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Motivation

Population genetics: an overview

Population genetics: study genetic differences that influence single
or multiple populations.
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Neutrality: Survival of a given gene is by chance, instead of the
stronger gene (selected by nature) prevailing in the population.



Wright-Fisher model

Wright-Fisher model

@ Haploid population: Type of individual = Allele type;
@ Population size is constant and equal to N,

@ Only 2 types of individuals: A and a;
)

Random reproduction: Each individual of the offspring
selects randomly the parent from the previous generation and
adopts the type of the parent, independently of the other

individuals. )

X, = Number of individuals of type A in the n'" generation.
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Wright-Fisher model

Wright-Fisher model

Xn—l—l =3

In each generation the whole population is replaced: non-overlapping
generations.



Wright-Fisher model
Wright-Fisher model

o piji=P(Xos1 = j|IXo = i) = (¥) (N) (1 - N) ;
o (Xnpy1|Xn=1)~ Binomia/(n =N,p= ﬁ)

@ {X,}nen is a homogeneous DTMC with state space
S$={0,1,....N—1 N},

@ 0 and N are absorbing: lost of genetic variability.



Moran model

Moran model

@ Haploid population of constant size N;

@ Only 2 types of individuals: A and a;

@ Continuous-time process;

@ The reproduction rate of each individual is 1;
°

Random reproduction: At each transition, one individual is
chosen to die and replaced by an existing one.

X: = Number of individuals of type A at time t.



Moran model

Moran model

{ Xt }>0 is a homogeneous CTMC with state space S ={0,1,..., N—
1, N},

Rates of the process

.N_'.
® bi =qii+1= 1"

o di=gqjj—1=(N—1i);
() b,' = d,'.

0 and N are absorbing: lost of genetic variability.
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POOPPOOH ~-



Moran model

Moran model
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Exponential clock for a transition to occur
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Moran model
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The population is not entirely replaced: overlapping generations.



Moran model

Parallel: Wright-Fisher vs Moran model

Wright-Fisher

Moran

Time Discrete-time Continuous-time
Generations Non-overlapping Overlapping
Martingale Yes Yes

Fixation time 7
finite a.s. P(r<oo)=1 P(r<oo)=1
Fixation probability Pi(X, = N) = & Pi(X. = N) — ﬁ

of type A

Expected fixation time
of either type A or type a,

P=x

Ei(r) = ~2N(plog(p) + (1 - p) log(1 - p))

Ei(r) = N (plog(p) + (1 — p)log(1 - p))

Conditional expected
time to fixate type A,

P=x

Ei(r| T < To) = ~2N52 log(1 - p)

Ei(1|Ty < To) = —Nl_Tp log(1 — p)

Conditional expected
time to fixate type a,

P=x

Ei(7|To < Tn) = —2N12; log(p)

Ei(7|To < Tn) = —N12; log(p)

Expected

heterozygosity,

Xo N—X
Hy = % =1

E(Hy) = (1— 4)"E(Ho)
~ e_WE(Ho)

E(H,) = e~ 8 E(Ho)




Infinite population limit

Infinite population limit

@ Expected time to reach fixation given initial state Xy = 1/,
Ei(7)
is of order of the population size N in both processes.

@ Motivates the transformation of the Wright-Fisher and Moran
processes

N X[Nﬂ

t N .




Infinite population limit
Infinite population limit

o The Wright-Fisher diffusion, X, is an 1td diffusion process
satisfying strongly the SDE:

d)?t — \/Xt‘(l - )?t)th’ t Z 0
and (Lg f)(x) = Ix(1 = x)f"(x).
Proving weak convergence of the generators:

@ For the Wright-Fisher transformation,
(EVAVT__f) (x) — %X(l — x)f"(x) = (E;Qf) (x).

@ For the Moran transformation,

(L) (x) = x(1 = x)f"(x) = 2(,C)~<tf)(x).

@ Moran model evolves twice as fast comparing to the
Wright-Fisher model.



Infinite population limit

Wright-Fisher vs Moran model

Wright-Fisher vs Moran simulation with N = 100, Xy = 50.
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Genealogy

The n-coalescent

n-coalescent: CTMC which allows as a genealogical description from
a backward-time perspective of a population with finite size equal
to n. In particular, it allows us to identify the MRCA.

(1.2.3.4.5.6) (1.2.3.4.5.6) @ Each step: an element of
the collection of all
0 artitions of {1,.... n};
5 (2,4,6} ({1,3,5},{2,4.6}} P {1, n}
3 @ 1 coalescent event per
g st t1,3,9), (2,6}, 143} transition:
3
§ {2,6} {{1.3}.12.6}.{4}.{5}} @ Rate of transition from i
° (1,3} (w3066 to i — 10 ().
[ ™S
5 2 6 4 {{1}, {2}, {3}, {4}, {5}, {6}}

Figure 1: Example of a realization of a n-coalescent, with
n = 0.



Genealogy

The n-coalescent and the Kingman coalescent

e Kingman (1982)

jump chain: which are the lineages
n-coalescent _
pure-death process: number of lineages

e Kingman coalescent: limit n — oo of the n-coalescent,
allows the genealogical description of a infinite size population.

@ Coming down from infinity: the Kingman coalescent will
always reach a finite number of lineages.



Genealogy

Kingman coalescent and its suitability for Wright-Fisher

and Moran models

Kingman coalescent for the Wright-Fisher model

When the time is accelerated by a factor of N, the Kingman
coalescent describes the genealogy of a sub-population of fixed
size n under the Wright-Fisher model, where the total population
sizeis N and n << N.

| \

Kingman coalescent for the Moran model

The Kingman coalescent can be used to describe the genealogy of
a sub-population of fixed size n in a population of size N
described by the Moran model, when time is accelerated by a

factor %




Genealogy of Wright-Fisher
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Genealogy
Genealogy of Moran model

sessee || (1])
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time evolution (forward)
time evolution (backward)




Duality

Duality between the pure-death process of Kingman

coalescent and Wright-Fisher diffusion

Duality allows us to compute genetic measures on the Wright-Fisher
diffusion from the pure-death process of Kingman coalescent.

Fixation probability

The fixation probability of type A in the Wright-Fisher diffusion,
knowing that the initial fraction of the same type is x € [0, 1], is
given by:

Expected heterozygosity

For the Wright-Fisher diffusion, we have the following relation
between the expected value of the heterozygosity as a function of

its initial value:
E(H;) = e_tE(Ho).




Conclusions/Future work

Conclusions of the work in a diagram

Pure-death process
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Conclusions/Future work

Future work

@ Consider general k allele types, instead of just 2 types;

@ Consider both mutation and selection parameters
simultaneously;

@ Adapt resampling for polyploid individuals;

e Consider a more realistic variable population size N(t) that
evolves in time, instead of a fixed one.
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