

E[Jk]
�1/2

= o(E[Jk]).

Now, if k > k0(A) we have that σ(Jk)
E[Jk]≤

1
2A

. Then

1−
1
A2
≤ P

�

|Jk −E[Jk]| ≤ Aσ(Jk)
�

≤ P
�

Jk ≥ −Aσ(Jk) +E[Jk]
�

(2.1.7)

and this implies that

1−
1
A2
≤ P

�

Jk ≥
E[Jk]

2

�

. (2.1.8)

Now, observe that Jk increases with K . Since the inequality above holds for

k ≥ K0(A), then we can replace Jk by limk Jk and then we get that

P
�

lim
k→+∞

Jk = +∞
�

≥ 1−
1
A2

. (2.1.9)

Since the constant A is arbitrary, we can take the limit as A→ 0 to conclude that

P
�

lim
k→+∞

Jk = +∞
�

= 1. (2.1.10)

This concludes the proof.
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Putting together the previous results we have the following statement:

Corollary 2.1.18 (Zero-One law). For independent events {En}n∈N, then

P(En i.o.) = 0 or 1

if
∞
∑

n=1

P(En)<∞ or
∞
∑

n=1

P(En) =∞.

2.2 Weak convergence

If a sequence of r.v. {Xn}n≥1 converges to some limit, does the sequence of

probability distribution measures {µn}n∈N converges in some sense? Is is true

that limnµn(A) exists for any A∈B? The answer to the questions above is no.

Let us see an example. For each n ∈ N, take Xn = cn, where cn is a constant

such that limn→+∞ cn = 0. Then Xn→+∞Xn = 0 deterministically. Let µn be

the measure induced by Xn and let µ be the measure induced by the limit r.v.

which is equal to 0. Let I be an interval of R such that 0 /∈ Ī where Ī is the

closure of the set I . Then limn→+∞µn(I) = 0 = µ(I). On the other hand if

I is an interval such that 0 ∈ I0, where I0 is the interior of the set I , then

limn→+∞µn(I) = 1 = µ(I). From this we see that if cn oscillates between

strictly positive and negative numbers and if I = (a, 0) or I = (0, b), then µn(I)
oscillates between 0 and 1 and µ(I) = 0. Nevertheless, if I = (a, 0] or I = [0, b),
then µn(I) oscillates between 0 and 1 but µ(I) = 1. Note that µ= δ{0}.

Another tricky example is to take Xn with uniform distribution in (cn, c′n)
with cn < 0 < c′n and both sequences {cn}n∈N and {c′n}n∈N converge to 0 as

n→ +∞. Analyse this case.

Now the relevant question is : and if {µn}n∈N converges in some sense,

is the limit necessarily a probability measure? The answer is again no. Take

Xn = cn but now with cn → +∞ and note that Xn → +∞ and if I = (a, b),
then limn→+∞µn(I) = 0 for any a, b ∈ R. So, if there is a limiting measure it

gives weight 0 to any finite interval so that the limit should be equal to zero.

Definition 2.2.1. A probability measure µ in (R,B) with µ(R)≤ 1 is a called a

subprobability measure.
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Definition 2.2.2 (Weak convergence). A sequence of subprobability measures

{µn}n∈N in (R,B) is said to converge weakly to a subprobability measure µ iff

there exists a dense subset D of R such that ∀a, b ∈ D, a < b,

lim
n→∞

µn((a, b]) = µ((a, b]).

We will use the notation µn→v µ and µ is said to be the weak limit of {µn}n∈N.

Definition 2.2.3. An interval (a, b) is said to be a continuity interval of µ is a, b

are not atoms of µ (in other words this means that µ((a, b)) = µ([a, b])).

Lemma 2.2.4. Let {µn}n∈N and µ be subprobability measures. The following

propositions are equivalent:

1. For every finite interval (a, b) and ε > 0, there exists an n0(a, b,ε) such

that if n≥ n0, then

µ((a+ ε, b− ε))− ε≤ µn((a, b))≤ µ((a− ε, b+ ε)) + ε. (2.2.1)

2. for every continuity interval (a, b] of µ we have that

lim
n→∞

µn((a, b]) = µ((a, b]).

3. µn→v µ.

Proof. Let us first prove that 1. implies 2. Let (a, b) be an interval of continuity

of µ. From the monotonicity of µ is follows that

lim
ε→0
µ(a+ ε, b− ε) = µ(a, b)≤ mµ[a, b] = lim

ε→0
µ(a− ε, b+ ε).

Taking the limit as n→ +∞ and then the limit when ε→ 0 in (2.2.1) we obtain

that

µ((a, b))≤ lim inf
n→+∞

µn((a, b))≤ lim sup
n→+∞

µn([a, b])≤ µ([a, b]) = µ((a, b)).

Now we want to prove that Let us first prove that 2. implies 3. This means

that we want to prove that there exists D a dense subset of R such that for any

a < b ∈ D it holds that µn((a, b])n→+∞µ((a, b]). Since the set which contains
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the atoms of µ is at most numerable, then its complementary, let us call it D is

dense. Therefore, if a < b ∈ D, then (a, b) is a continuity interval for µ and

from 2. it holds that

lim
n→∞

µn((a, b]) = µ((a, b]). (2.2.2)

Now we prove that 3. implies 1. Given (a, b) and ε > 0, there exist

a1, a2, b1, b2 ∈ D satisfying

a− ε < a1 < a < a2 < a+ ε and b− ε < b1 < b < b2 < b+ ε.

Now, note that from the notion of weak convergence we have that there exists

n0 ∈ N such that for any n≥ n0 and for i = 1, 2 and j = 1, 2

|µn((ai , b j])−µ((ai , b j])| ≤ ε.

Therefore,

µ((a+ ε, b− ε))− ε ≤ µ((a2, b1])− ε ≤ µn((a2, b1])

≤ µn((a, b))≤ µn((a, b2])≤ µ((a1, b2]) + ε ≤ µ((a− ε, b+ ε)) + ε.
(2.2.3)

And this proves 1.

An immediate consequence of the theorem is that the weak limit is unique.

Let us check it. Suppose that besides (2.2.2) we also have for a < b ∈ D′ where

D′ is a dense subset of R that

lim
n→∞

µn((a, b]) = µ̃((a, b]).

What we want is to show that µ= µ̃. LetA be the set of the common atoms of

µ and µ̃. Then, from item 2. of the previous theorem we know that

µ((a, b]) = lim
n→∞

µn((a, b]) = µ̃((a, b]).

So that µ((a, b]) = µ̃((a, b]) for all a, b ∈ A c . Since A c is a dense subset of

R, then we know that the measure coincide in all the intervals whose extreme

points are in a dense subset of R and from a Theorem that we have seen in the

beginning of the course, we conclude that the two measures µ and µ̃ are equal.
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Recall that given any sequence of real numbers in a subset of [0,1], there is a

subsequence which converges and the limit is an element of that set. This means

that [0,1] is sequentially compact. Now we prove that the set of subprobability

measures is sequentially compact with respect to the weak convergence.

Theorem 2.2.5 (Helly’s extraction theorem). Given any sequence of subprobabil-

ity measures, there exists a subsequence that converges weakly to a subprobability

measure.

Proof. Let x ∈ R and define the subdistribution function as F(x) = µ((−∞, x]).
The function F has the same properties as the distribution function that we

defined for distribution functions, that is, F is increasing, continuous from the

right, limx→−∞ F(x) = 0 but limx→+∞ F(x) ≤ 1. let D be a countable dense

subset of R and let {rk}k≥1 be an enumeration of D. Note that the sequence of

real numbers {Fn(r1)}n≥1 is bounded and by the Bolzano-Weierstrass theorem

we know that there exists a subsequence {F1k}k≥1 of that sequence such that

the limit limk→+∞ F1k(r1) = `1 exists and let us denote it by `1. Clearly 0 ≤
`1 ≤ 1. Now we repeat the procedure. Note that the sequence of real numbers

{F1k(r2)}k≥1 is bounded, so that there exists a subsequence {F2k}k≥1 of {F1k}k≥1

such that limk→+∞ F2k(r2) = `2 and again 0 ≤ `2 ≤ 1. Since {F2k}k≥1 is a

subsequence of {F1k}k≥1, then it also holds that limk→+∞ F2k(r1) = `1. Now

we repeat the argument and at the m-th step we have a sequence {Fmk}k≥1 such

that limk→+∞ Fmk(ri) = `i for all i = 1, · · · , m. Now we consider the sequence

{Fkk}k≥1 which converges in every point rm for m ≥ 1. For that purpose, note

that for rm fixed, ignoring the first m − 1 terms, the sequence {Fkk}k≥1 is a

subsequence of {Fmk}k≥1 which converges in rm to `m, so that {Fkk}k≥1 also

converges in rm to `m. Up to now we have proved the existence of a subsequence

{nk}k≥1 and of a function G defined on D, which is increasing and such that

∀r ∈ D, lim
k→+∞

Fnk
(r) = G(r).

Now we need to extend the function to R. For that purpose, let F : R→ R be

defined on x ∈ R by F(x) = infx<r∈D G(r). From Lemma 1.5.14, we know that F

is increasing and right continuous everywhere. LetC be the points of continuity

of F . Then C is dense and now we have to prove that for all x ∈ C it holds that
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limk→+∞ Fnk
(x) = F(x). We leave this as an exercise for the reader. To this

function F corresponds a unique subprobability µ through the correspondence

F(x) = µ((−∞, x]). The proof of this result is quite similar to the one of

Theorem 1.3.6 and is left to the reader. Now we see that for all a < b ∈ C ,

it holds that limk→+∞µnk
((a, b]) = limk→+∞ Fnk

(b)− Fnk
(a) = F(b)− F(a) =

µ((a, b]). This means that µnk
→v µ.

Definition 2.2.6. Given Fn and F subdistribution functions, we say that Fn con-

verges weakly to F and we write Fn →v F if µn →v µ, where µn and µ are the

subprobability measures of Fn and F, respectively.

Theorem 2.2.7. If every weakly converging subsequence of a sequence {µn}n∈N of

subprobability measures converges to the same µ, then µn→v µ.

Proof. Let us suppose that µn does not converge weakly to µ. Then, from item 2.

of Lemma 2.2.4, there exists a continuity interval (a, b) of µ such that µ((a, b))
does not converge toµ((a, b)). Then, by the Bolzano-Weierstrass theorem, there

exists a subsequence nk going to +∞ such that µnk
((a, b)) converges to a limit,

that we denote by L and we know that L 6= µ((a, b)). From Helly’s extraction

theorem, we can extract from {µnk
}k≥1 a subsequence {µn′k

}k′≥1 such that it

converges weakly to µ, by the hypothesis of the theorem. Then, from item 2.

of Lemma 2.2.4, we have that µn′k
((a, b))→k′→+∞ µ((a, b)) for any continuity

interval (a, b) of µ. But µn′k
((a, b))→k′→+∞ L 6= µ((a, b)) and this is an absurd.

Now we want to give another characterization of weak converge by inte-

gration the measures with certain spaces of test functions. For that purpose we

need to introduce some notation. Let us define the following subsets of the set

of continuous functions from R to R.

Let

1. Ck be the space of functions f : R → R which are continuous and with

compact support.

2. C0 be the space of functions f : R→ R which are continuous and go to

zero at infinity: lim|x |→∞ f (x) = 0.
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3. CB be the space of functions f : R→ Rwhich are continuous and bounded.

4. C be the space of functions f : R→ R which are continuous.

Note that we have the following inclusion:

Ck ⊂ C0 ⊂ CB ⊂ C .

We recall now a lemma from real analysis which will be useful for our purposes.

Lemma 2.2.8. Suppose that f ∈ Ck has support in the interval [a, b] (recall that

the compact subsets of R are closed intervals). Given a dense subset A of R and

ε > 0, there exists a simple function fε defined in (a, b) such that supx∈R | f (x)−
fε(x)| ≤ ε. If we take f ∈ C0 then the same results is true if (a, b) is replaced by

R.

We have the following criterion for the weak convergence.

Theorem 2.2.9. Let µn and µ be subprobability measures. Then µn→v µ iff for

all f ∈ Ck (or C0) we have that
∫

R
f (x)µn(d x)→n→∞

∫

R
f (x)µ(d x). (2.2.4)

Proof. Suppose that µn →v µ. By definition we know that µn((a, b])→n→+∞

µ((a, b]) for a, b ∈ D, where D is a dense subset of R. This means that (2.2.4)

holds for f = 1(a,b]. By linearity of the integral, it also holds for simple functions

that take values in D. Now let f ∈ C0 and let ε > 0. By Lemma 2.2.8 there exists

a simple function fε which takes values in D and such that

sup
x∈R
| f (x)− fε(x)| ≤ ε.

Then
�

�

�

∫

R
f (x)µn(d x)−

∫

R
f (x)µ(d x)

�

�

�≤
�

�

�

∫

( f − fε)(x)µn(d x)
�

�

�

+
�

�

�

∫

fε(x)µn(d x)−
∫

fε(x)µ(d x)
�

�

�

+
�

�

�

∫

( f − fε)(x)µ(d x)
�

�

�.

(2.2.5)
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Now note that from Lemma 2.2.8 we have that
�

�

�

∫

( f − fε)(x)µn(d x)
�

�

� ≤ ε and

the same bound is true for the same integral but with respect to the measure µ.

On the other hand,

lim
n→+∞

�

�

�

∫

fε(x)µn(d x)−
∫

fε(x)µ(d x)
�

�

�= 0 (2.2.6)

since fε is a simple function. Therefore

lim
n→+∞

�

�

�

∫

R
f (x)µn(d x)−

∫

R
f (x)µ(d x)

�

�

�≤ 2ε (2.2.7)

and since ε is arbitrary we can take it to 0 and we are done. Now we suppose

that (2.2.4) is true for f ∈ Ck. LetA be the set of atoms of µ and let D =A c .

We shall prove the weak convergence on the set D. For that purpose, let g =
1(a,b] with a, b ∈ D. Given ε > 0, there exists δ > 0 such that a + δ < b − δ
and for U = (a−δ, a+δ)∪ (b−δ, b+δ), we have µ(U)< ε. Note that this is

true since a and b are not atoms of µ. Now define the continuous function g1

which is equal to 1 in (a+δ, b−δ), equal to 0 in (a, b)c , and in (a, a+δ) and

in (b−δ, b) it is linear. Analogously define the continuous function g2 which is

equal to 1 in (a, b), equal to 0 in (a−δ, b+δ)c , and in (a−δ, a) and in (b, b+δ)
it is linear. From this we have that g1 ≤ g ≤ g2 ≤ g1 + 1 and as a consequence

∫

g1(x)µn(d x)≤
∫

g(x)µn(d x)≤
∫

g2(x)µn(d x).

Since g1 and g2 are functions of compact support, by hypothesis we have that

lim
n→+∞

∫

gi(x)µn(d x) =

∫

gi(x)µ(d x),

for i = 1,2. On the other hand, we also have that
∫

g1(x)µ(d x)≤
∫

g(x)µ(d x)≤
∫

g2(x)µ(d x).

Since
∫

g2(x)µ(d x) −
∫

g1(x)µ(d x) ≤
∫

U µ(d x) = µ(U) < ε and since ε is

arbitrary we conclude that

lim
n→+∞

∫

g(x)µn(d x) =

∫

g(x)µ(d x),

and we are done.
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Corollary 2.2.10. If {µn}n≥1 is a sequence of subprobability measures such that

for any f ∈ Ck the limit

lim
n→+∞

∫

R
f (x)µn(d x)

exists, then {µn}n≥1 weakly converges.

Proof. From Helly’s extraction theorem, we know that there exists a subse-

quence {µnk
}k≥1 such that µnk

→v µ, where µ is a subprobability measure.

From the previous theorem we also know that
∫

R
f (x)µnk

(d x)→n→∞

∫

R
f (x)µ(d x).

From the uniqueness theorem, namely Theorem 2.2.7, if we prove that all the

subsequence of {µn}n≥1 converges weakly to this measure µ, where µ is a sub-

probability measure, then we conclude that µn →v µ. Let {µn j
} j≥1 be a subse-

quence of {µn}n≥1 such that µn j
→v ν. We want to prove that µ = ν. Now we

also know from the previous theorem that for any f ∈ Ck we have that
∫

R
f (x)µn j

(d x)→n→∞

∫

R
f (x)ν(d x).

From the hypothesis of the theorem we conclude that
∫

R
f (x)µ(d x) =

∫

R
f (x)ν(d x),

for any f ∈ Ck. We leave the reader prove that the previous identity implies that

µ= ν, from where the proof ends.

Definition 2.2.11 (Convergence in distribution). A sequence of r.v. {Xn}n∈N is

said to converge in distribution to F iff the corresponding sequence of distribution

functions {Fn}n∈N converges weakly to the distribution function F.

If X is a distribution function which has distribution function F , we will say

that {Xn}n∈N converges in distribution to X .

Theorem 2.2.12 (Convergence in probability implies convergence in distribu-

tion). Let Fn and F be the distribution functions of the r.v. Xn and X . If {Xn}n∈N
converges to X in probability, then Fn→n F.
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Proof. We start the proof by saying that if Xn→n→+∞ X in probability, then for

any f ∈ Ck it holds that f (Xn)→n→+∞ f (X ) in probability. On the other hand

also note that since f ∈ Ck is also bounded, the previous convergence also holds

in L1. This means that

�

�

�E[ f (Xn)− f (x)]
�

�

�≤ E[| f (Xn)− f (X )|]→n→+∞ 0.

Last identity is equivalent to

∫

R
f (x)µn(d x)→n→∞

∫

R
f (x)µ(d x)

for any function f ∈ Ck. From Theorem 2.2.9 this is equivalent to µn→v µ.

In the next lemma we prove that convergence in probability and conver-

gence in distribution are equivalent when the limit is a constant.

Lemma 2.2.13. Let c ∈ R. Then {Xn}n∈N converges to c in probability iff {Xn}n∈N
converges to c in distribution.

Proof. From the previous theorem it is enough to show that convergence in dis-

tribution to a constant implies convergence in probability to the same constant

c. Let µn be the measure induced by Xn and let µ be the measure induced by

X = c. Recall that we want to prove that P(|Xn − c| > ε)→n→+∞ 0. Note that

the previous probability is equal to

P(|Xn − c|> ε) = P(Xn ∈ (c − ε, c + ε)c) = µn((c − ε, c + ε)c).

Let I = (c − ε, c + ε)c . Then I is a continuity interval for µ for any ε > 0. By

hypothesis, we know that

lim
n→+∞

µn(I) = µ(I) = 1−µ((c − ε, c + ε)) = 1− P(X ∈ (c − ε, c + ε)) = 0.

With this the proof ends.
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Note that it is not true that if {Xn}n∈N converges in distribution to X and

{Yn}n∈N converges in distribution to Y , the sum {Xn + Yn}n∈N converges in dis-

tribution to X + Y . We will see in the next chapter that last sentence is true

when we add the hypothesis that Xn and Yn are independent. For now we see

the special case when Y = 0.

Theorem 2.2.14. If {Xn}n∈N converges in distribution to X and {Yn}n∈N converges

in distribution to 0, then:

• {Xn + Yn}n∈N converges in distribution to X

• {XnYn}n∈N converges in distribution to 0

Proof. Let us prove the first item. Take f ∈ Ck and suppose that M is a constant

such that | f | ≤ M . Since f is continuous of compact support, it is bounded by

M and it is uniformly continuous. Then given ε > 0 there exists δ such that

|x − y|< δ then | f (x)− f (y)|< ε. As a consequence

E[| f (Xn + Yn)− f (Xn)|]≤
∫

{| f (Xn+Yn)− f (Xn)|≤ε}
εdP+ 2M

∫

{| f (Xn+Yn)− f (Xn)|>ε}
dP

≤ εP( f (Xn + Yn)− f (Xn)| ≤ ε) + 2MP( f (Xn + Yn)− f (x)|> ε)

≤ ε + 2MP(|Yn|> δ),

and since Yn converges in distribution to 0, from the previous lemma, it con-

verges to 0 in probability, so that when we take the limit as n → +∞ in last

inequality we obtain that

lim
n→+∞

E[| f (Xn + Yn)− f (Xn)|]≤ ε. (2.2.8)

Since ε is arbitrary, taking it to 0, we conclude that

lim
n→+∞

E[| f (Xn + Yn)− f (Xn)|] = lim
n→+∞

E[ f (Xn)] = E[ f (X )].

In the last equality we used Theorem 2.2.9. From this we conclude that for any

f ∈ Ck it holds that
∫

f (Xn + Yn)dP→n→∞

∫

f (X )dP,
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which means that Xn + Yn converges in distribution to X .

Now we prove the second item. Given ε > 0 let us choose A such that

±A are both continuity points of the distribution function of the r.v. X and

sufficiently big such that limn→+∞ P(|Xn| > A) = P(|X | > A) < ε. Note that the

first limit is true since Xn converges to X in distribution. The inequality above

is a consequence of the fact that P(|X | > A) = µ((−A, A)c), µ is a probability

measure and A is quite big. Then P(|Xn| > A) < ε for all n ≥ n(ε). But for

n≥ n(ε) it holds that

P(|XnYn|> ε) = P(|XnYn|> ε, |Xn|> A) + P(|XnYn|> ε, |Xn| ≤ A)

≤ P(||Xn|> A) + P
�

|Yn|>
ε

A

�

≤ ε + P
�

|Yn|>
ε

A

�

.

(2.2.9)

Now for n sufficiently the last inequality becomes P(|XnYn| > ε) ≤ ε, and since

ε is arbitrary we can send it to 0 and we proved that {XnYn}n∈N converges in

probability to 0 which implies the convergence in distribution.

We finish now with the following corollary whose proof we leave for the

reader.

Corollary 2.2.15. If Xn converges to X in distribution , if the sequences of real

numbers αn and βn converges, respectively, to α and β , then αXn + βn converges

in distribution to αX + β .

Analyse if Xn converges in probability and in distribution to X , where Ω=
{0,1}, Xn(0) = 0 and Xn(1) = 1 each with probability 1/2 and X (0) = 1

and X (1) = 0 each with probability 1/2.

The first thing to compute is the distribution function of Xn and of

X and we find out that they are the same. Therefore, the convergence

in distribution is true. But P(|Xn(ω) − X (ω)| > ε) does not vanish as

n→ +∞ since |Xn(ω)− X (ω)| = 1 for all n and for all ω ∈ Ω. Then the

convergence in probability does not hold.

Exercise:
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Now we note that from item 2. of Lemma 2.2.4 we know that µn →v µ iff

for every continuity interval (a, b] of µ we have that

lim
n→∞

µn((a, b]) = µ((a, b]).

this can be translated into (check!) saying that Xn converges in distribution to

X iff Fn(x)→n→+∞ F(x) for all x continuity point of F .

Take Xn = 1/n and X = 0 and analyse the convergence in distribution of

Xn to 0.

Exercise:

2.3 Law of Large Numbers

2.3.1 Weak Law of Large Numbers

The law of large numbers has to do with the partial sums of a sequence of r.v.

{Xn}n≥1.

Sn := X1 + · · ·+ Xn

The notion of weak or strong law of large numbers depends on whether

Sn −E[Sn]
n

→n→∞ 0,

in probability or a.e. (note that it needs that E[Sn] to be finite!) We have seen in

the previous chapters that if a sequence converges to 0 in L2 then it converges

to 0 in probability and then it converges a.e. to 0 along a subsequence. Note

that

E[S2
n] = E

�

n
∑

j=1

X 2
j +

∑

i 6= j

X iX j

�

= O(n2).

But if {X j} j≥1 are uncorrelated and mean zero, we have that

E[S2
n] = E

�

n
∑

j=1

X 2
j

�

= O(n).

From where we conclude that Sn
n converges to 0 in L2.
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Theorem 2.3.1 (Tchebychev).

If {Xn}n∈N is a sequence of uncorrelated r.v. whose second moments have a

common bound, then Sn−E[Sn]
n →n→∞ 0 in L2 and therefore also in probability.

Proof. It is enough to suppose first that Xn has mean zero for all n ≥ 1 and

then use the computations above to conclude the result for Xn. After that take

Yn = Xn −E[Xn] to conclude the result in the case where the r.v. are not mean

zero.

In fact the previous result also holds with convergence a.e. This is the con-

tent of the next theorem.

Theorem 2.3.2 (Rajchman).

If {Xn}n∈N is a sequence of uncorrelated r.v. whose second moments have a

common bound, then
Sn −E[Sn]

n
→n→∞ 0 a.e.

Proof. Let us start by supposing that E[Xn] = 0 for all n≥ 1 and then we repeat

the argument of the previous proof. At this point we know that E[S2
n] ≤ Mn

where M is a positive constant. From this is follows that P(|Sn|> nε)≤ M
nε2 . We

want to prove that Sn/n→ 0 a.e. that is P(lim supn{|Sn| > nε}) = 0 and from

Borel-Cantelli’s Lemma (converging part) it is enough to prove that

∑

n≥
P(|Sn|> nε)< +∞.

From the computations above, we conclude that

∑

n≥
P(|Sn2 |> n2ε)<

∑

n≥1

M
n2ε2

< +∞,

and as consequence Sn2/n2 →n→+∞ 0 a.e. Up to now we have proved the

result for a subsequence and we want to prove it to the whole sequence. For

that purpose, for n≥ 1 let Dn =maxn2≤k<(n+1)2 |Sk − Sn2 |. We have that

|Sk|
k
=
|Sk − Sn2 + Sn2 |

k
≤
|Sk − Sn2 |

n2
+
|Sn2 |
n2
≤

Dn

n2
+
|Sn2 |
n2

.
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So the proof ends as long as we show that Dn/n
2→n→+∞ 0 a.e. Note that

P
�Dn

n2
> ε

�

= P(Dn > n2ε)≤
E[(Dn)2]
ε2n4

.

We want to show that
∑

n≥1
E[(Dn)2]
ε2n4 < +∞ and then from Borel-Cantelli’s

Lemma we are done. Note that

D2
n = max

n2≤k<(n+1)2
|Sk − Sn2 |2 = max

n2≤k<(n+1)2

�

�

�

�

k
∑

i=n2+1

X i

�2�
�

�

≤ max
n2≤k<(n+1)2

(k− (n2 + 1))
k
∑

i=n2+1

X 2
i ≤ ((n+ 1)2 − (n2 + 1))

k
∑

i=n2+1

X 2
i .

(2.3.1)

From this it follows that

E[D2
n]

ε2n4
≤

2n
ε2n4

k
∑

i=n2+1

E[X 2
i ]≤

4M
ε2n2

which implies that
∑

n≥1
E[(Dn)2]
ε2n4 < +∞ and we are done.

Up to now we have seen the convergence of Sn−E[Sn]
n a.e., L2 and in proba-

bility but we assumed that the second moments of X j are finite for all j. Now

we want to weak that hypothesis in order to prove the law of large numbers.

We start with the notion of equivalent sequences.

Definition 2.3.3 (Equivalent sequences (Kintchine)).

Two sequences of r.v. {Xn}n≥1 and {Yn}n∈N are said to be equivalent iff
∑

n≥1

P(Xn 6= Yn)<∞.

Theorem 2.3.4. If {Xn}n≥1 and {Yn}n∈N are equivalent then
∑

n≥1

(Xn − Yn)

converges a.e. Moreover, if an→ +∞, then

1
an

n
∑

j=1

(X j − Yj)

converges a.e. to 0.
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Proof. From Borel-Cantelli’s Lemma, we know that since the sequences are

equivalent, then

P(limsup
n
{Xn 6= Yn}) = 0 ⇐⇒ P(lim inf

n
{Xn 6= Yn}) = 1.

This means that there exists a set Ω0 with P(Ω0) = 1 such that for all ω ∈
Ω0 there exists an order n0(ω) such that for all n ≥ n0(ω), by definition of

lim inf, it holds that Xn(ω) = Yn(ω). Then,
∑

n≥1(Xn − Yn) =
∑n0

n=1(Xn − Yn)
and this is finite. This proves the first result. Now the second follows from
1
an

∑

j≥1(X j − Yj) =
1
an

∑n0
j=1(X j − Yj)→n→+∞ 0.

Corollary 2.3.5. In the same conditions as in the previous theorem, With prob-

ability 1, the expression
∑

n≥1 Xn or 1
an

∑n
j=1 X j converges or diverges to ±∞ in

the same way as
∑

n≥1 Yn or 1
an

∑n
j=1 Yj . In particular, if 1

an

∑n
j=1 X j converges to

X in probability, then 1
an

∑n
j=1 Yj also does.

Proof. Let us prove the last sentence, the other is left to the reader. From the

previous theorem we have that 1
an

∑n
j=1(X j − Yj) converges to 0 a.e. and there-

fore it also converges in probability. If 1
an

∑n
j=1 X j converges to X in probability

then
1
an

n
∑

j=1

Yj =
1
an

n
∑

j=1

X j +
1
an

n
∑

j=1

(Yj − X j

converges to X in probability and we are done.

Theorem 2.3.6 (Weak Law of Large Numbers of Kintchine).

If {Xn}n≥1 is a sequence of pairwise independent and identically distributed r.v.

with finite mean m, then Sn
n → m in probability.

Proof. Let F be the distribution function of Xn for all n≥ 1. Then m= E[Xn] =
∫

R xdF(x) and E[|Xn|] =
∫

R |x |dF(x)< +∞We have already seen in Theorem

1.8.8 that

E[|Xn|]< +∞ ⇐⇒
∑

n≥1

P(|Xn|> n)< +∞.
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Now let Yn = Xn1|Xn|≤n. A simple computation shows that the sequences {Xn}n≥1

and {Yn}n≥1 are equivalent. Now let Tn =
∑n

j=1 Yj and note that by the previ-

ous corollary the proof ends as long as we show that Tn
n → m in probability. But

now the advantage is that Tn is the sum of r.v. which are pairwise independent

and with finite second moments (since they are bounded). Note that

σ2(Tn) =
n
∑

j=1

σ2(Yj)≤
n
∑

j=1

E[Y 2
j ] =

n
∑

j=1

∫

{|x |≤ j}
|x |2dF(x)≤

n
∑

j=1

j

∫

{|x |≤ j}
|x |dF(x)

≤
n
∑

j=1

j

∫

R
|x |dF(x)≤

n(n+ 1)
2
E[|X1|] = O(n2).

(2.3.2)

In the first equality we used the fact that the r.v. Yj are uncorrelated. As we

have seen above, last bound is not good for our purposes, we need something

better. So let us consider a sequence of integer numbers {an}n≥1 such that

limn an = +∞, but with a(n) = o(n), for example, an =
p

n. Then we have

n
∑

j=1

∫

{|x |≤ j}
|x |2dF(x) =

�

an
∑

j=1

+
n
∑

j=an+1

�

∫

{|x |≤ j}
|x |2dF(x)

≤
∑

j≤an

an

∫

{|x |≤an}
|x |dF(x) +

n
∑

j=an+1

an

∫

{|x |≤an}
|x |dF(x)

+
n
∑

j=an+1

n

∫

{an<|x |≤n}
|x |dF(x)

≤
n
∑

j=1

an

∫

{|x |≤an}
|x |dF(x) + n

n
∑

j=an+1

∫

{an<|x |≤n}
|x |dF(x)

≤ nanE[|X1|] + n2

∫

{|x |>an}
|x |dF(x).

(2.3.3)

From this we conclude that

1
n2

n
∑

j=1

∫

{|x |≤ j}
|x |2dF(x)≤

an

n
E[|X1|] +

∫

{|x |>an}
|x |dF(x). (2.3.4)

The first term at the right hand side of last expression vanishes as n → +∞
since an = o(n) and the second term also vanishes as n → +∞ since the r.v.
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X j are integrable (since they have finite mean) and the probability of set in the

integral is vanishing as n→ +∞. Therefore we conclude that σ2(Tn) = o(n2).
Now we use Tchebychev’s inequality to conclude that

P(|Tn −E[Tn]|> εn|)≤
σ2(Tn)
ε2n2

→n→+∞ 0.

From this we conclude that

Tn −E[Tn]
n

=

∑n
j=1(Yj −E[Yj])

n
→n→+∞ 0.

Now we just have to argue that E[Yj] = E[X j1{X j≤ j}]→ j+∞ E[X1] = m from

where we conclude that Tn/n→n→+∞ m. This ends the proof.

2.3.2 Convergence of Series

Theorem 2.3.7 (Kolmogorov’s Inequality).

Let {Xn}n≥1 be independent r.v. with E[Xn] = 0 for every n and E[X 2
n] =

σ2(Xn)<∞. Then, for every ε > 0 it holds that

P
�

max
1≤ j≤n

|S j|> ε
�

≤
σ2(Sn)
ε2

.

Proof. Fix ε > 0 and for ω ∈ Λ with Λ = {ω : max1≤ j≤n |S j(ω)| > ε} we define

the r.v.

ν(ω) =min{ j : 1≤ j ≤ n ; |S j(ω)|> ε}.

Let

Λk = {ω : ν(ω) = k}= {ω : max
1≤ j≤k−1

|S j(ω)| ≤ ε , |Sk(ω)|> ε}.

Note that the Λk tells us that when we sum k r.v. X j then |Sk| is, for the first

time, bigger that ε which means that the previous sums have absolute value

less than ε. Also note that for k = 1, above in Λk we should convention that

max1≤ j≤0 |S j(ω)| is fixed as being equal to 0. So ν is the first time the max of S j

exceeds ε and Λk is the event where that happens for the first time in the k-th
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step. Note that the Λk are disjoint and Λ= ∪n
k=1Λk. Then,

∫

Λ

S2
ndP=

∫

∪n
k=1Λk

S2
ndP=

n
∑

k=1

∫

Λk

S2
ndP

=
n
∑

k=1

∫

Λk

(Sk + Sn − Sk)
2dP

=
n
∑

k=1

∫

Λk

S2
k + 2Sk(Sn − Sk) + (Sn − Sk)

2dP

Now note that for ϕk = 1Λk
, the r.v. ϕkSk and Sn − Sk are independent since

ϕkSk is a function of the r.v. {X1, · · · , Xk} and Sn − Sk is a function of the r.v.

{Xk+1, · · · , Xn}. From this observation it follows that
∫

Λk
Sk(Sn − Sk)dP = 0.

Then

σ2(Sn) =

∫

S2
ndP≥

∫

Λ

S2
ndP≥

n
∑

k=1

∫

Λk

S2
ndP≥ ε2

n
∑

k=1

P(Λk) = ε
2P(Λ)

from where we conclude that

P(Λ) = P
�

max
1≤ j≤n

|S j|> ε
�

≤
σ2(Sn)
ε2

.

The next result does not impose any condition on the second moments of

Xn. We leave the proof for the interested reader.

Theorem 2.3.8. Let {Xn}n≥1 be independent r.v. with E[Xn] <∞ and suppose

that ∃A> 0 s.t. |Xn −E[Xn]| ≤ A<∞, ∀n ∈ N. Then, ∀ε > 0:

P
�

max
1≤ j≤n

|S j| ≤ ε
�

≤
(2A+ 4ε)2

σ2(Sn)
.

Now we also state a theorem that we will not prove but that will be needed

below. We leave the proof for the interested reader.

Theorem 2.3.9 (Three series of Kolmogorov).

Let {Xn}n≥1 be a sequence of independent r.v. and for a positive constant A> 0

let Yn = Xn1{|Xn|≤A}. Then the series
∑

n≥1 Xn converges a.e. iff the following three

series converge:
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1.
∑

n≥1 P(|Xn|> A) =
∑

n≥1 P(Xn 6= Yn)

2.
∑

n≥1E[Yn]

3.
∑

n≥1σ
2(Yn).

Prove the previous theorem.
Exercise:

2.3.3 Strong Law of Large Numbers

Now our interest is focused in showing the strong law of large numbers. We

start with the next lemma which will be useful in what follows.

Lemma 2.3.10 (Kronecker’s Lemma).

Let {xk}k≥1 a sequence of real numbers, {ak}k≥1 a sequence of strictly positive

real numbers ↑∞. If
∑

n≥1
xn
an
<∞, then 1

an

∑n
j=1 x j → 0.

Proof. For n ≥ 1 let bn =
∑n

j=1
x j
a j

and note that b∞ exists since it is equal to

the sum of the series. Let a0 = b0 = 0. Then xn
an
= bn − bn−1 which means that

xn = an(bn − bn−1). Therefore,

1
an

n
∑

j=1

x j =
1
an

n
∑

j=1

a j(b j − b j−1) =
1
an

n
∑

j=1

a j b j −
1
an

n−1
∑

j=0

a j+1 b j

= bn −
1
an

n−1
∑

j=0

(a j+1 − a j)b j .

Now note that

1
an

n−1
∑

j=0

(a j+1 − a j) =
an − a0

an
= 1.

From here is follows that

lim
n→+∞

1
an

n
∑

j=1

x j = lim
n→+∞

(bn −
1
an

n−1
∑

j=0

(a j+1 − a j)b j)

= b∞ − lim
n→+∞

1
an

n−1
∑

j=0

(a j+1 − a j)b j ,
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and

1
an

n−1
∑

j=0

(a j+1 − a j)b j =
1
an

n−1
∑

j=0

(a j+1 − a j)(b j − b∞) +
1
an

n−1
∑

j=0

(a j+1 − a j)b∞,

and the term at the left hand side of last expression vanishes as n→ +∞ and

the term at the right hand side of last expression is equal to b∞. From this the

proof ends.

Theorem 2.3.11. Letϕ : R→ R be a positive, even and continuous function, such

that as |x | increases: ϕ(x)|x | ↑ and ϕ(x)
x2 ↓ . Let {Xn}n≥1 be a sequence of independent

r.v. with E[Xn] = 0 for every n and let 0 < an ↑ +∞. If
∑

n≥1
E[ϕ(Xn)]
ϕ(an)

<∞,

then
∑

n≥1
Xn
an

converges a.e.

Proof. Let Fn denote the distribution function of Xn and define for each n ≥ 1

the r.v. Yn = Xn1|Xn|≤an
. Then

∑

n≥1

E
� Y 2

n
a2

n

�

=
∑

n≥1

∫

{|x |≤an}

x2

a2
n

dFn(x).

Note that by the hypothesis in ϕ we have that if |x | ≤ an then ϕ(x)
x2 ≥

ϕ(an)
a2

n
.

Then

∑

n≥1

σ2( Yn
an
)≤

∑

n≥1

E
� Y 2

n
a2

n

�

≤
∑

n≥1

∫

{|x |≤an}

ϕ(x)
ϕ(an)

dFn(x)≤
∑

n≥1

E
�

ϕ(x)
ϕ(an)

�

=
∑

n≥1

E[ϕ(x)]
ϕ(an)

< +∞.

Taking the sequence of r.v.
¦

Yn−E[Yn]
an

©

n≥1
, then E

�

Yn−E[Yn]
an

�

= 0,
�

�

�

Yn−E[Yn]
an

�

�

� ≤ 2

and finally
∑

n≥1σ
2( Yn

an
) < +∞. Then from the Theorem of Three series of

Kolmogorov, namely Theorem 2.3.9, we have that
∑

n≥1
Yn−E[Yn]

an
converges a.e.

On the other hand

∑

n≥1

|E[Yn]|
an

=
∑

n≥1

1
an

�

�

�

∫

{|x |≤an}
xdFn(x)

�

�

�=
∑

n≥1

1
an

�

�

�

∫

{|x |>an}
xdFn(x)

�

�

�

≤
∑

n≥1

1
an

∫

{|x |>an}
|x |dFn(x).
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Since for |x |> an we have that |x |an
≤ ϕ(x)
ϕ(an)

, then

∑

n≥1

|E[Yn]|
an

≤
∑

n≥1

∫

{|x |>an}

ϕ(x)
ϕ(an)

dFn(x)≤
∑

n≥1

E[ϕ(Xn)]
ϕ(an)

< +∞

From this it follows that
∑

n≥1
Yn
an

converges a.e. To finish the proof it remains

to check that the sequences {Xn}n geq1 and {Yn}n≥1 are equivalent. To prove it

note that:
∑

n≥1

P(Xn 6= Yn) =
∑

n≥1

P(|Xn|> an) =
∑

n≥1

∫

{|x |>an}
dFn(x)

≤
∑

n≥1

∫

{|x |>an}

ϕ(x)
ϕ(an)

dFn(x)≤
∑

n≥1

E[ϕ(Xn)]
ϕ(an)

< +∞.

Since the sequences are equivalent we conclude that
∑

n≥1
Xn
an

converges a.e.,

which ends the proof.

We note that being in the hypothesis of the previous theorem, from Kro-

necker’s lemma we can conclude that 1
an

∑n
j=1 X j converges a.e., as n→ +∞,

to 0.

Now we state the Strong Law of Large Numbers due to Kolmogorov.

Theorem 2.3.12 (Strong Law of Large Numbers of Kolmogorov).

Let {Xn}n≥1 be a sequence of independent and identically distributed r.v., then

1. E[|X1|]<∞⇒ Sn
n → E[X1] a.e.

2. E[|X1|] =∞⇒ limsupn
|Sn|
n = +∞ a.e.

Proof. Let us start with the proof of the first item. For each n ≥ 1 the r.v. Yn =
Xn1|Xn|≤n. Then

∑

n≥1

P(Xn 6= Yn) =
∑

n≥1

P(|Xn|> n) =
∑

n≥1

P(|X1|> n)< +∞,

since X1 is integrable. Now we apply the previous corollary with ϕ(x) = x2 to

the sequence {Yn −E[Yn]}n≥1. Then,

∑

n≥1

σ2(Yn)
n2

≤
∑

n≥1

E[Y 2
n ]

n2
=
∑

n≥1

1
n2

∫

{|x |≤n}
x2dF(x).
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In this case we do not have any information about the second moments so that

we proceed as follows. Last term is equal to:

∑

n≥1

1
n2

n
∑

j=1

∫

{ j−1<|x |≤ j}
x2dF(x) =

∑

j≥1

∫

{ j−1<|x |≤ j}
x2dF(x)

∑

n≥ j

1
n2

.

Since last series is convergent (take the integral test for example) and since

sumn≥ j
1
n2 ≤ C/ j, then the previous expression is bounded from above by

∑

j≥1

∫

{ j−1<|x |≤ j}
x2dF(x)

∑

n≥ j

1
n2

C
j
= CE[|X1|]< +∞.

From the previous observation we conclude that 1
n

∑n
j=1(Yj −E[Yj]) converges

a.e., as n→ +∞, to 0. On the other handE[Yn]→n→+∞ E[X1] and 1
n

∑n
j=1E[Yj]

converges, as n→ +∞, to E[X1], from where we conclude that 1
n

∑n
j=1 Yj con-

verges a.e., as n → +∞, to E[X1]. Since the sequences are equivalent the

proof of the first item ends. Now we prove the second item. Let A > 0.

Then by hypothesis we have that E[|X1|]
A = +∞. From the integrability cri-

terion, namely Theorem 1.8.8 we have that
∑

n≥1 P(|X1| > An) = +∞. Then

|Sn − Sn − 1| = |Xn| > An implies that |Sn| > An/2 or |Sn−1| > An/2. Since

Borel-Cantelli’s Lemma (the divergent part) implies that

P({|Xn|> An} i.o.) = 1,

we can now conclude that

P
�¦

|Sn|>
An
2

©

i.o.
�

= 1.

This means that for each A> 0, there exists a set N(A) with P(N(A)) = 0, such

that for each ω ∈ N(A)c it holds that

lim sup
n≥1

Sn(ω)
n
≥

A
2

.

Now let N = ∪+∞m=1N(m), then P(N) = 0 and forω ∈ N c the previous inequality

is true. Since it holds for any A= m> 0, then the upper limit is +∞. From this

the proof ends.
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We end this chapter with a generalization of the previous result in the case

where the mean is infinite.We leave the proof as an exercise to the interested

reader.

Theorem 2.3.13 (Strong Law of Large Numbers of Feller).

Let {Xn}n≥1 be a sequence of independent and identically distributed r.v. with

E[|X1|] =∞ and let {an}n≥1 be a sequence of positive real numbers such that
an
n ↑ . Then

lim sup
n≥1

|Sn|
an
= 0 a.e. or limsup

n≥1

|Sn|
an
= +∞

depending on whether

∑

n≥1

P(|Xn| ≥ an) is finite or infinite.

Prove the previous theorem.
Exercise:

2.4 Exercises

Exercise 1:

Let (En)n≥1 be random events on a probability space (Ω,F , P). Show that

P(En) −−−−→n→+∞
0⇔ 1En

−−−−→
n→+∞

0, in probability.

Exercise 2:

Let (Xn)n≥1 be a sequence of random variables.

Show that ifE(Xn) −−−−→n→+∞
α and Var(Xn) −−−−→n→+∞

0, then Xn −−−−→n→+∞
α, in probability.

Exercise 3:
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(a) Let (Xn)n≥1 be a sequence of random variables such that for each n≥ 1

it holds that

P(Xn = 1) =
1
n

and P(Xn = 0) = 1−
1
n

.

Show that

Xn −−−−→n→+∞
0, in probability.

(b) Now suppose that for each n ≥ 1 we have that P(Xn = 1) = pn and

P(Xn = 0) = 1− pn, and suppose that (Xn)n≥1 are independent. Show that:

(1) Xn −−−−→n→+∞
0, in probability⇔ pn −−−−→n→+∞

0.

(2) Xn −−−−→n→+∞
0, in Lp⇔ pn −−−−→n→+∞

0.

(3) Xn −−−−→n→+∞
0, almost everywhere⇔

∑

n≥1

pn < +∞.

(c) Justify if in (a) the sequence (Xn)n≥1 converges almost everywhere to 0.

Exercise 4:

Prove the Tchebychev’s weak law:

Let (Xn)n≥1 be a sequence of random variables pairwise independent, with

finite variance and uniformly bounded, i.e. there exists a constant c < +∞
such that Var(Xn)≤ c for all n≥ 1. Then,

Sn −E(Sn)
n

→n→+∞ 0, in probability,

where Sn =
∑n

j=1 X j is the sequence of the partial sums of (Xn)n≥1.

Exercise 5:

Prove the Bernoulli’s Law of Large Numbers:

Consider a sequence of independent Binomial experiments, with the same

probability p of success in each experiment. Let Sn be the number of successes

in the first n experiments. Then,

Sn

n
→n→+∞ p, in probability.
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Exercise 6:

Consider a sequence of independent Binomial experiments with probability

pn of success in the n-th trial. For n ≥ 1, let Xn = 1 if the n-trial is a success,

and Xn = 0 otherwise. Show that

(a) If
∑

n≥1 pn = +∞, then P(
∑

n≥1 Xn = +∞) = 1, (there are an infinite

number of successes a.e.).

(b) If
∑

n≥1 pn < +∞, then P(
∑

n≥1 Xn <∞) = 1, (there are a finite

number of successes a.e.).

Exercise 7:

Let (Xn)n≥1 be a sequence of independent random variables such that for

each n≥ 1 it holds that

P(Xn = en) =
1

n+ 1
and P(Xn = 0) = 1−

1
n+ 1

.

Analyze the convergence of (Xn)n≥1 to X = 0 in the case of

(a) convergence in probability.

(b) convergence in Lp, for p > 0.

(c) convergence almost everywhere.

(d) convergence in distribution.

Exercise 8:

Let (Xn)n≥1 be a sequence of independent random variables such that for

each n≥ 1 it holds that

P(Xn = 1) =
1
2n

and P(Xn = 0) = 1−
1
2n

.

Show that Xn −−−−→n→+∞
0,

(a) in probability.

(b) in Lp, for p > 0.

(c) almost everywhere.

(d) in distribution.
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Exercise 9:

Let X and Y be random variables defined on a probability space (Ω,F ,P).
The covariance between X and Y is defined by

Cov(X , Y ) := E[X Y ]−E[X ]E[Y ].

Let X1, · · · , Xn be uncorrelated random variables, i.e. such that Cov(X i , X j) = 0,

for i 6= j, with E[X i] = µ and Var(X i) ≤ C < +∞, for all i ≥ 1, where C is a

constant. If Sn := X1 + · · ·+ Xn, show that

(a) E[Sn] = nµ and Cov(X , Y ) = E[(X −E[X ])(Y −E[Y ])].

(b) Var(Sn) = Var(X1) + · · ·+ Var(Xn).

(c) Sn
n −−−−→n→+∞

µ, in L2 and in probability.

Exercise 10:

Let (Xn)n≥2be a sequence of independent and identically distributed random

variables such that X1 has exponential distribution with parameter 1. For each

n ≥ 2 let Yn = Xn/ log(n). Analyze the convergence of (Yn)n≥2 to Y = 0 in the

case of

(a) convergence in probability.

(b) convergence in L1.

(c) convergence almost everywhere.

(d) convergence in distribution.

Exercise 11:

Let X1, X2, X3... be independent random variables with Xn ∼U [0, an], with

an > 0. Show that

(a) If an = n2, then, with probability 1, only a finite number of Xn takes

values less than 1.

(b) If an = n, then, with probability 1, an infinite number of Xn takes

values less than 1.

Exercise 12:
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Let (Xn)n≥1 be a sequence of i.i.d. random variables such that X1 ∼U [0,1].
Show that n−Xn converges to 0 in probability but it does not converge to 0 almost

surely.

Exercise 13:

Let (Xn)n≥1 be a sequence of random variables such that for n ∈ N it holds

that

P(Xn = n2) =
1
n

2
and P(Xn = 0) = 1−

1
n

2
.

Show that Xn converges almost surely (find the limit X ) but E[X m
n ] does not

converge to E[X m], for all m ∈ N.

Exercise 14:

Let (Xn)n≥1 be a sequence of i.i.d. random variables such that X1 ∼U [0,1].

Find the limit in probability of
�

∏n
k=1 Xk

�1/n
.

Exercise 15:

Let (Xn)n≥1 be a sequence of i.i.d. random variables such that E[X1] = 1

and Var(X1) = 1. Show that

∑n
k=1 Xk

q

n
∑n

k=1 X 2
k

→n→+∞
1
p

2

in probability.

Exercise 16:

Let (Xn)n≥1 be a sequence of independent random variables such thatE[Xn] =
0 and E[X 2

n] = 1 for all n ∈ N. Let Sn := X1 + · · · + Xn and for all x ∈ R let

ϕ(x) =
∫ x
−∞

1p
2π

e−y2/2d y . If P(Sn ≤
p

nx) → ϕ(x) for all x ∈ R, show that

limsupn→+∞
Snp

n = +∞ almost everywhere.

Exercise 17:

Show that if Xn converges to X in probability, as n→ +∞, and if g : R→ R
is a continuous function, then g(Xn) converges to g(X ) in probability, as n →
+∞.
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Exercise 18:

Let (Xn)n≥1 be a sequence of independent random variables with distribu-

tion function Fn. Prove that, P(limn Xn = 0) = 1 if and only if ∀ε > 0,

∑

n≥1

{1− Fn(ε) + Fn(−ε−)}< +∞.

Exercise 19:

If
∑

n≥1 P(|Xn|> n)<∞, then limsupn
|Xn|

n ≤ 1 almost everywhere.

Exercise 20:

(a) Let X and Y be independent random variables with laws X ∼Poisson(λ1)
and Y ∼Poisson(λ2). What is the law of X + Y ?

(b) Let Z be a random variable with law Poisson(λ), and let ξ1,ξ2, . . . be

i.i.d. Bernoulli(p) random variables, independent of Z . Define X :=
∑Z

j=1 ξi .

Show that X has law Poisson(pλ).

Remark: Item (b) is know as the Poisson coloring theorem. You can think you

have a Poisson number of balls, and color each ball either red (with probability

p) or blue (with probability 1 − p), independently. Then the number of red

balls is also Poisson distributed. This is one of the basic results in the theory of

Poisson Point Process.

Exercise 21:

(a) Let X be a random variable with law Exp(λ), and let t, s > 0. Prove that

P(X > t + s|X > s) = P(X > t).

This property is called "lack of memory of the exponential distribution".

(b) Let Yn be a geometric random variable with success probability λ
n (as-

sume n large enough, so that λn < 1). Show that Yn
n converges weakly to an

Exp(λ) distribution.



Chapter 3

Characteristic functions

3.1 Definitions and properties

In this chapter we introduce the notion of characteristic functions which is going

to be a very useful tool in order to prove weak convergence results.

Definition 3.1.1. For any r.v. X with probability measure µ and distribution

function F, the characteristic function of X is defined as the function ϕ : R→ C
given by

ϕ(t) = E[ei tX ] =

∫

Ω

ei tX dP=
∫

R
ei t xµ(d x) =

∫

R
ei t x dF(x).

Note that before we have discussed the notion of the integrals above when

the r.v. involved are real-valued and here we need it for a complex valued

function. Then, we observe that the real and imaginary parts of ϕX are given,

respectively by

Reϕ(t) =

∫

R
cos(t x)µ(d x) and Imϕ(t) =

∫

R
sin(t x)µ(d x),

so that the definitions make sense.

Now we enumerate some properties of the characteristic function:

• ∀t ∈ R: |ϕ(t)| ≤ 1= ϕ(0).

111
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To prove this item note that

|ϕ(t)|
Æ

(E[cos(tX )])2 + (E[sin(tX )])2 = F(E[cos(tX )],E[sin(tX )]),

where F(a, b) =
p

a2 + b2. Note that the function F is convex, so that by

Jensen’s inequality we conclude that

F(E[cos(tX )],E[sin(tX )])≤ E[F(cos(tX ), sin(tX ))],

from where the inequality follows.

• ∀t ∈ R: ϕ(t) = ϕ(−t).

• ϕ is uniformly continuous.

Let h> 0. Then

�

�

�ϕ(t + h)−ϕ(t)
�

�

�=
�

�

�

∫

R
(ei(t+h)x − ei t x)µ(d x)

�

�

�=
�

�

�

∫

R
(eihx − 1)ei t xµ(d x)

�

�

�

≤
∫

R
|eihx − 1|µ(d x)

Now note that |eihx − 1| ≤ 2 so that
∫

R |e
ihx − 1|µ(d x) ≤ 2 and since

limh→0 eihx = 1, we conclude, from the Dominated Convergence Theo-

rem, that
∫

R |e
ihx − 1|µ(d x) vanishes as h → 0. Note that there is not

dependence on t, so the the convergence is uniform.

• If ϕX is the c.f. for a r.v. X , then

ϕaX+b(t) = ϕX (at)ei t b and ϕ−X (t) = ϕX (t).

• If {ϕn}n≥1 is a sequence of characteristic functions, λn ≥ 0 with
∑

n≥1λn =
1, then

∑

n≥1λnϕn is a characteristic function. For each n ≥ 1, let µn be

the probability measure corresponding to ϕn. Then, observe (prove it!)
∑

n≥1λnµn is again a probability measure. Therefore , defining ψ(t) =
∫

R ei t x
∑

n≥1λnµn(d x) then, a simple computations shows that ψ(t) is

equal to
∑

n≥1λnϕn(t)
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• If {ϕn}n≥1 is a sequence of characteristic functions, then
∏n

j=1ϕ j is a

characteristic function.

We know that given probability measures {µ j} j=1,··· ,n where µ j is corre-

sponding to ϕ j , then there exist independent r.v. {X j} all defined in the

same probability space Ω,F ,P) whose induced measure is µ j . Then for

Sn =
∑n

j=1 X j we have that

E[ei tSn] =
n
∏

j=1

E[ei tX j ] =
n
∏

j=1

ϕ j(t).

Do the missing proofs of the properties above.
Exercise:

Let Sn = X1 + · · ·+ Xn, where X j are independent. Then, from the previous

property we know that ϕSn
(t) =

∏n
j=1ϕX j

(t). But, what can we say about the

distribution of Sn? Let us now go for a small digression on the convolution.

Definition 3.1.2 (Convolution of distribution functions).

The convolution of two distribution functions F1 and F2 is the distribution

function F defined on x ∈ R as F(x) =
∫

R F1(x − y)dF2(y). In this case we use

the notation F = F1 ∗ F2.

Check that F given above is in fact a distribution function.
Exercise:

Theorem 3.1.3. Let X and Y be two independent r.v. with distribution functions

FX and FY respectively. Then X + Y has distribution function FX ∗ FY .

Proof. Note that we want to prove that for x ∈ R we have that

P(X + Y ≤ z) = FX ∗ FY (z).

Let f (x , y) = 1{x+y≤z} and note that f isB2-measurable. Then
∫

Ω

f (X , Y )dP=
∫∫

R2

f (x , y)µ2(d x , d y),
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where µ2 is the measure induced by the r.v. (X , Y ) and since the r.v. X and Y

are independent we know that µ2 = µX ×µY , that is µ2 is the product measure

between µx and µY . Then, by Fubini’s theorem, the previous integral equals to
∫

R

∫

R
f (x , y)µX (d x)µY (d y) =

∫

R
µX ((−∞, z − y])µY (d y)

=

∫

R
FX (z − y)µY (d y)

=

∫

R
FX (z − y)FY (d y) = FX ∗ FY (z).

Definition 3.1.4 (Convolution of density functions).

The convolution of two probability density functions f1 and f2 is the probability

density function f defined on x ∈ R as f (x) =
∫

R f1(x − y) f2(y)d y. In this case

we also use the notation f = f1 ∗ f2.

Check that f given above is in fact a density function.
Exercise:

Theorem 3.1.5. The convolution of two absolutely continuous distribution func-

tions F1 and F2 with densities f1 and f2, is absolutely continuous with density

f = f1 ∗ f2.

Proof. Let p = f1∗ f2, which we know to be a density from the previous exercise.

Then
∫ x

−∞
p(y)d y =

∫ x

−∞
f1 ∗ f2(y)d y =

∫ x

−∞

∫

R
f1(y − z) f2(z) dz d y

=

∫

R

∫ x

−∞
F1(x − z) f2(z) dz

=

∫

R

∫ x

−∞
F1(x − z)F2(dz) = F1 ∗ F2(x).

Then p = f is the density of F1 ∗ F2.
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And what can we say about the probability measure corresponding to F1∗F2?

We shall denote this measure by µ1 ∗µ2. We introduce the notation

A± B = {x ± y : x ∈ A, y ∈ B},

for A and B subsets of R.

Theorem 3.1.6. For each B ∈B we have that

(µ1 ∗µ2)(B) =

∫

R
µ1(B − y)µ2(d y).

Moreover, for eachB- measurable funtion g integrable with respect to µ1 ∗µ2, we

have that
∫

R
g(u)µ1 ∗µ2(du) =

∫∫

R2

g(x + y)µ1(d x)µ2(d y).

Proof. First note that µ1 ∗µ2 is a probability measure, we leave this as an exer-

cise to the reader. To show that the corresponding distribution function is F1∗F2

we have to compute µ1 ∗µ2((−∞, x]) and show that it coincides with

F(x) =

∫

R
F1(x − y)dF2(y).

Now,

µ1 ∗µ2((−∞, x]) =

∫

R
µ1((−∞, x]− y)µ2(d y) =

∫

R
µ1((−∞, x − y])µ2(d y)

=

∫

R
F1(x − y)F2(d y) = F1 ∗ F2(x).

This shows the first affirmation. Now we prove the second one. Let g = 1B.

Then, for each y , we have that g y(x) = g(x + y) = 1{B−y}. Now
∫

R
g(x + y)µ1(d x) = µ1(B − y).

And
∫∫

R2

g(x + y)µ1(d x)µ2(d y) =

∫

R
µ1(B − y)µ2(d y) = µ1 ∗µ2(B − y)

=

∫

R
g(u)µ1 ∗µ2(du).

This ends the proof.
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Let us now compute the characteristic function of the convolution µ1 ∗ µ2.

We have that the sum of two r.v. with probability measures µ1 and µ2 has

induced measure given by µ1 ∗µ2 and its characteristic function is given by

∫∫

ei tuµ1 ∗µ2(du) =

∫∫

ei t y ei t xµ1(d x)µ2(d y) =

∫

R
ei t xµ1(d x)

∫

R
ei t yµ2(d y)

which is equal to ϕ1(t)ϕ2(t).

Then we conclude the next result.

Theorem 3.1.7. The sum of a finite number of independent r.v. corresponds to the

convolution of their distribution functions and to the product of their characteristic

functions.

Lemma 3.1.8. If ϕ is a characteristic function, then |ϕ|2 is a characteristic func-

tion.

Proof. We know that given a r.v. X with characteristic function ϕ, then there ex-

ists a r.v. Y with the same distribution of X (and therefore the same characteris-

tic function) which is independent of X . Then the characteristic function of X−Y

is given by ϕX−Y (t) = ϕX (t)ϕY (−t) = ϕX (t)ϕX (−t) = ϕX (t)ϕX (t) = |ϕX (t)|2.

Example 18.

1. X ∼ Ber(p) we have that ϕX (t) = ei t p+ (1− p).

2. X ∼ U[−a, a] we have that ϕX (t) =
sin(at)

at , if t 6= 0 and ϕX (0) = 1.

3. X ∼ N(µ,σ2), we have that ϕX (t) = ei tµe−
σ2 t2

2 .

3.2 Inversion formula

The question now is: Given a characteristic function how can we find the cor-

respondent distribution function or the distribution measure?
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Theorem 3.2.1 (The characteristic function determines the distribution).

If x1 < x2 then

µ((x1, x2)) +
1
2
µ({x1}) +

1
2
µ({x2}) =

1
2π

lim
T→∞

∫ T

−T

e−i t x1 − ei t x2

i t
ϕ(t) d t.

*Note that the integrand function is defined by continuity at t = 0.

Proof. Note that

∫ T

−T

e−i t x1 − ei t x2

i t
ϕ(t) d t =

∫ T

−T

∫

R
ei t xµ(d x)

� e−i t x1 − ei t x2

i t

�

d t

Note that the function inside square brackets in the expression above is bounded

since ei t x−1

i t ∼ x when t is close to 0. Then from Fubini’s Theorem, the last

integral is equal to

∫

R
µ(d x)

∫ T

−T

� e−i t(x−x1) − ei t(x−x2)

i t

�

d t (3.2.1)

Above we used Fubini’s Theorem since

�

�

�

e−i t(x−x1) − ei t(x−x2)

i t

�

�

�=
�

�

�

∫ x2

x1

e−i tudu
�

�

�

and
∫

R

∫ T

−T
|x2 − x1|d tµ(d x)≤ 2T |x2 − x1|.

So the integrand is dominated by an integrable function with respect to the

product measure d tµ(d x) in [−T, T]×R. Now note that

e−i t(x−x1)−ei t(x−x2) = cos(t(x−x1))−cos(t(x−x2))+i(sin(t(x−x1))−sin(t(x−x2)))

and since the integral above, with respect to t is in a symmetric domain and the

function cos(t(x− x1))−cos(t(x− x2)) is even and i sin(t(x− x1))− i sin(t(x−
x2)) is odd, we have that (3.2.1) is equal to

2

∫

R
µ(d x)

�

∫ T

0

sin(t(x − x1))
t

d t −
∫ T

0

sin(t(x − x1))
t

d t
�

.
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By a change of variables last expression equals to

2

∫

R
µ(d x)

�

∫ T (x−x1)

0

sin(sx)
s

ds−
∫ T (x−x2)

0

sin(sx)
s

ds
�

.

Now we note that
∫ T

0
sin(s)

s ds→T→+∞
π
2 . A simple way to note this is to argue

as follows:
∫ +∞

0

sin(s)
s

ds =

∫ +∞

0

sin(s)

∫ +∞

0

e−xu du ds =

∫ +∞

0

∫ +∞

0

e−su sin(s) du ds

=

∫ +∞

0

1
1+ u2

du=
π

2
.

Now we take the limit as T → +∞ in 2
�

∫ T (x−x1)
0

sin(sx)
s ds−

∫ T (x−x2)
0

sin(sx)
s ds

�

and it equals to

1. −2
�

∫ 0
−∞

sin(sx)
s ds−

∫ 0
−∞

sin(sx)
s ds

�

= 0, if x < x1 < x2;

2. 2
�

∫ 0
−∞

sin(sx)
s ds = π, if x = x1 < x2;

3. 2π, if x1 < x < x2;

4. π, if x1 < x2 = x;

5. 0, if x1 < x2 < x;

From the previous equalities we obtain the result.

Remark 3.2.2. Note that if (x1, x2) is a continuity interval for µ, then the previous

theorem says that

F(x2)− F(x1) = lim
T→∞

1
2π

∫ T

−T

e−i t x1 − ei t x2

i t
ϕ(t) d t. (3.2.2)

3.3 Uniqueness of distribution

Theorem 3.3.1. If two probability measures (or two distribution functions) have

the same characteristic function, then the probability measures (or the distribution

functions) are the same.
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Proof. If x1 and x2 are not atoms of µ (or F) then (3.2.2) gives us the value

of µ((x1, x2)) which is determined by the characteristic function. Therefore,

given µ1 and µ2 with the same characteristic function we have that µ1((a, b)) =
µ2((a, b)), where a and b are not atoms of µ1 nor µ2. Since the set of atoms of

a probability measure is at most countable, the points in R which are not atoms

for both the measures µ1 and µ2 is dense in R. Now, from Theorem 1.3.5 it

follows that µ1 = µ2.

Theorem 3.3.2. If ϕ ∈ L1(R), then F ∈ C1(R) and

F ′(x) =
1

2π

∫ +∞

−∞
e−i x tϕ(t)d t,

that is ϕ is the characteristic function of an absolutely continuous r.v.

Proof. To prove the result, we apply the previous theorem for x = x2 and x1 =
x − h where h> 0. Then the theorem says that

µ((x − h, x)) +
1
2
µ({x}) +

1
2
µ({x − h}) =

1
2π

∫

R

ei th − 1
i t

e−i t xϕ(t) d t.

The term on the left hand side of last equality is equal to

F(x) + F(x−)
2

−
F(x − h) + F((x − h)−)

2
.

Note that since ϕ ∈ L1(R) the previous integral exists since the integrand func-

tion is bounded by |hϕ(t)|. From the Dominated Convergence Theorem, we

can send h→ 0 and we conclude that the integral is equal to 0. Therefore we

obtain that
F(x) + F(x−)

2
= lim

h→0

F(x − h) + F((x − h)−)
2

,

from where we conclude that F is left continuous. Since F is a distribution

function, it is continuous at the right and then F is continuous. Going back we

can rewrite

F(x)− F(x − h)
h

=
1

2π

∫

R

ei th − 1
i th

e−i t xϕ(t) d t,
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and the limit exists when h → 0, so that F has a derivative from the left at x

and

F ′(x−) =
1

2π

∫

R
e−i t xϕ(t) d t.

Analogously we can show that F has a derivative at x from the right and

F ′(x+) =
1

2π

∫

R
e−i t xϕ(t) d t.

We conclude that F ′ exists and it is a continuous function, since the right hand

side of the previous equality is continuous. Since F ′ is continuous we conclude

that for all x ∈ R F(x) =
∫ x
−∞ F ′(u) du, so that F ′ is a probability density.

Corollary 3.3.3. If ϕ ∈ L1(R), then p(x) ∈ L1(R) where

p(x) =
1

2π

∫ +∞

−∞
e−i x tϕ(t)d t

and

ϕ(x) =

∫ ∞

−∞
ei t x p(x) d x .

Exercise: do the proof of the corollary.

Theorem 3.3.4 (Atoms of µ).

• For each x0 we have that

lim
T→∞

1
2T

∫ T

−T
e−i tX0ϕ(t) d t = µ({x0}). (3.3.1)

• It holds that

lim
T→∞

1
2T

∫ T

−T
|ϕ(t)|2 d t =

∑

x∈R
(µ({x}))2.
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Proof. To prove the first affirmation we repeat the proof of Theorem 3.2.1 and

we obtain that the left hand side of (3.3.1) is equal to
∫

R\{x0}

sin(T (x − x0))
T (x − x0)

µ(d x) +

∫

{x0}
µ(d x). (3.3.2)

The integrand function at the left hand side in the previous expression is bounded

by 1 and goes to 0 when T → +∞, then by the Dominated Convergence The-

orem the integral vanishes as T → +∞, from where the result follows.

To prove the second affirmation we note that since the number of atoms

of µ is at most countable, all the terms (except at most a countable number of

them) are equal to 0 so that the series above makes sense.

Also note that |ϕ(t)|2 is a characteristic function. We have seen above that

it is the characteristic function of the r.v. X − Y where X and Y are i.i.d.. The

distribution measure of |ϕ(t)|2 is µ ∗µ′ where µ′(B) = µ(−B) for each B ∈ B .

Applying the first affirmation with x0 = 0 and with the characteristic function

|ϕ(t)|2 we get that

lim
T→∞

1
2T

∫ T

−T
|ϕ(t)|2 d t = µ ∗µ′({0}) =

∫

R
µ′(x)µ(d x) =

∑

x∈R
µ({x})µ({x})

and the proof ends. Above we used the fact that the integrand is non-zero when

x is an atom of µ.

Corollary 3.3.5. µ is atomless (F is continuous) iff

lim
T→∞

1
2T

∫ T

−T
|ϕ(t)|2 d t = 0.

Definition 3.3.6 (Symmetric random variable).

We say that a r.v. X is symmetric around 0 iff X and −X have the same distri-

bution.

Remark 3.3.7. For a symmetric r.v. its distribution µ has the following property

µ(B) = µ(−B) for any B ∈ B . Such probability measure is said to be symmetric

around 0. Equivalently, for the distribution function, we have that for any x ∈ R,

F(x) = 1− F(x−).
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Theorem 3.3.8. A r.v. X or a p.m. µ is symmetric iff its characteristic function is

real-valued (for all t.)

Proof. If X and −X have the same distribution, then they determine the same

characteristic function. Therefore, ϕX (t) = ϕ−X (t) = ϕX (−t) = ϕX (t). Re-

ciprocally, if ϕX is real, then from the previous equalities we conclude that

ϕX (t) = ϕ−X (t). From (3.3.1) we conclude that X and −X have the same

distribution and therefore, X is symmetric.

Theorem 3.3.9 (Lévy’s converging Theorem).

Let {µn}n≥1 be probability measures onRwith characteristic function {ϕn}n≥1.

• If µ∞ is a probability measure on R and µn →v µ∞, then ϕn(t) →n→∞

ϕ∞(t), where ϕ∞ is the characteristic function of µ∞.

• If ϕn(t) →n→∞ ϕ∞(t) for all t ∈ R, and ϕ∞(t) is continuous at t = 0,

then

– µn→v µ∞ where µ∞ is a probability measure,

– ϕ∞ is a characteristic function of µ∞.

Proof. Let us prove the first affirmation. Note that

ϕn(t) = E[ei tXn] = E[cos(tXn)] + iE[sin(tXn)].

From Theorem 2.2.9 which in fact holds if we take functions in CB (prove it!)

and since the functions sin(·) and cos(·) are continuous and bounded, we have

that

lim
n→+∞

E[cos(tXn)] = E[cos(tX )], lim
n→+∞

E[sin(tXn)] = E[sin(tX )]

and we are done.

Now let us suppose that ϕn(t) →n→+∞ ϕ∞(t) for all t ∈ R. Fix ε > 0.

Since ϕ∞ is a continuous function we know that there exists an a > 0 such that
1
a

∫ a
−a(1−ϕ(t))d t ≤ ε. Then, since |ϕn(t)| ≤ 1 for all n≥ 1, by the Dominated

Convergence Theorem, we have that

lim
n→+∞

∫ a

−a
(1−ϕn(t))d t =

∫ a

−a
lim

n→+∞
(1−ϕn(t))d t =

∫ a

−a
(1−ϕ(t))d t ≤ ε.
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Therefore, there exists an n0 ∈ N such that for all n≥ n0 it holds that

1
a

∫ a

−a
(1−ϕn(t))d t ≤ ε.

From the next lemma, we conclude that

µn

��

−
2
a

,
2
a

�c�
≤ ε

for all n ≥ n0. Since for the values of n = 1, · · · , n0 − 1 the measure µn is a

probability measure, we also conclude that

µn

��

−
2
a

,
2
a

�c�
≤ ε

for all n ≥ 1 by changing the interval if necessary. Then the sequence {µn}n≥1

is tight, that is, any subsequence {µnk
}k≥1 has a converging subsequence. To

show that the whole sequence converges we need to show that the limit point is

a probability measure. Let us suppose that {µnk
}k≥1 converges weakly to µ∞ as

k→ +∞. The previous measure µ∞ is a subprobability measure. We will show

that it is a probability measure. Note that, for δ such that −2/δ, 2/δ are not

atoms ofµ∞, thenµ∞(R)≥ µ∞([−2/δ, 2/δ]) = limn→+∞µn([−2/δ, 2/δ])≥
1−ε. Since ε is arbitrary we conclude that µ∞ is a probability measure. Now let

ϕ be the characteristic function of µ∞. Now, from the first part of the theorem

we know that ϕnk
(t) →k→+∞ ϕ∞(t), from where it follows that every weak

limit of µnk
has characteristic functionϕ∞. Them from the uniqueness theorem

it follows that µnk
→k→+∞ µ∞ and since all subsequence converges weakly to

the same measure, we are done.

Lemma 3.3.10. For each a > 0 if holds that

µ
��

−
2
a

,
2
a

�c�
≤

1
a

∫ a

−a
(1−ϕ(t))d t.

Proof. Note that

1
a

∫ a

−a
(1−ϕ(t))d t =

1
a

∫ a

−a

�

1−
∫

R
ei t x dµ

�

d t =
1
a

∫ a

−a

∫

R
(1− ei t x)dµ d t.

(3.3.3)
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From Fubini’s theorem last integral writes as

1
a

∫

R

∫ a

−a
(1− cos(t x)− i sin(t x))d t dµ=

1
a

∫

R

∫ a

−a
(1− cos(t x))d t dµ.

(3.3.4)

Above we used the fact that the sin(x) is an odd function and the domain of

integration is symmetric. Computing the time integral above, last expression

equals to

2

∫

R

�

1−
sin(ax)

x

�

dµ≥ 2

∫

|x |≥2/a

�

1−
sin(ax)

x

�

dµ. (3.3.5)

Since |ax | ≥ 2 then sin(ax) ≤ ax and from this we bound from below the

previous expression by

2

∫

|x |≥2/a

1
2

dµ≥ µ
��

−
2
a

,
2
a

�c�
. (3.3.6)

Corollary 3.3.11. If {µn}_n≥ 1 and µ are probability measures with character-

istic functions {ϕn}n≥1 and ϕ, then µn →v µ∞ iff ϕn(t) →n→∞ ϕ(t), for all

t ∈ R.

Example 19. Exercises:

1) Take µn which gives mass 1/2 to 0 and to n and analyze it.

2) Take µn as Uniform in [−n, n] and analyze it.

Theorem 3.3.12. If F has finite absolute moment of order k, with k ≥ 1, then ϕ

has a continuous k-th derivative which is given by:

ϕk(t) =

∫

R
(i x)kei t x dF(x).

Proof. We do the proof for k = 1. Note that

ϕ(t + h)−ϕ(t)
h

=

∫

R

ei(t+h)x − ei t x

h
dF(x) =

∫

R
ei t x

� eihx − 1
h

�

dF(x)
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Since
eihx − 1

h
→h→0 i x

and since
�

�

�

eihx − 1
h

�

�

�≤ |x |,

and by the hypothesis of the theorem we can use the Dominated Convergence

Theorem to conclude that

ϕ′(t) = lim
h→0

ϕ(t + h)−ϕ(t)
h

= lim
h→0

∫

R
ei t x

� eihx − 1
h

�

dF(x) =

∫

R
i xei t x dF(x).

Now the proof goes by induction. We leave this exercise to the reader.

Theorem 3.3.13. If F has finite absolute moment of order k, with k ≥ 1, then ϕ

has the following expansion around a neighbourhood of t = 0:

ϕ(t) =
k
∑

j=0

i j

j!
m j t j + o(|t|k)

ϕ(t) =
k−1
∑

j=0

i j

j!
m j t j +

θk

k!
µk|t|k,

where m j is the moment of order j, µk is the absolute moment of order k and

θk ≤ 1.

Exercise: do the proof of the result above.

In what follows {Xn}n≥1 is a sequence of i.i.d.r.v. with distribution function F

and Sn =
∑n

j=1 X j . Now we are going to reprove the weak law of large numbers

by using the powerful tool of the characteristic function.

Theorem 3.3.14 (The weak law of large numbers).

If F has finite mean m<∞, then Sn
n → m in probability.
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Proof. Note that since the limit is a constant m, then the convergence in prob-

ability is equivalent to the convergence in distribution. Therefore, from Levy’s

converging theorem we just have to show that the corresponding characteristic

functions converge, that is

ϕ Sn
n
(t)→n→+∞ ei tm. (3.3.7)

Note that ei tm is the characteristic function corresponding to the r.v. X = m or

the measure µ = δm(·), the Dirac supported on the set {m}. But, by the i.i.d.

hypothesis we have that

ϕ Sn
n
(t) = (ϕ( t

n))
n (3.3.8)

and from the previous theorem the last expression equals to

�

1+
i tm
n
+ o(| tn |)

�n

and by the next lemma with cn = i tm + o( t
n)n, last expression converges, as

n→ +∞, to ei tm and we are done.

Lemma 3.3.15. If {cn}n≥1 is a sequence of complex numbers with

lim
n→+∞

cn = c ∈ C,

then

lim
n→+∞

�

1+
cn

n

�n
= ec

Theorem 3.3.16 (The central limit theorem).

If F has finite mean m<∞ and variance σ2 such that 0< σ2 < +∞, then

Sn −mn
σ
p

n
→ Φ

in distribution, where Φ is the distribution function of N (0, 1).

Proof. Let us suppose that m = 0 and at the end we can simply consider Yj =
X j −m. From Levy’s converging theorem it is enough to show the convergence

of the corresponding characteristic functions. Note that

ϕ Sn
σ
p

n
(t) = (ϕ( t

σ
p

n))
n (3.3.9)
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and from Theorem 3.3.13 last expression equals to

�

1+ i2σ2

2

�

t
σ
p

n

�2
+ o

�

�

�

�

t
σ
p

n

�

�

�

2��n

and by the previous lemma with cn = −
t2

2 +o( t
σ
p

n)n, last expression converges,

as n→ +∞, to e−
t2

2 and we are done since e−
t2

2 corresponds to the character-

istic function of N (0,1) and by the uniqueness theorem.

3.4 Exercises

Exercise 1:

Compute the characteristic function of each one of the following random

variables:

(a) X such that P(X = a) = 1 and P(X 6= a) = 0.

(b) X such that P(X = 1) = 1/2 and P(X = −1) = 1/2.

(c) X with Bernoulli distribution with parameter p.

(d) X with Binomial distribution with parameter n and p.

(e) X with Geometric distribution with parameter p.

(f) X with Poisson distribution with parameter λ.

(g) X with exponential distribution with parameter λ.

(h) X with uniform distribution on [−a, a], with a > 0.

(i) X with triangular distribution on [−a, a], with a > 0.

(j) X with Gaussian distribution with mean µ and variance σ2.

Exercise 2:

(a) Show that for X and Y independent random variables it holds that

ϕX+Y = ϕXϕY .

(b) Show that if ϕ is a characteristic function, then |ϕ|2 is also a charac-

teristic function.

Exercise 3:
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Let ϕ be a characteristic function. Show that ψ(t) = eλ(ϕ(t)−1) with λ > 0

is also a characteristic function.

Suggestion: Let N , X1, X2, · · · be independent random variables with N ∼Poisson(λ)
and (Xn)n≥1 identically distributed with ϕXn

= ϕ for all n ≥ 1. Let Y := SN ,

with Sn = X1 + · · ·+ Xn. Then ϕY =ψ.

Exercise 4:

LetϕX be a characteristic function of a random variable X with Binomial dis-

tribution with parameter n and p. FindϕX and E[X ] and verify that i−1ϕ′X (0) =
E[X ] = np.

Exercise 5:

Let (Xn)n≥1 be a sequence of random variables with Uniform distribution

U [−n, n]. Find ϕ such that

ϕn(t) −−−−→n→+∞
ϕ(t),

for all t ∈ R where for each n≥ 1, ϕn is the characteristic function of Xn. Verify

if ϕ is a characteristic function.

Exercise 6:

(a) Show that if Y := aX + b for a, b ∈ R and a 6= 0 then ϕY (t) :=
ei t bϕX (at).

(b) Is ϕ(t) := 1[0,∞)(t) a characteristic function? Justify.

(c) Is ϕ(t) := t1[0,1](t) + 1[1,∞)(t) a characteristic function? Justify.

(d) Show that X is a symmetric if and only if its characteristic function

ϕX , takes values in R.

(e) Let ϕ(t) = 1+cos(3t)
2 . Find X such that ϕ is its characteristic function.
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Exercise 7:

(a) Using characteristic functions show that if X and Y are independent

and identically distributed random variables and if X ∼ N (0, 1) then X + Y ∼
N (0,2).

(b) Obtain the previous result using convolutions. Justify.

(c) Compute the 3-rd centered moment of the random variable X +Y , i.e.

compute E[(X + Y )3]. Suggestion: use characteristic functions.

(d) Let X1, · · · , Xn be independent and identically distributed random

variables such that X1 ∼N (0, 1). Using characteristic functions, show that

Sn

n
−−−−→
n→+∞

0,

in probability, where Sn := X1 + · · ·+ Xn.

Exercise 8:

Let X1, · · · , Xn be independent random variables with Poisson distribution

with parameter λ1, · · · ,λn, respectively, where λi > 0, for all i ≥ 1.

(a) Verify that E[X1] = λ1.

(b) Compute the characteristic function ϕX1
of X1.

(c) Verify that dt log(ϕX1
(t)) = λ1iei t and conclude that i−1ϕ′X1

(0) =
E[X1].

(d) Compute the characteristic function of Sn = X1 + · · ·+ Xn.

Exercise 9:

(a) Let X be a constant random variable and let ϕX be its characteristic

function.

Show that |ϕX (t)|2 = 1 for all t ∈ R.

(b) Let X be a random variable independent of itself. Show that X is

constant a.e.

(c) Let X be a symmetric random variable that takes only two values θ and

−θ , with θ > 0. Show that there is no θ ∈ R such that ϕX (t) = 1 for all t ∈ R
where ϕX denotes the characteristic function of X . Show that ϕ′′X (0) = −θ

2.

Conclude that Var(X ) = θ2.
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Exercise 10:

Find the distribution of the random variable X + Y + Z , knowing that X , Y

and Z are independent and identically distributed random variables and such

that X has Bernoulli distribution with parameter p, i.e. X induces the measure

µX := pδ{1} + (1− p)δ{0}.
Solve the exercise in two different ways: using the convolution and character-

istic functions.

Exercise 11:

(a) Let X be a symmetric random variable that takes the values a 6= b 6= c.

Knowing that P(X = 0) = 1/5, compute ϕX i.e. the characteristic function

of X .

(b) Verify that there is no a ∈ R such that ϕX (t) = 1 for all t ∈ R.

(c) Compute ϕ′X (t) and verify that i−1ϕ′X (0) = E[X ].

(d) Find a such that ϕ′′X (0) = −1. Conclude that Var(X ) = 1.

Exercise 12:

Justify ifϕ(t) := ei ta+1
2 is the characteristic functions of a symmetric random

variable?

Find the random variable whose characteristic function is ϕ.

Exercise 13:

Find the distribution of the random variable X + Y , knowing that X has

Poisson distribution of parameter λ1 and Y is independent of X and has Poisson

distribution of parameter λ2. Solve in two different ways: using the convolution

and characteristic functions.

Exercise 14:

Let X and Y be independent and identically distributed random variables

such that X induces the measure µX := pδ{1} + qδ{−1} where p+ q = 1.

(a) Compute the characteristic function of X .

(b) Show that X is symmetric if and only if p = 1/2.

(c) Take p = 1/2. Let ϕX+Y be the characteristic function of the random
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variable X + Y . Verify that ϕX+Y (t) := cos2(t), for all t ∈ R.

(d) Using the convolution, determine the distribution function of the ran-

dom variable X +Y . Show that X +Y is symmetric if and only if p = 1/2. In this

case, compute again the characteristic function of the random variable X + Y

and conclude that for all t ∈ R

cos2(t) :=
1+ cos(2t)

2
.

Exercise 15:

Let X and Y be independent and identically distributed random variables

with X ∼N (0, 1).

(a) Using characteristic functions and the convolution, show that X +Y ∼
N (0,2).

(b) Show, using characteristic functions, that if Z := σX + µ then Z ∼
N (µ,σ2).

(c) Let ϕZ be the characteristic function of Z . Compute |ϕZ |2 and verify

that |ϕZ |2 ≤ 1. Is the random variable Z symmetric?

(d) Show that i−1ϕ′Z(0) := µ and that −ϕ′′Z (0) = µ
2 +σ2. Conclude that

Var(Z) = σ2.

Exercise 16:

(a) Let X be a random variable with exponential distribution with param-

eter a > 0. Compute ϕ′X (t), where ϕX is the characteristic function of X and

verify that i−1ϕ′X (0) = E[X ].

(b) Find a such that ϕ′′X (0) = −1/8. Compute Var(X ).

Exercise 17:

(a) Find the random variable X such that ϕ(t) := cos(t) is its character-

istic function. Justify.

(b) Show that a symmetric random variable has all its odd moments equal

to zero.

(c) Is ϕ(t) := 1[−1,1](t) a characteristic function?
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(d) Justify if ϕ(t) := ei t+1
2 is the characteristic function of a symmetric

random variable? Find the random variable whose characteristic function is ϕ.

Compute |ϕ|2.

Exercise 18:

Using characteristic functions, show that for g : R→ R a continuous func-

tion, if

Xn −−−−→n→+∞
X , weakly

then

g(Xn) −−−−→n→+∞
g(X ), weakly.

Exercise 19:

Using characteristic functions prove Slutsky’s Theorem:

Let (Xn)n≥1 and (Yn)n≥1 be two sequences of random variables and let X be

a random variable. Suppose that

Xn −−−−→n→+∞
X , weakly and Yn −−−−→n→+∞

c, in probability,

where c is a constant. Then

(a)

Xn + Yn −−−−→n→+∞
X + c, weakly.

(b)

Xn − Yn −−−−→n→+∞
X − c, weakly.

(c)

XnYn −−−−→n→+∞
X c, weakly.

(d) if c 6= 0 and P(Yn 6= 0) = 1, for all n≥ 1, then
Xn

Yn
−−−−→
n→+∞

X

c
, weakly.

Exercise 20:

Show, using characteristic functions that if (Xn)n≥1 is a sequence of i.i.d.r.v.

with E(X1) = µ <∞, then Sn
n −−−−→n→+∞

µ, in probability, where Sn =
∑n

j=1 X j .
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Exercise 21:

(a) Show, using characteristic functions that if X ∼ B(m, p) and Y ∼ B(n, p),
and if X and Y are independent then X + Y ∼ B(n+m, p).

(b) Show that if X has standard Cauchy distribution, then ϕ2X = (ϕX )2. Use

(without showing) that

1
π

∫ +∞

−∞

cos(t x)
1+ x2

d x = e−|t|.

(c) It is true that if X and Y are independent random variables then ϕX+Y =
ϕXϕY . And the reciprocal, is it true? Prove and present a counter-example.

Exercise 22:

(a) Let ϕ(t) = cos(at) with a > 0. Show that ϕ is a characteristic function.

(b) Let ϕ(t) = cos2(t). Find X such that ϕ is its characteristic function.

Exercise 23:

Let X and Y be i.i.d.r.v. with E(X ) = 0 and Var(X ) = 1. Show that if X + Y

and X − Y are independent then X , Y ∼N (0,1).
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Chapter 4

Discrete time Martingales

4.1 Conditional expectation

Definition 4.1.1 (Conditional probability).

Given a set A∈ F with P(A)> 0 we define PA(·) in the following way:

PA(E) =
P(A∩ E)
P(A)

.

PA is a probability measure and it is called the conditional probability with re-

spect to A. The expectation with respect to this probability is called the conditional

expectation wrt A:

EA[X ] =

∫

Ω

X (ω)PA(dω) =
1
P(A)

∫

A
X (ω)P(dω).

Definition 4.1.2. If we take now a partition ofΩ that is (An)n≥1 withΩ= ∪n≥1An,

An ∈ F and An ∩ Am =∅ if m 6= n, then given a set E ∈ F we have that

P(E) =
∑

n≥1

P(E ∩ An) =
∑

n≥1

PAn
(E)P(An).

Definition 4.1.3. As above we have that (if E[X ] is finite)

E[X ] =
∫

Ω

X (ω)P(dω) =
∫

∪n≥1AnX (ω)P(dω)

=
∑

n≥1

∫

An

X (ω)P(dω) =
∑

n≥1

P(An)EAn
[X ].

135
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Example 20. Suppose that we have a card deck with 52 cards and that we take

one out and it is spades. What is the probability of taking another card of the deck

and that it is also spades?

Theorem 4.1.4 (Wald’s equation).

Let {Xn}n∈N be a sequence of i.i.d.r.v. with finite mean. For k ≥ 1 letFk be the

σ-algebra generated by X j with j = 1, · · · , k. Suppose that N is a random variable

taking positive integer values such that for all k ≥ 1 we have that {N ≤ k} ∈ Fk

and E[N]<∞. Then E[SN ] = E[X1]E[N].

Proof. To prove it note that

E[SN ] =

∫

Ω

SNP(dω) =
∫

{N≥1}
SNP(dω) =

∑

k≥1

∫

{N=k}
SNP(dω)

=
∑

k≥1

k
∑

j=1

∫

{N=k}
X jP(dω) =

∑

j≥1

∑

k≥ j

∫

{N=k}
X jP(dω)

=
∑

j≥1

∫

{N≥ j}
X jP(dω) =

∑

j≥1

�

E[X j]−
∫

{N≤ j−1}
X jP(dω)

�

.

Now we note that the set {N ≤ j − 1} and the r.v. X j are independent

(remember that {N ≤ j−1} ∈ F j−1 and note the definition of F j−1), therefore

we get

E[SN ] =
∑

j≥1

E[X j]P(N ≥ j) = E[X1]
∑

j≥1

P(N ≥ j) = E[X1]E[N].

To justify that we can interchange summations we have to repeat the compu-

tations taking |X j| and we will see that we get the result E[|X1|]E[N] which is

finite by hypothesis.

Now, let X be a discrete r.v. and let An = {X = an}. Given an integrable r.v.

Y we define the function E[Y |G ] in Ω as

E[Y |G ] =
∑

n≥1

1An
(·)E[Y |An],

this means that E[Y |G ] is a discrete r.v. that takes the value E[Y |An] on the set

An.
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We can rewrite the expression above as

E[Y ] =
∑

n≥1

∫

An

E[Y |G ]P(dω) =
∫

Ω

E[Y |G ]P(dω)

Analogously for any A ∈ G , A is a union of subcolletion of the An’s, so that, for

every A∈ G we have that

∫

A
YP(dω) =

∫

A
E[Y |G ]P(dω)

Attention to the measurability of the functions involved.

Now, we suppose that we have two functions ϕ1 and ϕ2 both G measurable

and such that

∫

A
YP(dω) =

∫

A
ϕ1P(dω) =

∫

A
ϕ2P(dω).

If we take the set A= {ω ∈ Ω : ϕ1(ω) > ϕ2(ω)}, then A ∈ G and we conclude

that P(A) = 0. Repeating the argument exchanging ϕ1 with ϕ2 we conclude

that ϕ1 = ϕ2 a.e.

This means that E[Y |G ] is unique up to a equivalence and we are going

to denote EG [Y ] or E[Y |G ] to denote that class. The results holds for any

σ-algebra.

Theorem 4.1.5. If E[|Y |]<∞ and G is a σ-algebra contained inF , then, there

exists a unique equivalence class of integrable r.v. E[Y |G ] belonging to G such that

for any A∈ G it holds that
∫

A YP(dω) =
∫

AE[Y |G ]P(dω).

Definition 4.1.6 (Conditional expectation).

Given an integrable r.v. Y and a σ-algebra G , the conditional expectation

EG [Y ] of Y with respect to G is any one of the equivalence class of r.v. on Ω such

that:

1. it belongs to G ;

2. it has the same integral as Y over any set in G .
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Note that for Y = 1Λ with Λ ∈ F we write P(Λ|G ) = E[1Λ|G ] and this is the

conditional probability of Λ relatively to G . This is any one of the equivalence

class of r.v. belonging to G and satisfying

∀B ∈ G : P(B ∩Λ) =
∫

B
P(Λ|G )P(dω).

Theorem 4.1.7. Let Y and ZY be integrable r.v. and let Z ∈ G . Then

E[Y Z |G ] = ZE[Y |G ], a.e.

Exercise: do the proof of the theorem.

Let us note that E[X |T ] = E[X ], where T is the trivial σ-algebra, that is

T := {∅,Ω}.

4.2 Properties of the conditional expectation

Let X and Xn be integrable r.v.

1. If X ∈ G , then E[X |G ] = X a.e., this is true also if X = a a.e.,

2. E[X1 + X2|G ] = E[X1|G ] +E[X2|G ],

3. If X1 ≤ X2 then E[X1|G ]≤ E[X2|G ],

4. |E[X |G ]| ≤ E[|X ||G ],

5. If Xn ↑ X , then E[Xn|G ] ↑ E[X |G ],

6. If Xn ↓ X , then E[Xn|G ] ↓ E[X |G ],

7. If |Xn| ≤ Y , Y is integrable and Xn→ X , then E[Xn|G ]→ E[X |G ],

8. E[|X Y ||G ]2 ≤ E[X 2|G ]E[Y 2|G ]. (Cauchy-Schwarz inequality)
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Exercise: do the proof.

Theorem 4.2.1 (Jensen’s inequality). If ϕ is a convex function on R and X and

ϕ(X ) are integrable r.v., then for each G :

ϕ(E[X |G ])≤ E[ϕ(X )|G ].

Exercise: do the proof.

Note that when Λ= Ω, the defining relation for the conditional expectation

says that

E[E[Y |G ]|T ] = E[Y |T ] = E[E[Y |T ]|G ]

This can be generalized and it is called the tower law.

Theorem 4.2.2 (Tower law). If Y is integrable and F1 ⊂F2, then:

• E[Y |F1] = E[Y |F2] iff E[Y |F2] ∈ F1.

• E[E[Y |F2]|F1] = E[Y |F1] = E[E[Y |F1]|F2]

As a particular case we note that

E[E[Y |X1, X2]|X1] = E[Y |X1] = E[E[Y |X1]|X1, X2].

Proof. We start with the first assertion. Let start by assuming that E[Y |F1] =
E[Y |F2], then by 1) in page 128 we have that E[Y |F2] ∈ F1.

Now let us assume that E[Y |F2] ∈ F1. Then, for A ∈ F1, 2) in page 128

holds, from where the result follows.

Now let us prove the second assertion. Note that E[Y |F1] ∈ F2, and from

the first assertion applied to E[Y |F1] we conclude the second equality. Let us
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prove the first equality now. For that purpose note that if Λ ∈ F1 then Λ ∈ F2,

so that
∫

Λ

E[E[Y |F2]|F1]P(dω) =
∫

Λ

E[Y |F2]P(dω) =
∫

Λ

YP(dω).

Moreover, E[E[Y |F2]|F1] ∈ F1 so that, both properties defining the condi-

tional expectation are verified and we are done.

4.3 Conditional independence

Let F be a σ-algebra and let {Fα}α∈A, where A is a index set, be contained in

F .

Definition 4.3.1. The collection {Fα}α∈A is said to be conditionally independent

to a σ-algebra G iff for any finite collection of sets A1, · · · , An with A j ∈ F j and

with α′js distinct indices of A we have

P
�

∩n
j=1 A j|G

�

=
n
∏

j=1

P(A j|G ).

Note that if G = T then the previous condition is just the usual indepen-

dence.

Theorem 4.3.2. For each α ∈ A, letF (α) be the smallest σ-algebra containing all

Fβ with β ∈ A\{α}. Then, the Fα’s are conditionally independent relatively to a

σ-algebra G iff for each α and Aα ∈ Fα we have

P
�

Aα|F (α) ∨G
�

= P(Aα|G ),

where F (α) ∨G denotes the smallest σ-algebra containing F (α) and G .

Note that if in the previous theorem G = T and Fα is generated by a r.v.

say Xα then we have

Corollary 4.3.3. Let (Xα)α∈A be a collection of r.v. and for each α let F (α) be the

σ-algebra generated by all the r.v. except by Xα. Then, the r.v. Xα’s are independent

iff for each α and B ∈B we have

P(Xα ∈ B|F (α)) = P(Xα ∈ B) a.e.
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Now, let X1 and X2 be two independent r.v. What happens if we condition

X1 + X2 by X1?

Theorem 4.3.4. Let X1 and X2 be two independent r.v. with probability measures

µ1 and µ2, respectively. Then, for each B ∈B:

P(X1 + X2 ∈ B|X1) = P(X1 + X2 ∈ B|F1) = µ2(B − X1) a.e.

where F1 is the σ−algebra generated by X1.

More generally, let (Xn)n∈N be a sequence of independent r.v. with probability

measures (µn)n∈N and let Sn = X1 + · · ·+ Xn. Then, for each B ∈B:

P(Sn ∈ B|S1, · · · , Sn−1) = µn(B − Sn1
) = P(Sn ∈ B|Sn−1) a.e.

Exercise: Prove all the results above.

Let us look quickly at the proof of the previous theorem.

Remember that P(X1 + X2 ∈ B|X1) = E[1{X1+X2∈B}|X1]. Now using the

Theorem of page 76 we have that, for Λ ∈ F1 (note that this set is such that

Λ = X−1
1 (A), where A ∈ B , to prove this use the trick with monotone classes,

see the Theorem in page 4)

∫

Λ

µ2(B − X1)P(dω) =
∫

A
µ2(B − x1)µ1(d x1)

=

∫

A
µ1(d x1)

∫

Ω

1{x1+x2∈B}µ2(d x2) =

∫ ∫

{x1∈A,x1+x2∈B}
µ1 ×µ2(d x1, d x2)

=

∫ ∫

{X1∈A,X1+X2∈B}
P(dω) = P(X1 ∈ A, X1 + X2 ∈ B)

=

∫

Λ

1{X1+X2∈B}P(dω).

Since µ2(B − X1) ∈ F1 and since the previous relation is true for any Λ ∈ F1,

the result follows. As an exercise, prove the second assertion of the theorem.
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4.3.1 Conditional distribution of X given a set A.

Given a r.v. X in a probability space (Ω,F ,P) and for an event A with P(A)> 0

we define the conditional distribution of X given A as:

P(X ∈ B|A) =
P((X ∈ B)∩ A)
P(A)

.

Exercise: Check that this gives a probability measure on the Borel σ-

algebra.

Now, we can define the conditional distribution function of X given the set A on

x ∈ R as

FX (x |A) = P(X ≤ x |A) =
P((X ≤ x)∩ A)
P(A)

The conditional expectation of X given the set A is the expectation of the

conditional distribution given by

E[X |A] =
∫

x dFX (x |A)

if it exists. As above, if we take now a partition of Ω that is (An)n≥1 with Ω =
∪n≥1An, An ∈ F and An ∩ Am =∅ if m 6= n, then

P(X ∈ B) =
∑

n≥1

P(X ∈ B|An)P(An).

Also for any x , FX (x) = P(X ≤ x) =
∑

n≥1 P(X ≤ x |An)P(An) =
∑

n≥1 FX (x |An)P(An)
and analogously

E[X ] =
∫

xdFX (x) =
∑

n≥1

P(An)E[X |An].

1) Let X ∼ U[−1, 1] and let A= {X ≥ 0}. What is the conditional distribu-

tion of X given A?
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4.3.2 Conditional distribution of X given a discrete r.v. Y

Let us suppose now that the partition is generated by a discrete r.v. Let Y be a

discrete r.v. defined on a probability space (Ω,F ,P) taking the values (an)n∈N.
Then the events {Y = an} form a partition of Ω. In this case P(X ∈ B|Y = an) is

called the conditional distribution of X given Y = an and we have that

P(X ∈ B|Y = an) =
∑

n≥1

P(X ∈ B|Y = an)P(Y = an).

Also for any x ,

FX (x) = P(X ≤ x) =
∑

n≥1

P(X ≤ x |Y = an)P(Y = an)

=
∑

n≥1

FX (x |Y = an)P(X = an)

and analogously E[X ] =
∫

xdFX (x) =
∑

n≥1 P(Y = an)E[X |Y = an].

Note that for B fixed we have that P(X ∈ B|Y = an) is a function of an let us

say g(an). Defining g(y) = P(X ∈ B|Y = y) we have that P(X ∈ B) =
∫

P(X ∈
B|Y = y)dFY (y) =

∫

g(y)dFY (y). Moreover,

FX (x) =

∫

FX (x |Y = y)dFY (y) E[X ] =
∫

E[X |Y = y]dFY (y).

When X is integrable the function ϕ(y) = E[X |Y = y] is finite. In this case, the

r.v. ϕ(Y ) is called the conditional expectation of X given Y : ϕ(Y ) = E[X |Y ].
We note that E[X |Y = y] is the value of the random variable E[X |Y ] when

Y = y . The last formula can be interpreted as

E[X ] = E[ϕ(Y )] = E[E[X |Y ]].

2) Consider the following experience: a player tosses a fair coin n times obtain-

ing k heads with 0 ≤ k ≤ n. After that a second player tosses the same coin k

times. Let X be the number of heads obtained by the second player. What is the

expectation of X supposing that all the events are independent?
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4.3.3 Conditional distribution: general case

Let us define now the conditional expectation for general r.v. X and Y . Before

we defined the conditional distribution of X when Y was discrete, so that P(Y =
y) = 0 for all y 6= an. But now we want to extend this to the continuous case

in which the probability above is null for all y ∈ R. How to do it? We define by

approximation. Take I an interval containing y with size ∆y and define

P(X ∈ B|Y = y)∼ P(X ∈ B|Y ∈ I) =
P(X ∈ B, Y ∈ I)
P(Y ∈ I)

.

If P(X ∈ B|Y ∈ I) has a limit when∆y → 0 we call to the limit P(X ∈ B|Y =
y):

lim
∆y→0
P(X ∈ B|Y ∈ I) = P(X ∈ B|Y = y).

Let us go back to the case in which X is discrete.

Then we have

F(X ,Y )(x , y) = P(X ≤ x , Y ≤ y) =
∑

n:an≤y

P(X ≤ x , Y = an)

=
∑

n:an≤y

P(X ≤ x |Y = an)P(Y = an)

=
∑

n:an≤y

FX (x |Y = an)P(Y = an)

=

∫ y

−∞
FX (x |Y = a)dFY (a).

Note that in the discrete case, the joint distribution is like a composition of the

marginal distribution of Y with the conditional distribution of X given Y . Let

use then the last equality!

Definition 4.3.5. Let X and Y be two r.v. defined on the same probability space.

A function P(X ∈ B|Y = y) defined for each borelian B and y ∈ R is a (regular)

conditional distribution for X given Y if:

1. for each y fixed, P(X ∈ B|Y = y) defines a probability measure inB ,
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2. for any B ∈B fixed, P(X ∈ B|Y = y) is a measurable function of y,

3. for any (x , y) ∈ R2 it holds that

P(X ≤ x , Y ≤ y) =

∫ y

−∞
FX (x |Y = a)dFY (a).

P(X ∈ B|Y = y) is called the conditional probability of X belonging to B given

that Y = y and FX (·|Y = y) = P(X ≤ ·|Y = y) is the conditional distribution of

X given Y = y.

Theorem 4.3.6. Let X and Y be two r.v. defined on the same probability space.

There exists a (regular) conditional distribution for X given Y . In fact there exists

only one in the sense that they are equal a.e.: that is, if P1(X ∈ B|Y = y) and

P2(X ∈ B|Y = y) are conditional distributions for X given Y , then there exists a

borelian B0 such that P(Y ∈ B0) = 1 and P1(X ∈ B|Y = y) = P2(X ∈ B|Y = y)
for all B ∈B and y ∈ B0.

Theorem 4.3.7. For each B ∈B fixed, the limit

lim
∆a→0
P(X ∈ B|Y ∈ I) = P(X ∈ B|Y = a)

exists a.e. Moreover, for each B ∈ B fixed, the limit is equal to P(X ∈ B|X = y)
as given in the definition above, a.e.

1) What is the conditional distribution of Y given Y ? Let us guess it. If it

is given that Y = y , then Y = y! So the candidate is P(Y = y|Y = y) = 1 the

distribution which gives weight 1 to the point y . Check that for B = (q1, q2)
with qi ∈Q it holds that

P(Y ∈ B|Y = y) = lim
∆a→0
P(Y ∈ B|Y ∈ I),

which proves the result.

Note however that if we take B = {y0} then

P(Y = y0|Y = y) = lim
∆a→0
P(Y = y0|Y ∈ I) = 0!

This does not contradict our result but contradicts our intuition!
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2) Given Y = y what is the conditional distribution of Z = g(Y )? Recall

that above we have seen that if Y = y , then P(Y = y|Y = y) = 1. Here it is

analogous. In this case we have that P(g(Y ) = g(y)|Y = y) = 1.

3) Let X be a symmetric r.v. around 0. What is the conditional distribution

of X given the r.v. |X |? Given that |X |= y > 0, then X = y or −y , there are no

other possibilities and from symmetry we have that:

P(X = y||X |= y) =
1
2
= P(X = −y||X |= y), y > 0,

and P(X = 0||X |= 0) = 1.

Let us do it now in a different way. Suppose y > 0. Take B = (q1, a2) with

qi ∈Q and take I ⊂ B. Then

P(X ∈ B||X | ∈ I) = P(X ∈ I) =
1
2

�

P(X ∈ I) + P(X ∈ −I)
�

=
1
2
P(|X | ∈ I).

And

P(X ∈ −B||X | ∈ I) = P(X ∈ −I) =
1
2
P(|X | ∈ I).

Since I ⊂ B we have that

P(X ∈ B||X | ∈ I) =
1
2
= P(X ∈ −B||X | ∈ I).

Therefore,

P(X ∈ B||X |= y) = lim
∆y→0
P(X ∈ B||X | ∈ I) =

1
2

,

P(X ∈ −B||X |= y) = lim
∆y→0
P(X ∈ −B||X | ∈ I) =

1
2

.

Taking B decreasing to {y} we see that the conditional probability gives

weight 1/2 to each one of the points y and −y . The proof that P(X = 0||X | =
0) = 1 can be reached by taking B = (q1, q2) as above with q1 < 0< q2.

4) Let X and Y be independent r.v. each one with law N(0,σ2)with σ2 > 0.

What is the conditional distribution of (X , Y ) given
p

X 2 + Y 2?

For z > 0,
p

X 2 + Y 2 = z iff (X , Y ) is in the circle centered at (0, 0) with

radius z. Therefore the conditional distribution is concentrated in that circle,

that is, in the set of points of R2 given by C := {(x , y) : x2 + y2 = z}.
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Note that the joint density function of (X , Y ) is given by

f (x , y) =
1

2πσ2
e−

(x2+y2)2

2σ2 .

Note that the density is constant on the circle C . Therefore, before the experi-

ence all the points in the circle C had the same "chance" and our guess for the

distribution is the uniform distribution on the circle, that is, for B ∈ B2 and

z > 0:

P((X , Y ) ∈ B|
p

X 2 + Y 2 = z) =
"size of"(B ∩C )

2πz
.

Prove it!

4.4 Discrete time Martingales

Let (Xn)n∈N be independent r.v. with mean zero and let Sn =
∑n

j=1 X j . Then

E[Sn+1|X1, · · · , Xn] = E[X1 + · · ·+ Xn + Xn+1|X1, · · · , Xn]

= Sn +E[Xn+1|X1, · · · , Xn] = Sn +E[Xn+1]

= Sn.

Historically, the equation above gave rise to consider dependent r.v. which

satisfyE[Xn+1|X1, · · · , Xn] = 0 and this opened a way to define a class of stochas-

tic processes which are extremely useful - the martingales.

Definition 4.4.1 (Smartingale: martingale, submartingale, supermartingale).

The sequence of r.v. and σ−algebras (Xn,Fn)n∈N is said to be a martingale iff

for each n ∈ N we have that

1. Fn ⊂Fn+1 and Xn ∈ Fn, (this means that Xn is adapted to Fn)

2. E[|Xn|]<∞ for each n ∈ N, (this means that Xn is integrable)

3. for each n ∈ N, we have that

Xn = E[Xn+1|Fn] a.e. (martingale)

Xn ≤ E[Xn+1|Fn] a.e. (submartingale)

Xn ≥ E[Xn+1|Fn] a.e. (supermartingale)
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Example 21. Check that (Yn,Fn)n∈N is a (sub)martingale in each case below:

1. let (Xn)n be a sequence of independent r.v. with mean zero,Fn = σ(X1, · · · , Xn)
and Yn = Sn,

2. let (Xn)n be a sequence of independent r.v. with mean one,Fn = σ(X1, · · · , Xn)
and Yn =

∏n
k=1 Xk,

3. let X be an integrable r.v. and let F0 ⊂ F1 ⊂ · · · ⊂ F , Yn = E[X |Fn],
(GOOD FOR CREATING MARTINGALES!)

4. let (Xn)n be a sequence of non-negative integrable r.v., Fn = σ(X1, · · · , Xn)
and Yn = Sn, (sub)

Note that the condition for martingale implies that for n< m we have that

Xn = E[Xm|Fn] a.e.

Theorem 4.4.2 (Jensen’s inequality).

Let (Xn,Fn)n∈N be a submartingal and let ϕ be an increasing convex function

defined on R. If ϕ(Xn) is integrable for any n, then (ϕ(Xn),Fn)n∈N is also a

submartingal.

Corollary 4.4.3. If (Xn,Fn)n∈N is a submartingal then (X+n ,Fn)n∈N is a sub-

martinagle. If (Xn,Fn)n∈N is a martingal, then (|Xn|,Fn)n∈N and (|Xn|p,Fn)n∈N
for 1< p <∞ if Xn ∈ Lp are also submartingales.

Exercise: Prove the theorem.

4.4.1 Martingales in Game theory

Let (Xn)n∈N be a sequence of i.i.d.r.v. taking the value 1 with probability p and

−1 with probability 1−p. The interpretation is that Xn = 1 represents a success

while Xn = −1 represents a failure of a player at the n-th time he is playing a

game. Let us suppose that the player can win or lose a certain amount Vn at
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the n-th time he plays the game, that is, Vn is the amount of the bet at time n.

Then, at time n the player possesses

Yn =
n
∑

i=1

ViX i = Yn−1 + VnXn.

It is quite natural to assume that the amount Vn may depend on the previous

amounts, that is, of V1, · · · , Vn−1 and also of X1, · · · , Xn−1. In other words, let

F0 = {∅,Ω} and Fn = σ(X1, · · · , Xn). Then, Vn is a function Fn−1 measur-

able, that is, the sequence that determines the player’s strategy is said to be

predictable.

Let Sn = X1 + · · ·+ Xn. Then

Yn =
n
∑

i=1

Vi∆Si ,

where ∆Si = Si − Si−1. Then, the sequence (Yn,Fn)n∈N is said to be the trans-

form of S by V .

From the player’s point of view, the game is said to be fair (favorable or

unfavorable) if at each step if E[Yn+1 − Yn|Fn] = 0 (≥ 0 or ≤ 0)
We want to analyze in which conditions the game is fair? A simple compu-

tation shows that :

1. The game is fair if p = 1− p = 1/2. (Yn,Fn)n∈N is a martingale.

2. The game is favorable if p > 1− p. (Yn,Fn)n∈N is a submartingale.

3. The game is fair if p < 1− p. (Yn,Fn)n∈N is a supermartingale.

Let us now consider another strategy. Take (Vn,Fn−1)n≥1 with V1 = 1 and

for n≥ 1 we have that Vn = 2n−1 if X1 = −1, · · · , Xn−1 = −1 and 0 otherwise.

Under this strategy, a player starts to bet 1 euro and doubles the bet in the

next play if he had lost or leaves immediately the game in case he had won.

If X1 = −1, · · ·Xn = −1, then the total loss after n plays is
∑n

i=1 2i−1 = 2n−1.

Therefore, if Xn+1 = 1 then Yn+1 = Yn + Xn+1Vn+1 = −(2n − 1) + 2n = 1.

Let τ := inf{n≥ 1 : Yn = 1}, that is the first time that Yn = 1. If p = 1
2 , then

the game is fair and



150 Exercises

P(τ= n) = P(Yn = 1, Yk 6= 1,∀k = 1, · · · , n− 1) =
�1

2

�n
.

From where we conclude that

P(τ <∞) = P(∪n≥1τ= n) =
∑

n≥1

�1
2

�n
= 1.

Moreover, P(Yτ = 1) = 1 and E[Yτ] = 1.

Therefore, even in a fair game, applying the strategy described above, a

player can, in finite time, complete the game with success, that is, increase his

capital in one unity: E[Yτ] = 1 > Y0 = 0. In game theory this type of system

- double the bet after a loss and leave the game immediately after a win - is

called a martingale.

We note however that p = 1/2, so that (Yn,Fn)n∈N is a martingale and

E[Yn] = E[Y0] = 0 for all n ≥ 1. Above the same is not true for a random time

(above we took the random time τ.)

Definition 4.4.4 (Markov time).

A r.v. τ which takes values in the set {0, 1, · · · ,∞} is said to be a Markov

time wrt a σ-algebra Fn if for each n ≥ 0 we have that {τ = n} ∈ Fn. When

P(τ <∞) = 1, the Markov time is said to be a stopping time.

If (Xn,Fn)n∈N is a sequence of r.v. and σ-algebras with Fn ∈ Fn+1, and if

τ is a Markov time wrt Fn, then we write Xτ =
∑∞

n=0 Xn1{τ=n}. Note that since

P(τ <∞) = 1 we have that Xτ = 0 in the set τ=∞. Prove that Xτ is a r.v.

Example 22 (Prove it!). Let (Xn,Fn)n∈N be a martingale (or submartingale)

and τ a Markov time wrt Fn. Then the stopping process Xτ = (Xn∧τ,Fn) is also

a martingale (or submartingale).

4.5 Exercises

Exercise 1: Show that:

(a) if (Xn)n≥1 is a sequence of independent r.v. with E[Xn] = 0 for all n≥ 1,

then (Sn,Fn)n≥1 where Sn =
∑n

j=1 X j and Fn = σ(X1, · · · , Xn) is a martingale
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(b) if (Xn)n≥1 is a sequence of independent r.v. with E[Xn] = 1 for all n≥ 1,

then (X̃n,Fn)n≥1 where X̃n =
∏n

j=1 X j andFn = σ(X1, · · · , Xn), is a martingale.

(c) given an integrable r.v. X , that is with E[|Xn|] < +∞ and a set of σ-

algebras F0 ê F1 ê · · · ê Fn, then (Xn,Fn)n≥1 where Xn = E[X |Fn] is a

martingale.

Exercise 2: Show that:

(a) if (Xn)n≥1 is a sequence of non-negative integrable r.v., then (Sn,Fn)n≥1

where Sn =
∑n

j=1 X j and Fn = σ(X1, · · · , Xn) is a submartingale.

(b) if (Xn,Fn)n≥1 i a martingale and g : R → R is a convex function with

E[|g(Xn)|]< +∞ for all n≥ 1, then (g(Xn),Fn)n≥1 is a submartingale.

Exercise 3: Let (Xn)n≥1 be i.i.d. r.v. with P(X1 = 1) = p and P(X1 = −1) = q

with p + q = 1. If p 6= q, show that if Sn =
∑n

j=1 X j and Fn = σ(X1, · · · , Xn),
then

(a) (Yn,Fn)n≥1 is a martingale, where Yn =
�

q
p

�Sn
.

(b) (Zn,Fn)n≥1 is a martingale, where Zn = Sn − n(p− q).

Exercise 4: Show that if (Xn)n≥1 is a sequence of i.i.d. r.v. with E[Xn] = 0

and Var(Xn) = σ2 for all n≥ 1, then (Wn,Fn)n≥1 is a martingale, where Fn =
σ(X1, · · · , Xn) and

(a)

Wn =
�

n
∑

j=1

X j

�2
− nσ2.

(b)

Wn =
eλ
∑n

j=1 X j

(E[eλX1])n
.

Exercise 5: Let (Xn)n≥1 be a sequence of i.i.d. r.v. that take values on a

finite set I . For each y ∈ I , let f0(y) = P(X1 = y) and let f1 : I → [0,1] be

a non-negative function such that
∑

y∈I f1(y) = 1. Show that (Wn,Fn)n≥1 is a

martingale, where Fn = σ(X1, · · · , Xn) and
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Wn =
f1(X1) · · · f1(Xn)
f0(X1) · · · f0(Xn)

.

The r.v. Wn are known as likelihood ratios.

Exercise 6: Let (Xn,Fn)n≥1 be a martingale.

(a) Show that, for all n< m it holds that Xn = E[Xm|Fn].

(b) Conclude that E[X1] = E[Xn] for all n≥ 1.

(c) For each n≥ 2 let Yn = Xn− Xn−1 and take Y1 = X1. We observe that Yn

is called the increment of the martingale. Show that E[Yn] = 0 for all n≥ 0.

(d) Assume that E[X 2
n] < +∞ for all n ≥ 1. Show that the increments of

the martingale are non correlated.

(e) Show that Var(Xn) =
∑n

j=1 Var(Yj).

Exercise 7: Let (Xn,Fn)n≥1 and (Yn,Fn)n≥1 be two martingales with X1 =
Y1 = 0. Show that

E[XnYn] =
n
∑

k=2

E[(Xk − Xk−1)(Yk − Yk−1)].

Exercise 8: Let (Xn,Fn)n≥1 be a martingale (or submartingale) and τ a

Markov time (with respect to Fn). Then, the stopping time

Xτ = (Xmin{n,τ},Fn)

is also a martingale (or a submartingale).

Exercise 9:

(a) Prove Wald’s inequality. Let (Xn)n≥1 be a sequence of integrable i.i.d. r.v.

and let τ be a stopping time with respect toFn = σ(X1, · · · , Xn) and E[τ]<∞.

Then, E[X1 + · · ·+ Xτ] = E[X1]E[τ].

(b) Analyze the case in which P(X1 = 1) = 1/2 = P(X1 = −1) and τ =
inf{n≥ 1 : X1 + · · ·+ Xτ = 1}. What do you conclude about E[τ]?
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Exercise 10: Let (Xn)n≥1 be a sequence of i.i.d.r.v. such that P(X1 = 1) =
p = 1− P(X1 = −1). Interpret Xn = 1 as a success and Xn = −1 as the lost of a

player in its n-th play. Assume that the player can win or lose in the n-th play

the amount Vn (so that Vn is the amount of the bet in the n-th play). The total

amount of the player at the n-th play is given by Yn =
∑n

i=1 X iVi . Assume that

Vi is predictable with respect to Fn = σ(X1, · · · , Xn).

a) Verify in which conditions the game is fair, favorable or unfavorable. In

each case, verify if (Yn,Fn)n is a martingale, sub-martingale or supermartingale.

b) Now consider the following strategy V1 = 1 and

Vn = 2n−11{X1=−1,··· ,Xn−1=−1}.

Say by words what means that strategy. Is (Vn)n predictable with respect toFn?

Let

τ= inf{n≥ 1 : Yn = 1}.

Take p = 1/2, compute the probability function of τ and express P(τ <∞).
Compute E[Yτ]. What can you say about the game?
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