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Resumo

Nesta dissertação de mestrado consideramos o Processo de Exclusão Simples Simétrico numa caixa ΛN =

{1, . . . , N − 1} acoplado com um reservatório de partículas não linear, lento, em cada extremidade, que injeta

e retira partículas numa janela de tamanho K (i.e., em {1, . . .K} e {N − K, . . . , N − 1}). Nessa janela, uma

partícula entra no sistema no primeiro sítio livre, e sai apenas do primeiro sítio ocupado. Estes reservatórios

induzem correlações entre as partículas, daí o termo não linear. As taxas de entrada e saída de partículas são

proporcionais a κN−θ, o que faz com que para θ > 0 os reservatórios tenham uma ação lenta. Mostramos que a

densidade espacial de partículas é descrita por uma solução fraca da equação do calor com condições de fronteira

de Robin, se θ = 1, ou de Neumann, se θ > 1. A nossa dinâmica de fronteira é uma extensão do modelo com

reservatórios de "corrente", e sua relevância está na sua generalização e tratamento das correlações.

Em seguida, estudamos a propagação do caos, através de cotas para as chamadas v−functions. Dizemos que ex-

iste propagação do caos quando temos que qualquer número finito de partículas evolui independentemente, quando

o número total de partículas vai para infinito. Mostramos que o nosso modelo tem, de facto, essa propriedade.

Por fim, estudamos algébricamente o Matrix Product Ansatz paraK = 1 no regime lento (θ ≥ 0), e extendemos

a atual metodologia para K = 2. Para K = 1 e θ 6= 0, fazemos uma pequena correção na algebra, e para

K = 2 mostramos sob que condições a nossa algebra é consistente. Fomos bem sucedidos em induzir uma algebra

consistente para taxas gerais em regime lento, exceto em um caso particular.

Palavras-chave: Limite Hidrodinâmico, Processo de exclusão, Equação do Calor, Dinâmica não linear,

Propagação do Caos, Matrix Product Ansatz
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Abstract

We consider the Symmetric Simple Exclusion Process in the box ΛN = {1, . . . , N − 1} coupled with non

linear slow reservoirs at each endpoint, that injects and removes particles in a window of size K. A particle may

enter to the first free site and leave from the first occupied site in its respective window (i.e., {1, . . .K}, {N −

K, . . . , N − 1}). These reservoirs induce correlations between particles, hence the name non linear reservoirs.

The rates of injection/removal are proportional to κN−θ, thus for θ > 0 the action of the reservoirs is slow. We

show that the spatial density of particles is given by a weak solution of the heat equation with Robin boundary

conditions, if θ = 1, and Neumann boundary conditions, if θ > 1. Our model is an extension of the "current

reservoirs" model, and the main interest lies both in the generalization and the treatment of the correlation terms.

Next, we study the propagation of chaos through the estimation of v−functions. The propagation of chaos

property states that any finite number of particles will evolve independently as the total number of particles goes

to infinity. We will show that this indeed holds for our model.

At last, we study algebraically the Matrix Product Ansatz method for K = 1 under the slow/fast regime, and

make a small extension of the current methodology for K = 2. For K = 1 and θ 6= 0 we make a small correction

in the current algebra, and for K = 2 we show under which conditions our algebra is consitent. When consistent,

the normalization constant satisfies a second order recurrence. Our formulation was successfull in inducing a

consistent algebra for general and slow rates, except for a particular case.

Keywords: Hydrodynamic Limit, Exclusion process, Heat equation, Non linear dynamics, Propagation

of Chaos, Matrix Product Ansatz
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Chapter 1

Introduction

An Interacting Particle System is a mathematical model involving very-many components that interact with

each other. Given the large number of particles and their possible interactions, the most natural mathematical

frame to study these models will not be deterministic, but probabilistic. In the context of this master’s thesis, an

interacting particle system can be seen as what you get by watching a macroscopic, deterministic system through

the looking glass − what was fixed, now has a random nature, and what didn’t move, now jumps and interacts.

In the miscroscopic level, we have a discrete system that evolves in time according to random clocks under some

interaction among particles. The study of how these interactions affect the macroscopic level, that is, the passage

from the micro to the macro, or the passage from the discrete to the continuum, is a central question in Statistical

Mechanics. The rigorous study of Interacting Particle Systems is quite recent, having started with Frank Spitzer1

in the seventies. The limiting object of this microscopic system is often described as the solution of a Partial Dif-

ferential Equation. In this thesis, our macroscopic element is the Heat Equation with Robin boundary conditions,

or Neumann boundary conditions.

The dynamics studied in this thesis is a generalization of the dynamics studied in [24]. We consider the

Symmetric Simple Exclusion in the bulk, and both injections and removals of particles in a fixed window at

the endpoints of the bulk− all these terms will be explained in the following sections. Moreover, we consider the

"frequency" a particle is added/removed in the system dependend on a parameter θ. In this way, not only our model

is a generalization of [24], but as a particular case we have also a regime not yet studied in the aforementioned

work.

This thesis is divided in 6 chapters. We start with the mathematical background, in order to provide the

reader the mathematical context and tools necessary for a better understanding of the following chapters. Then,

in Chapter 3 we show the Hydrodynamic Limit− more specifically, in Section 3.3. That chapter is divided in 3

sections: first we define the dynamics through the infinitesimal generator, then we proceed with the heuristics for

the Hydrodynamic Limit. This section is important because it allows us to understand the difficulties of the formal

proof and have some insight to what are the induced Hydrodynamic Equations by our model. We then show the

Hydrodynamic Limit, whose proof has 2 main steps: tightness, proved in Section 3.3.1, and characterization of

limit points, proved in Section 3.3.2. For the characterization of limit points, we will need some results, which we

1Frank Spitzer is one of the pioneers in the rigorous study of an interacting particle system in the stochastic envoirnment. For more
references of the context where the field of interacting particle systems emerged, see [31].
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postpone the proofs to its own subsections: Replacement Lemmas, proved in Appendix A, and Energy Estimate,

proved in Appendix B.

In chapter 4, we estimate the correlations, through the estimation of the, so called, v-functions. This chapter

is both a detailed study of [24] and a simple adaptation of the arguments to show the bounds for the correlations

in the slow regime. This chapter is divided in 5 sections: we start with the notation for the chapter and some

definitions, where we define a coupling with a process of independent particles, in Section 4.2 we derive integral

inequalities for the v−functions (that measure how "far" our system is from a system with independent particles),

in the following Section, 4.3, we define the truncated hierarchy and the branching process, that classify the terms

arising in the bounds for the v−functions in terms of a process denoted by skeleton, in Section 4.4 we derive

bounds for the skeleton, and in last section, 4.5, we find estimates for the v−functions.

Finally, in last chapter we study the Matrix Product Ansatz (MPA). This chapter is divided in 3 sections. In

the first, we present the mathematical framework of the MPA and do a review of the known results, difficulties and

incapacities of the method. The second section is named A new look in the linear SSEP, where we study deeply the

linear SSEP with general rates from an algebraic point of view. In this section we make a small correction to the

known algebra in the slow regime. In the last section, we propose a generalization of the method for boundaries

acting on 2 sites each. This section consistis in the statement of the generalization, and proof of the consistency

of the algebra. In particular, we show that, in our framework, the normalization constant is at best a second order

recurrence. Given the extent of this thesis, we will only do the essential computations and state the main results.

In this section, we also introduce some new definitions in our algebraic context, which can easily be adapted for

the general setting. To our knowledge, this is the first successful, up to now, generalization in this direction.

The exposition will be very compact and result oriented. We will only give a mathematical context in the first

chapter, and the main theoretical results needed through the proofs will be stated in the appendix. In this way, we

focus in a more compact and fluid exposition.
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Chapter 2

Mathematical Background

2.0.1 Markov processes

A probability space is a well defined measure space with a normalized and positive measure - a probability.

We write our probabilty space as a triple (Ω,F , P ) where

1. Ω is the sample space − a non-empty set;

2. F the set of events − a σ−algebra on Ω;

3. P : F → [0, 1] is a probability measure with the properties:

σ−aditive : for A1, A2, . . . disjoint sets, P (
⋃
i≥1Ai) =

∑
i≥1 P (Ai)

normalized: P (Ω) = 1.

Considering our probability space (Ω,F , P ) and (S,S) a measurable space (where S is a non-empty set and S

a σ−algebra), we define an (S,S)−valued random variable as a measurable function X : Ω → S. Thus, ∀

subset B ∈ S we have X−1(B) ∈ F , where X−1(B) = {ω ∈ Ω : X(ω) ∈ B}. In this way, the measure of

a set (probability of an event) is defined as the measure of the pre-image by our function, the random variable:

PX(B) = P (X−1(B)) = P (ω ∈ Ω : X(ω) ∈ B).

Taking time into consideration we define a continuous-time stochastic process X = {Xt}t≥0 as a family of

random variables indexed in the time t taking values in some space S with a metrizable structure given by the

Borel σ−algebra, which is called the state space of the process. For fixed T > 0, we define the path space for our

process on S by the set of right continuous functions with left limits (denoted by càdlag 1)

DS [0, T ] = {X· : [0, T ] −→ S, càdlag} (2.0.1)

also known as the set of realizations of our process. Thus, fixed a time t, Xt : Ω → S is a random-variable. To

define a measurable structure on DS [0, T ], we will consider the smallest σ-algebra on DS [0, T ] ,F , such that the

maps X. 7→ Xs are measurable with respect to F , that is:

{Xs ∈ A} = {X· | Xs ∈ A} ∈ F , ∀A ∈ S measurable. (2.0.2)

1From the french "continue à droite, limite à gauche."
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Given that our process is a function of two variables Xt(ω), we want to construct the analogous of our σ−algebra

with respect to the time variable. If we have that F is the smallest σ-algebra on our canonical path space such

that ∀s ≤ t , X· 7→ Xs are measurable maps, then the collection {Ft}t≥0 is called the natural filtration of

our process. Defined our filtered space (DS [0, T ],F , (Ft)t≥0) we can now define our stochastic process on the

probability space (DS [0, T ],F , (Ft)t≥0,P).In our context, the stochastic process X = {Xt}t≥0 is going to be

a jump process. As in [17] we refer to P as the probability measure on S and P as the probability measure on

D([0, T ], S), and analagously we differ E and E to denote the expectation with respect to P and P, respectively.

In particular, we have that EX0 = EX .

As defined in [7], a Markov process is a stochastic process whose future behavior depends only on the past

through its present state; or the past depends on the future through the present; or even: given the present, the

future and the past are independent. There are very different constructions of Markov processes: the classic

construction from the Poisson process, as in [15] or [13], but one can also define it through the semigroup or

generator (which we will present on the following sections). Here we present a brief "axiomatic" definition for

the time homogenous Markov process from [13], and proceed to a more detailed overview on generators and

semigroups and the construction of the Markov semigroup from the Markov transition function, as in [7].

A Markov process whose distribution at time t, given that at time s it was in ξ, depends only on the time lag

(t − s) and not on the specific times itself (condition 3. of the following definition) are termed time homogenous

Markov processes:

Definition 2.0.1. A time homogenous Markov process on S is a collection {Pξ}ξ∈S of probability measures on

D[0, T ] with the properties:

1. Pξ(η. ∈ D[0, T ] : η0 = ξ) = 1 for all ξ ∈ S, that is, Pξ is normalized, given the initial condition ξ;

2. The map ξ 7→ Pξ(A) is measurable ∀A ∈ F ;

3. Pξ(η+· ∈ A | Ft) = Pηt(A) ∀ξ ∈ S,A ∈ F , t > 0. (This is the Markov property).

We present next what is meant by the transition function of such processes.

Definition 2.0.2. The transition function of a time-homogeneous Markov process is a function K(t, ξ, B) (K

stands for Kernel), where t ≥ 0, ξ ∈ S,B ∈ F with (S,F) measurable space, S is the set of possible values of the

process. K satisfies the properties:

1. K(t, ξ, ·) is a probability measure on (S,F) , ∀t ≥ 0, ξ ∈ S;

2. K(0, ξ, ·) = 1ξ;

3. K(t, ·, B) is measurable ∀t ≥ 0 and B ∈ F ;

4. The Chapman-Kolmogorov equation (CK-equation) is satisfied:

∫
S

K(s, ξ′, B)K(t, ξ, dξ′) = K(t+ s, ξ, B), (2.0.3)

4



where 1· is the indicator function. Moreover, we say that a stochastic process X on a probability space (Ω,F ,P)

with values in S is a time homogenous Markov process with transition function K if for t > s we have:

P (Xt ∈ B | Xs) = K(t− s,Xs, B), B ∈ B(S), (2.0.4)

where B(S) is the Borel σ−algebra on S.

From the definition we can see that K(t, ξ, ·) is the distribution of the position of the process at time t given

that at the begining (t = 0) it was in ξ. To make the notion of transition function clearer, given a transition function

K on a discrete space (we will take for example S ⊂ N), we can define for m,n ∈ S pn,m(t) := K(t, n, {m})

for t ≥ 0. This way, we have

• 1n({n}) = K(0, n, {n}) = pn,n(0) = 1;

• 1n({m}) = K(0, n, {m}) = pn,m(0) = 0 for n 6= m;

• ∀t ≥ 0 pn,m(t) ≥ 0 from the definition of probability measure;

• 1 = K(t, n, S) =
∑
m∈S K(t, n, {m}) =

∑
m∈S pn,m(t) = 1;

and the CK-equation

∑
k∈S

K(s, n, {k})K(t, k, {m}) = K(t+ s, n, {m}) (2.0.5)

takes now the form pn,m(s+ t) =
∑
k∈S pn,k(s)pk,m(t). On this simple case, one may easily do even better and

show directly that, by conditioning, the CK-equation is satisfied:

P (Xs+t = m | X0 = n) =
∑
k∈S

P (Xs+t = m | Xt = k,X0 = n)P (Xt = k | X0 = n)

=
∑
k∈S

P (Xs+t = m | Xt = k)P (Xt = k | X0 = n)

=
∑
k∈S

P (Xs = m | X0 = k)P (Xt = k | X0 = n),

(2.0.6)

where for the last two equalities we used the Markov property, and the time-homogenous property, respectively.

On the discrete case, these transition probabilities can naturally be expressed in terms of (possibly infinite) ma-

trices defined with the usual matrix notation P (t) = (pn,m(t))n,m≥1. In this way we can also write (2.0.5) as

P (s)P (t) = P (s+ t).

These matrices are termed transition matrices, and the above property is the semigroup property, which we

will explore, in no time, for more general state spaces. Naturally, one also gets that P (0)P (t) = P (0 + t) =⇒

P (0) = 1, where 1 is the identity matrix, which is coherent with our definition of transition function. For a clearer

understanding of these matrices let us first consider the simplest case. Suppose the transitions do not depend on

time, and both our state space and time are discrete. In this case, we have

P (n)P (m) = P (n+m)⇔ PnPm = Pn+m (2.0.7)

5



where Pn (resp. Pm) is the transition matrix to the power of n (resp. m), which comes directly from the time

independence and the CK-equation. Looking directly to the transitions, conditioning on the past states we have

P (Xn = j) =
∑
k∈S

P (X0 = k)P (Xn = j | X0 = k). (2.0.8)

Note that P (Xn = j | X0 = k) = Pnk,j , and writing P (X0 = k) ≡ αk we have, for j ∈ S,
∑
k∈S αkP

n
k,j , and in

matrix notation: P (Xn = j) = (αPn)j .

This simple case is very important because it gives some intuition to what comes in the next sections. We

showed that, for the full-discrete case, the distribution at a time n equals to the matrix product of the initial

distribution and the transition matrix to the power of the time. That is, the transitions take us from the initial state

to where we want to go; or in other words, where we are is a result from where we have started and the path we

took. In fact, this holds for general topologies and continuous time as well. As stated in [27]:

Proposition 2.0.3. A discrete time Markov chain {Xn}n∈N is fully characterized by its transitions matrices and

the probability function of X0.

The jump from discrete time to continuous time is not trivial, and we refer the reader to a very detailed con-

struction on [15] using an embedded discrete time chain and the Poisson Process.

2.0.2 Generators and Semigroups

Now we shall give a brief introduction to semigroups and its generators. We will start with the definition of

a semigroup, proceed to prove some of its general properties and define its generator at the end. Next, we will

introduce the Markov semigroup, and as a motivation for the two main formulas used in this thesis, we will refer

to the Cauchy problem. As a by-product of the Cauchy problem (but more on the perspective of the Martingale

problem) we will construct a great tool for this dissertation: the Dynkin’s formula.

Definition 2.0.4. Let X be a Banach space, and let St, t ≥ 0 be bounded operators acting on X , indexed in t. The

family {St}t≥0 is termed a strongly continuous (or of class c0) semigroup of operators iff

1. ∀s, t ≥ 0, Ss+t = StSs;

2. S0 = 1X , where 1X is the identity operator in X ;

3. limt→0 Stf = f for f ∈ X .

If only the first two properties are satisfied, the family of operators is termed semigroup. On the above defini-

tion, we mean convergence on the usual sup norm.

An important property which will allow us to differentiate in time and we will not prove [7] is:

Proposition 2.0.5. [Continuity]

If {St}t≥0 is of class c0, then ∀f ∈ X the function t→ Stf is strongly continuous in R+ (right continuous at 0).

Closely related to the semigroup associated to a process is the infinitesimal generator, which can be interpreted

as its derivative at time 0.
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Definition 2.0.6. [Infinitesimal Generator] Let {St}t≥0 be of class c0 acting on a Banach space X . Then if the

following limit exists

Lf := lim
h→0+

Shf − f
h

(2.0.9)

L is termed the infinitesimal generator of the semigroup {St}t≥0, whose domain is:

D(L) = {f ∈ X : ∃ lim
h→0+

Shf − f
h

=: Lf} (2.0.10)

The infinitesimal operatorL is a linear operator [7], but this will be clear once we move to Markov semigroups).

An important technical property proved in [7] is the following.

Proposition 2.0.7. D(L) is a dense subset of X .

Naturally, one can integrate back (2.0.9) to get the following proposition.

Proposition 2.0.8. Let f ∈ X . For fixed t ≥ 0 we have L
∫ t

0
Ssfds = Stf − f.

Proof. We want to show that

L
∫ t

0

Ssfds = lim
h→0+

Sh
∫ t

0
Ssfds−

∫ t
0
Ssfds

h
= Stf − f (2.0.11)

and that
∫ t

0
Ssfds ∈ D(L). Note that

Sh

∫ t

0

Ssfds =

∫ t

0

Ss+hfds =

∫ t+h

h

Ssfds =

∫ t+h

0

Ssfds−
∫ h

0

Ssfds, (2.0.12)

where we used the semigroup property in the first equality, a change of variables in the second, and the last follows

by the definition of the integral. Thus,

h−1

(
Sh

∫ t

0

Ssfds−
∫ t

0

Ssfds

)
= h−1

(∫ t+h

0

Ssfds−
∫ h

0

Ssfds−
∫ t

0

Ssfds

)

= h−1

∫ t+h

t

Ssfds− h−1

∫ h

0

Ssfds.

(2.0.13)

Using the strong continuity of t→ Stf and the fundamental theorem of calculus we have, as h→ 0+

1

h

∫ t+h

t

Ssfds−
1

h

∫ h

0

Ssfds→ Stf − S0f = Stf − f. (2.0.14)

Since everything is bounded, we conclude that
∫ t

0
Ssfds ∈ D(L) .

Extending the idea of the generator as a differential operator, but now up to a time t, we have the following

proposition:

Proposition 2.0.9. If f ∈ D(L), then Stf ∈ D(L). Moreover, the function t→ Stf is continuously differentiable
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in R+, whith right derivative at t = 0, and

dStf
dt = LStf = StLf, t ≥ 0. (2.0.15)

Proof.

f ∈ D(L)⇔ Lf := lim
h→0+

Shf − f
h

<∞

⇒ LStf = lim
h→0+

ShStf − Stf
h

= lim
h→0+

St+hf − Stf
h

= lim
h→0+

St
Shf − f

h
= St lim

h→0+

Shf − f
h

= StLf <∞

=⇒ Stf ∈ D(L).

(2.0.16)

Moreover, since dStf
dt := limh→0

St+hf−Stf
h we have our result.

We remark that dStf
dt = LStf is termed the forward equation, and dStf

dt = StLf the backward equa-

tion. The names come from the forward and backard Kolmogorov equations, which we will end this chap-

ter with. Note also that the above proposition suggests that the semigroup is some sort of exponential func-

tion: St = etL = 1 + tL + o(t).This turns out to be true in a certain sense, which is made formal on the

Hille–Yosida–Feller–Phillips–Miyadera theorem, also known as Hille-Yosida theorem.2 Before proceeding to the

statement of Hille-Yosida’s theorem, we define the semigroup and infinitesimal generator in the context of Markov

processes.

Theorem 2.0.10 (Hille-Yosida). There exists a one-to-one correspondence between Markov generators and semi-

groups on C(S) = {f continuous | f : S → R}, given by (2.0.9) and:

Stf = etLf := lim
n→∞

(1− t

n
L)−nf, for f ∈ C(S), t ≥ 0. (2.0.17)

As explored in [7], this result is consequence of the Yosida approximation of operators, and usually expressed

in terms of its resolvent. The proof presented there requires the Laplace transformation of the semigroup, which

is not in the context of this work. Note that if we consider Stf ≡ ft, and remembering the interpretation of the

generator as a differential operator, Proposition 2.0.9 states that Stf is the solution to some sort of differential

equation. In fact, that equation is known as the Cauchy problem, and it is stated as follows:

Proposition 2.0.11 (Semigroups and the Cauchy problem). Let L be the generator of a strongly continuous semi-

group {St}t≥0 acting in a Banach space X . The Cauchy problem


dft
dt = Lft, t ≥ 0

f0 = f ∈ D(L)

(2.0.18)

where ft is a sought-for differentiable function with values in D(L), has the unique solution ft = Stf .

2The original formulation was given independently by Hille and Yosida, and the general case was discovered later, independently, by Feller,
Phillips and Miyadera.
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To prove Proposition 2.0.11, we only need to show uniqueness, since the solution follows from Proposition

2.0.9.

Note also that Proposition 2.0.11 is a very important and general result. Considering, for example, the standard

Brownian motion, we have that all the Brownian motion properties are "hidden" on the operator ∂2
u, and the Cauchy

problem takes the form of the well known heat equation. Now that we have done an introduction to semigroups

and generators, let us go back to Markov processes and define more explicitly what we mean by semigroup in this

context.

With a transition function, one may associate a family of operators in BM(S)- the set of bounded Borel charges

(signed measures) on S (for our purposes, one can consider P(S) - the set of probability measures endowed on S

with weak convergence) by

(Utµ)(B) =

∫
S

µ(dp)K(t, p, B). (2.0.19)

From the definition above, one can check that Utµ is, in fact, a measure. In particular, if µ is a probability measure,

then Utµ is also a probability measure. Moreover, by the CK-equation, {Ut}t≥0 is a semigroup of operators:

(Utµ)(B) =

∫
S

µ(dp)

∫
S

K(l, q, B)K(s, p, dq)

=

∫
S

∫
S

µ(dp)K(s, p, dq)K(l, q, B)

=

∫
S

(Usµ)(dq)K(l, q, B)

= (UsUlµ)(B)

(2.0.20)

where t = s + l, and U0µ =
∫
S
µ(dp)K(0, p, B) = 1.The main reason for introducing this formula is for the

following interpretation: if Xt is a Markov process with transition K and initial distribution µ, then Utµ is the

distribution of the process at time t. That is, given a measure µ, the semigroup operator is what "makes the time

running": Utµ ≡ µt. However, the semigroup we are going to consider is the dual of (2.0.19):

Stf(p) =

∫
S

f(q)K(t, p, dq) t ≥ 0 (2.0.21)

defined in BM(S)-space of bounded measurable functions on S . When we say dual, we mean that we may

treat a member of BM(S) as a functional on BM(S) (the dual space), given by µ 7→
∫
S
fdµ =: 〈f, µ〉, and

〈f, Ut〉 = 〈Stf, µ〉. That is, the dual of Ut equals St on BM(S). An important remark is related to a class of

processes termed Feller processes, which we shall introduce on the following definition:

Definition 2.0.12. A Markov process (semigroup) is a Feller process (semigroup) if f ∈ Cb(S) ( continuous and

bounded functions )⇒ Stf ∈ Cb(S) ∀t ≥ 0. That is, St leaves Cb(S) invariant.

Given that 〈f, Ut〉 = 〈Stf, µ〉, Utµ ≡ µt, and the Feller semigroup is a bounded operator that maps Cb(S)

into itself, one may ask what is the action of the adjoint of St. That is, 〈f, Ut〉 = 〈Stf, µ〉 = 〈f, S∗t µ〉, and what

is its relation to the distribution of the process. There are two answers to this question: one relating to the original

process, and the other related to the time-reversed process . The second answer we will explain in the following
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section relating invariant measures, and the first is given on [20] as a definition:

Definition 2.0.13. For a process {S(t)}t≥0 with initial distribution µ we denote µS(t) ∈ P(X) the distribution at

time t, which is uniquely determined by

∫
S

fd[µSt] :=

∫
S

Stfdµ, for all f ∈ C(S). (2.0.22)

Writting as follows makes it a little bit clearer:

〈f, µS(t)〉 =

∫
S

fd[µS(t)] :=

∫
S

S(t)fdµ = 〈S(t)f, µ〉 = 〈f, S(t)∗µ〉. (2.0.23)

Thus, when we see µSt we are refering to the distribution at time t, yet it is implicit the adjoint of St: S∗t µ⇔ µSt.

Given a Feller semigroup, where the dual and adjoint coincide, we can see that if the distribution is independent of

time, then S∗t = St = S0 = 1. Finally, we will use the following expression for the Markov semigroup, given its

more probabilistic notation:

(Stf)(X0) = E[f(Xt) | X0] (2.0.24)

From the definition, we can interpret the Markov semigroup as the mean path of our process {f(Xt)}t≥0 starting

from X0. We will show one last property of the generator related to Markov processes, since it will be useful on

this dissertation for certain convergence results:

Proposition 2.0.14 (Time scalling ofL). Given a Markov process {Xt}t≥0 with semigroup {St}t≥0 and generator

L, if we change the time scale by a factor θ(n) then the generator of the process {ηθ(n)t}t≥0 is given by θ(n)L.

Proof. θ(n)Lf := limh→0+ θ(n)Shf−fh = limt→0+ θ(n)
Sθ(n)tf−f
θ(n)t = limt→0+

Sθ(n)tf−f
θ(n)t .

2.0.3 Generators on a finite state space

Up to this point, we already gave two interpretations of the semigroup (in general, and for Markov processes),

but the interpretation of the generator as a differential operator is still too abstract. Thus, let us take a look more

closely to its action. We will denote processes on a finite state space, which is the context of this thesis, by lower

case greek letters, for example, ηt instead of Xt. Note that our transition probability for η = ξ  ηt = ξ′ can be

written as:

Pη(ηt = ξ′) = Eη1ηt(ξ
′) = St1η(ξ′). (2.0.25)

Then, by (2.0.9), for small t we have Pη(ηt = ξ′) = 1η(ξ′) + tL1η(ξ′) + o(t). Thus, L can be interpreted as a

transition rate; probability per time unit. As in [13], the rates c(ξ, ξ′) are defined by

Pξ(ηt = ξ′) = 1ξ(ξ
′) + c(ξ, ξ′)t+ o(t) as t↘ 0. (2.0.26)

For a finite state space, which is the case we are interested in, we have the following proposition.
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Proposition 2.0.15. If {ηt}t≥0 is a Markov process on a countable state space S with jump rates c(η, η′) then for

f cilindrical function (functions that are dependent on η through a finite number of coordinates), the infinitesimal

generator has the following expression:

Lf(η) =
∑
η′∈S

c(η, η′)(f(η′)− f(η)). (2.0.27)

Proof.

Stf(η) = Eηf(ηt) =
∑
η′∈S

f(η′)Pη(ηt = η′)

= Pη(ηt = η)f(η) +
∑
η′ 6=η

f(η′)Pη(ηt = η′)

= (1− Pη(ηt 6= η))f(η) +
∑
η′ 6=η

f(η′)c(η, η′)t+ o(t)

= (1−
∑
η 6=η′

Pη(ηt = η′))f(η) +
∑
η′ 6=η

f(η′)c(η, η′)t+ o(t)

= (1−
∑
η 6=η′

c(η, η′)t)f(η) +
∑
η′ 6=η

f(η′)c(η, η′)t+ o(t).

(2.0.28)

That is, Stf(η)− f(η) =
∑
η 6=η′ c(η, η

′)(f(η′)− f(η))t+ o(t), and by (2.0.9) the result holds.

We can also define the rate’s matrix by noticing that

1 =
∑
ξ′∈S

Pξ(ηt = ξ′) = 1 + t
∑
ξ′∈S

c(ξ, ξ′) + o(t) = 1 + t(c(ξ, ξ) +
∑
ξ′∈S

c(ξ, ξ′)) + o(t)

⇔0 = t(c(ξ, ξ) +
∑
ξ′∈S

c(ξ, ξ′)) + o(t),
(2.0.29)

and we must have c(ξ, ξ) +
∑
ξ′∈S c(ξ, ξ

′) = 0. Identifying the diagonal as c(ξ, ξ) = −
∑
ξ′ 6=ξ c(ξ, ξ

′) one can

easily construct the matrix given the rates of the process.

We can relate the above expression with (2.0.16), resulting on the Master equation, also known as Kol-

mogorov’s equation. Taking f = 1η on (2.0.27):

µ(StL1η) =

∫
S

∑
ξ′∈S

Stc(ξ, ξ
′)(1η(ξ′)− 1η(ξ))dµ(ξ) =

∫
S

c(ξ, η)−
∑
ξ′∈S

c(ξ, ξ′)1η(ξ)dµSt(ξ)

=
∑
ξ∈S

[µSt](ξ)c(ξ, η)− [µSt](ξ)1η(ξ)
∑
ξ′∈S

c(ξ, ξ′) ≡
∑
ξ∈S

pt(ξ)c(ξ, η)− pt(η)
∑
ξ′∈S

c(η, ξ′)

=
∑
η′∈S

(pt(η
′)c(η′, η)− pt(η)c(η, η′)),

(2.0.30)

where we defined pt := [µSt] (recall (2.0.19)), and for the left hand-side:

µ(
d

dt
St1η) =

d

dt
µ(St1η) =

d

dt
[µSt](1η) ≡ d

dt
pt(η). (2.0.31)
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Thus,

d

dt
pt(η) =

∑
η′∈S

(c(η′, η)pt(η
′)− pt(η)c(η, η′)). (2.0.32)

We finish this section presenting two formulas that will be very useful in this dissertation. First, we present

a martingale, termed Dynkin’s formula, or Dynkin’s martingale. This martingale will be useful in what follows

because it will be the main tool to identity our process with a weak solution to the heat equation with specific

boundary conditions.

Theorem 2.0.16 (Dynkin’s formula). Let {ηt}t≥0 be a Markov process with generator L and countable state

space S, and f : R+ × S −→ R bounded such that:

1. ∀η ∈ S, f(·, x) ∈ C2(R+);

2. ∃C <∞ : sups,η | ∂jsfs(η) |≤ C for j = 1, 2;

and for all t ≥ 0 let

Mf
t = ft(ηt)− f0(η0)−

∫ t

0

(∂s + L)fs(ηs)ds. (2.0.33)

Then {Mf
t }t≥0 is a martingale with respect to the natural filtration of {ηt}t≥0.

A detailed proof can be found both in [17] and [15]. Since the expectation of a martingale is independent of

time, we have that EMf
t = EM0 = 0. Moreover, we know that the process Nt(F ) := Mt(F )2 − [M(F )]t is a

mean zero local martingale with respect to the natural filtration of {Xt}t≥0. For Dynkin’s martingale we have

Nt(F ) := (Mt(F ))2 −
∫ t

0

Bs(F )ds (2.0.34)

with Bs(F ) = LF (s,Xs)
2 − 2F (s,Xs)LF (s,Xs). For a more detailed analysis see [17].

Recalling (2.0.11), one can see that, intuitively, Dynkin’s formula (2.0.16) looks like an integral expression of

that differential equation (in the sense that L is a differential operator), extended to more general f functions. Also

relating the Cauchy problem is the Feynman-Kac formula, which will be useful in the following, both in proving the

Replacement Lemmas A.0.5 and A.0.6 and the energy estimate (Proposition B.0.4.) Consider a bounded function

V : R+ × S → R satisfying the conditions of the Theorem 2.0.16, and a bounded function F0 : S → R. For fixed

T > 0 denote by F : [0, T ]× E → R the solution of the differential equation

 (∂tu)(t, x) = (Lu)(t, x) + V (T − t, x)u(t, x),

u(0, x) = F0(x).

(2.0.35)

Proposition 2.0.17. The solution F of (2.0.35) has the following stochastic representation:

F (T, x) = Ex

[
ε
∫ T
0
V (s,Xs)dsF0(XT ).

]
(2.0.36)
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Again, this is a more general expression than the classical Feynman-Kac formula with respect to the Brownian

Motion, where L = 4, with4 being the laplacian. The proof can be found in [17], page 342.

2.0.4 Stationary Measures

We end our mathematical presentation with a brief introduction to stationary measures. Recalling our discus-

sion above, a measure µ ∈ P(X) is stationary/invariant if µSt = µ, that is:

Definition 2.0.18 (Invariant measure). The measure µ is invariant for the process "induced" by St iff
∫
S
Stfdµ =∫

S
fdµ for all f ∈ C(S).

On this section we will interplay between the following notations:

µ(f) =

∫
fdµ = 〈f, µ〉. (2.0.37)

The set of all invariant measures of a process is denoted by I. Now we give the definition a reversible measure.

Definition 2.0.19. A measure µ is reversible iff µ(fStg) = µ(gStf)for all f, g ∈ C(S).

Note that, taking g = 1, we can see that every reversible measure is stationary:

〈fStg, µ〉 = 〈gStf, µ〉 ⇔ 〈fSt1, µ〉 = 〈Stf, µ〉 ⇔ 〈f, µ〉 = 〈Stf, µ〉. (2.0.38)

Above we used that St1η = 1, which is true noting that Eη(1η) = P(η = η) = 1.

Proposition 2.0.20. Consider a Feller process on a compact state space S with generator L. Then

µ ∈ I ⇔ µ(Lf) = 0 ∀f ∈ C0(S), (2.0.39)

where C0(S) is the set of cylindrical functions f : S → R.

Proof. (−→) :

µ(Lf) = 〈Lf, µ〉 = 〈StLf, µ〉 = 〈dStf
dt

, µ〉 =
d

dt
〈Stf, µ〉 =

d

dt

∫
fdµ = 0. (2.0.40)

Note that we can exchange the integral and the derivative by the Leibniz rule, since Stf is bounded. For the

converse,

(←−) :

0 = 〈Lf, µ〉 = 〈StLf, µ〉 =

∫ t

0

〈SsLf, µ〉ds =

∫ t

0

∫
SsLfdsdµ

=

∫
(L
∫ t

0

Ssfds)dµ =

∫
(Stf − f)dµ =

∫
Stfdµ−

∫
fµ.

(2.0.41)

Above we used Fubini’s theorem and Proposition 2.0.9. To show that the result holds ∀f ∈ C0(S), remember

that by Propposition 2.0.7 D(L) is dense in C0(S) thus we can prove by the weak convergence of sequences of

functions.
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Relating the backward and forward equations (2.0.9) with the stationary measure we can get the following

condition:

d

dt
Stf = StLf ⇒ µ(

d

dt
Stf) = µ(StLf)

⇔ d

dt
µ(Stf) = µ(StLf)⇔ d

dt
µ(f) = µ(Lf) = 0.

(2.0.42)

The above relation will be very important on our study of the stationary measures through the Matrix Product

Ansatz, described in the Chapter 5.

Now we make some remarks about the adjoint operator. Let µ ∈ P(S) be the stationary measure of the process

"induced" by {St}t≥0, and let L2(S, µ) = {f ∈ C(S) : µ(f2) < ∞}. It can be shown that St and L have an

adjoint operator [17], uniquely defined by:

〈Stg, f〉 = 〈g, S∗t f〉 and 〈Lg, f〉 = 〈g,L∗f〉 ∀f, g,∈ L2(S, µ). (2.0.43)

To compute the action of the adjoint operator, ∀g ∈ L2(S, µ):

〈g, S∗t f〉 =

∫
S

fStgdµ = Eµ(f(η0)g(ηt)) = Eµ(E(f(η0 | ηt))g(ηt)), (2.0.44)

where in the last equality Eµ denotes the expectation with respect to Pµ. Since µ is stationary,

Eµ(E(f(η0 | ηt))g(ηt)) =

∫
X

E(f(η) | ηt = ξ)g(ξ)µ(ξ) = µ(gE(f(η0) | ηt = ·))

= 〈g,E(f(η0) | ηt = ·)〉,
(2.0.45)

that is, S∗t f = E(f(η0) | ηt = ·). In other words, the adjoint operator of the semigroup is the semigroup of

the reversed process. One can also show that L∗ is the generator of the adjoint semigroup [13] and the process

is time-reversible if the generator and semigroup operators are self-adjoint. This is actually an intuitive result: if

moving forward or backwards in time gives the same result, then moving in time probably does not matter.
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Chapter 3

Hydrodynamic Limit

In this Chapter we show the Hydrodynamic Limit. The Hydrodynamic Limit states that the spacial density of

the particle system studied in the following sections can be described, in the continuum setting, by a weak solution

of the heat equation. In the first section we will introduce our model in terms of Poisson clocks. Then, we will

define its generator, with the tools presented in the mathematical background. In the following section, we will

state the main ideia of the Hydrodynamic Limit and do an heuristic to have some insight of the partial differential

equation the mentioned spacial density is solution of. The main tool will be Dynkin’s Martingale, already presented

in Theorem 2.0.16. Then we will formally show the Hydrodynamic Limit. Through the proof, we will need two

main results: Replacement Lemmas A.0.5 and A.0.6, and the energy estimate, in the Appendix B, to which we will

direct the reader to the appendix for their proof.

For the main proofs of this chapter, we take results from [11], [10], [4] and [3]. These references are a good

start for the interested reader. Moreover, for a deeper review, regarding other topics of interacting particle systems,

such as fluctuations and propagation of chaos, and many other techniques, we refer the reader to [17], [23] and

[22].

3.1 Dynamics

3.1.1 The model

The Symmetric Simple Exclusion Process (SSEP) in contact with slow non-linear reservoirs can be described

as follows. Fixed a scalling parameter N , we denote our process by ηt and η is named the configuration. Our

process lives in the discrete space {0, 1}ΛN , where ΛN = {1, . . . , N − 1}. Each element x ∈ ΛN is called site,

and ΛN the bulk. The map x 7→ η(x) gives the number of particles on the site x. In our model, η(x) ∈ {0, 1}. Each

pair {x, x+1}with x ∈ {1, . . . , N−2} is named a bond. We artificially add two sites at end points of the bulk (the

sites 0 and N ) − this gives two bonds ({0, 1} and {N − 1, N}) − these artificial sites are named reservoirs, and

will contain an infinite number of particles. To each bond in the bulk, we associate a Poisson process Nx,x+1(t)

with parameter η(x)(1 − η(x + 1)) + η(x + 1)(1 − η(x)). For all x ∈ {1, . . . , N − 2} the associated Poisson

processes are independent. These Poisson processes are named Poisson clocks, given that they dictate when a

particle may jump, as we will explain shortly. Note that the probability of two clocks ringing at the same time is 0
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(with respect to the Lesbesgue measure), since the exponential random variables are continuous and independent.

From the rate of the clocks, one can see that the bulk follows an exclusion rule, hence the name exclusion process:

if a clock at {x, x+ 1} rings at time t and ηt(x) = 0, ηt(x+ 1) = 1 (resp. ηt(x) = 1, ηt(x+ 1) = 0) the particles

exchange sites: ηt+(x) = 1, ηt+(x + 1) = 0 (resp. ηt+(x) = 0, ηt+(x + 1) = 1); otherwise, nothing happens.

Note that for the moment the particles are assumed to be identical.

To define our non-linear dynamics, for fixedK > 0 let IK− := {1, . . . ,K} and IK+ = {N−1−K, . . . , N−1}.

Now we will also associate a collection of Poisson clocks, {N0,j(t)}j∈IK− for the left and {Nj,N (t)}j∈IK+ for the

right, to bonds of the form {0, j} with j ∈ IK− for the left, and {j,N} with j ∈ IK+ for the right. These clocks

define when a particle may be injected into our system and when a particle may be removed. A particle may

enter or leave the system only in the windows IK± . Informally, looking at the left reservoir, a particle enters to

the first free site (say this site is j, then the "in rate" is αj), and may only leave from the first occupied site (if

this is the site j, the "out rate" is γj). At the right boundary we have a very similar dynamics as the one just

described, but instead of αj , γj we will have βj and δj , respectively. Note that the rates at which a particle may

enter into the system or leave may depend on their position. Formally, each Poisson clock N0,j(t) has parameter

η(1) · · · η(j − 1)αj(1 − η(j)) + (1 − η(1)) · · · (1 − η(j − 1))γjη(j), and the clocks Nj,N (t) have parameter

(1− η(N − j))βN−jη(N − 1− j) . . . η(N − 1) + η(N − j)δN−j(1− η(N − 1− j)) . . . (1− η(N − 1)). We use

the term slow reservoir because the will multiply the rates by a factor κN−θ. In this way, adjusting the parameters

θ, κ, the reservoirs are faster or slower − which reflects on the boundary conditions that we will derive in the

sequel. We programmed a Mathematica routine to simulate exactly our dynamics. The script can be found in here.

3.1.2 Generator construction

As already mentioned, the exclusion process in contact with stochastic reservoirs is a Markov process, that we

denote by {ηt : t ≥ 0}, which has state space {0, 1}ΛN . The infinitesimal generator is defined as

LN = LN,0 + κN−θLN,b, (3.1.1)

where LN,0 corresponds to the bulk dynamics, and LN,b to the boundary dynamics. Before fully defining the

generator, we will introduce some notation that will simplify the exposition. Let IK− (x) := {1, . . . , x} ∩ IK− and

IK+ (x) := {x, . . . , N − 1} ∩ IK+ . For g : ΛN → R define

(τ±x )(g) :=
∏

y∈IK± (x)

g(y). (3.1.2)

Moreover, let βN−x ≡ βx and δN−x ≡ δx. For a better exposition, we will decompose the boundary generator in

two terms, corresponding to the linear, LLN,b, and non-linear, LNLL,b , dynamics at the boundaries. In this way, we

define LLN,b := LLN,−+LLN,+, where the underscript−,+ corresponds to the left and right boundary, respectively.

For the non-linear part we define similarly. Letting 1x(·) be the indicator function, with 1x(y) = 1 for x = y and

1x(y) = 0 for x 6= y and x, y ∈ ΛN , we define the change of variables η 7→ ηx,x+1 as

η(y)x,x+1 = η(y + 1)1x(y) + η(y − 1)1x(y − 1) + η(y)(1− 1x(y))(1− 1x(y − 1)), (3.1.3)
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that is, the occupation exchange x↔ x+ 1. Clearly, if y is not one of the sites x, x+ 1 nothing changes. We also

define the ocupation exchange η(x)(y) := 1 − η(x), if y = x. Thus, given functions f : {0, 1}ΛN → R we have

for the bulk

(LN,0f)(η) =

N−2∑
x=1

(η(x)(1− η(x+ 1)) + η(x+ 1)(1− η(x)))[f(ηx,x+1)− f(η)], (3.1.4)

and for the boundary

(LLN,−f)(η) = (α1(1− η(1)) + γ1η(1))[f(η(1))− f(η)]

(LLN,+f)(η) = (β1(1− η(N − 1)) + γ1η(N − 1))[f(η(N−1))− f(η)]

(LNLN,−f)(η) =
∑

x∈I−\{1}

(αx(1− η(x))(τ−x−1)(η) + γxη(x)(τ−x−1)(1− η))[f(η(x))− f(η)]

(LNLNL,+f)(η) =
∑

x∈I+\{N−1}

(βx(1− η(x))(τ+
x+1)(η) + δxη(x)(τ+

x+1)(1− η))[f(η(x))− f(η)],

(3.1.5)

where (τ±x )(1 − η) ≡
∏K
y∈I±(x)(1 − η(y)). We scale the time for a factor N2, thus defining our time-scalled

generator as

L = N2(LN,0 + κN−θLN,b). (3.1.6)

Up to our knowledge, there is no reference of this model in the literature. For K = 1 we get the well know SSEP

with linear reservoirs, fully studied in the slow setting in [3] and the fast setting in [12]. For θ = 1, αi = 0, γi = 1

and βi = 1, δi = 0 for all i = 1, . . . ,K, we obtain the model in [24]. In this way, our model is an extension

to both. Mathematically, as seen in (2.0.14), N−θLN,b can also be seen as a time scalling acting only in the

reservoirs. Physically though, that does not make sense, since we are scalling the whole process by a factor N2.

Thus, one should see the expression above as an abuse of notation, and let the rates be multiplied by a κN−θ

factor. In this way, fixed the N2 scale, one can interpret the change in the parameter θ as the speed of the reservoir,

or the frequency the clocks associated to nodes with the reservoir ring. Intuitively, fixed the N2−scale, and letting

θ ≥ 0, increasing θ makes the reservoirs slower, while decreasing θ makes the reservoir faster. As we will see,

for θ > 1 the reservoirs are so slow that when going to the continuous setting we cannot directly see the rates

associated to the discrete system, and we get Neumann boundary conditions. For θ = 1 the action is slow enough

that the boundary conditions are linear functions for K = 1, and non-linear functions for K ≥ 2. For θ < 1 the

action is fast enough for the methodology presented in this manuscript to not work for K ≥ 2. We believe that the

boundary conditions are of Dirichlet type, as in the linear case K = 1, but a formal proof is still an open problem.

Intuitively, that does make sense, since the reservoirs are fast enough that the density of particles at the boundary

is constant. In the literature our fast/slow interpretation is sometimes exchanged as slow↔fast, which also makes

sense if one fixes θ first.
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3.2 Heuristics for the Hydrodynamic Limit

For a better understanding of the heuristics we start by informally explaining what we mean by Hydrodynamic

Limit. Roughly speaking, we want to show that∣∣∣∣∣ 1

N

∑
x∈ΛN

H( xN )ηN2t(x)−
∫ 1

0

H(u)ρt(u)du

∣∣∣∣∣ −−−−→N→∞
0 (3.2.1)

in probability, i.e., with respect to the probability induced by the process η· with generator given by (3.1.6) de-

scribed in the previous subsection, where ρt(u) is a (weak) solution to a PDE "induced" by our model. In this

section we will compute Dynkin’s martingale (2.0.33) applied to a particular choice of the function f . The reason

for this is that the expectation of Dynkin’s martingale has the expression of an integral equation. When comput-

ing the aforementioned martingale, we can have some insight to what PDE our model induces, and under what

conditions. Finished the heuristics, we will proceed to a formal proof in the following section, and present a more

precise definition of the Hydrodynamic Limit. We will start with the definition of the empirical measure.

Definition 3.2.1 (Empirical measure/process). For each η ∈ {0, 1}ΛN we define the empirical measure πN in

[0, 1] as

πN (η, du) :=
1

N − 1

∑
x∈ΛN

η(x)δ x
N (du), (3.2.2)

where δ x
N

is the Dirac measure at x
N . To study the time evolution of πN , associated to {ηt}t≥0, we define

πNt (η, du) := πN (ηN2t, du).

Naturally, the integral of a (test) function H : [0, 1]→ R with respect to πNt is written as

〈πNt , H〉 :=

∫ 1

0

H(u)πNt (η, du) =
1

N − 1

∑
x∈ΛN

H( xN )ηN2t(x). (3.2.3)

Now letM be the set of finite positive measures in [0, 1] endowed with the weak topology. Then we know that if

{πN}N≥1, π ∈M then ∀H ∈ C[0, 1] ,

πN
w−−−−→

N→∞
π ⇔ 〈πN , H〉 −−−−→

N→∞
〈π,H〉. (3.2.4)

Let {ηt}t≥0 be our Markov process in D{0,1}ΛN [0, T ] (note that we are letting our time interval to be compact).

Thus, we can associate the empirical measures process {πNt }t∈[0,T ] to DM[0, T ]. Thanks to the δ x
N

term in πNt

there is an injection

(
{ηt}t≥0 ∈ D{0,1}ΛN [0, T ]

)
↪→
(
{πNt }t∈[0,T ] ∈ DM[0, T ]

)
(3.2.5)

and the empirical process can also be seen as a Markov process. Recalling the expression (2.0.19) in the previous

section, in the previous display we have S ≡ {0, 1}ΛN and B(S) ≡ M. In this way, the empirical measure

allows us to go from the microscopic description of the particles to the macroscopic description of the PDE. To

simplify the exposition, and taking advantage that this section is only an heuristic argument for that, we will
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let πN (η, du) ≡ 1
N

∑
x∈ΛN

η(x)δ x
N

(du). To see what PDE our model induces, we will compute the terms in

Dynkin’s formula (2.0.33) by taking gt(Xt) = 〈πNt , H〉 with H ∈ C2[0, 1] and time independent, and the inner

product defined as 〈πNt , H〉 :=
∫
H(u)πNt (η, du), i.e.,

MH
t := 〈πNt , H〉 − 〈πN0 , H〉 −

∫ t

0

(∂s + L)〈πNs , H〉ds. (3.2.6)

When computing the generator applied to the empirical measure, we will make some useful manipulations in order

to get discrete differential operators. In this way, we are able to compare Dynkin’s martingale with the weak

formulations derived in Section C.6. We start with some definitions:

Definition 3.2.2. The discrete gradient of F : [0, 1]→ R in x
N for 0 ≤ x ≤ N − 1 and 1 ≤ x ≤ N , is defined as

∇+
NF ( xN ) := N

(
F (x+1

N )− F ( xN )
)

and ∇−NF ( xN ) := N
(
F ( xN )− F (x−1

N )
)
, (3.2.7)

respectively, and the discrete laplacian: 4NF ( xN ) = N2
(
F (x+1

N )− 2F (x) + F (x−1
N )

)
.

For η(x) we define the gradient and the laplacian similarly:

∇+
Nη(x) := N (η(x+ 1)− η(x)) and ∇−Nη(x) := N (η(x)− η(x− 1)) (3.2.8)

for 1 ≤ x ≤ N − 2 and 2 ≤ x ≤ N − 1 respectively, and for 2 ≤ x ≤ N − 2 we define the laplacian as

4Nη(x) = N2 (η(x+ 1)− 2η(x) + η(x− 1)) (3.2.9)

For functions of the process η, where we evaluate the gradient and laplacian in x and not in x/N , as the functional

(τ±x ), the expression is analogous.

By definition,

L〈πNs , H〉 =
1

N

∑
x∈ΛN

H( xN )Lη(x) (3.2.10)

thus, we need to compute Lη(x). On (3.1.4) take f(η) = η(x). From (3.1.3) a straightforward computation using

Lemma C.1.1 shows that for 2 ≤ x ≤ N − 2 we have

L0,Nη(x) =
∑
y∈ΛN

(η(y)(1− η(y + 1)) + η(y + 1)(1− η(y)))(ηy,y+1(x)− η(x))

= η(x− 1)− 2η(x) + η(x+ 1) = 4Nη(x)
N2 .

(3.2.11)

For x = 1 we have LN,0η(1) = η(2)− η(1) and for x = N − 1, L0,Nη(N − 1) = η(N − 2)− η(N − 1). Thus,

N2L0,Nη(x) = 4NηsN2(x)12≤x≤N−2 +N∇+
Nη(1)1x=1 +N∇−Nη(N − 1)1x=N−1. (3.2.12)

For the boundary generators, taking f(η) = η(N −1) we have LLN,−η(N −1) = β1(1−η(N −1))−δ1η(N −1),

and for the left, with f(η) = η(1) we have LLN,+η(1) = α1(1− η(1))− γ1η(1).
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Similarly, recalling (3.1.2), for the non-linear rates:

LNLN,+η(x) =
[
βx(1− η(x))(τ+

x+1)(η)− δxη(x)(τ+
x+1)(1− η)

]
1x∈IK+ \{1},

LNLN,−η(x) =
[
αx(1− η(x))(τ−x−1)(η)− γxη(x)(τ−x−1)(1− η)

]
1x∈IK− \{N−1}.

(3.2.13)

Proceeding with (3.2.10), using (C.1.1) a simple computation shows that

N2LN,0〈πNs , H〉 = 〈πNs ,4NH〉+ ηN2s(1)∇+
NH(0) + ηN2s(N − 1)∇−NH(1). (3.2.14)

For the linear terms we have

κ
Nθ
N2LLN,b〈πN , H〉 = κ

Nθ−1

(
H( 1

N )(α1 − (α1 + γ1)ηsN2(1)) +H(N−1
N )(β1 − (β1 + δ1)ηsN2(N − 1))

)
.

(3.2.15)

And for the non-linear terms:

κ
Nθ
N2LNLN,b〈πN , H〉 = κ

Nθ−1

∑
x∈IK− \{1}

H( xN )(αx(1− η(x))(τ−x−1)(η)− γxη(x)(τ−x−1)(1− η))+

+ κ
Nθ−1

∑
x∈IK+ \{N−1}

H( xN )(βx(1− η(x))(τ+
x+1)(η)− δxη(x)(τ+

x+1)(1− η)).
(3.2.16)

Fixed a measure µN in {0, 1}ΛN , we define ρNs (x) := EµN η(x). We assume that, for N large enough, ρNs (·) ∼

ρs(·), EµN τ1
−ηN2s(x) ∼ τ1

−ρ
N
s (x) and ρNs (x) ∼ ρs(0) ∀x ∈ I− (for the right boundary is analogous), where ρ is

a weak solution of the heat equation with boundary conditions as in (C.6.8), if θ = 1, or as in (C.6.9), if θ > 1.

Assuming that we have the aforementioned assymptotics, we might proceed as follows:

∀x ∈ IK− , (τ−x )(ηN2s) 7→ Eµ
N

(τ−x )(ηN2s) 7→ (τ−x )(ρNs (x)) 7→ (ρs(0))x

∀x ∈ IK+ , (τ−x )(1− ηN2s) 7→ Eµ
N

(τ−x )(1− ηN2s) 7→ (τ−x )(1− ρNs ) 7→ (1− ρs(0))x.
(3.2.17)

By the rationale above, the terms arising from the SSEP dynamics in (3.2.14), for N large enough, become equal

to:

−
∫ t

0

〈ρs,4H〉ds−
∫ t

0

ρs(0)∂uH(0) + ρs(1)∂uH(1)ds. (3.2.18)

For the left boundary terms, expanding H( xN ) on 1
N we have

H( xN ) = H( 1
N ) +H ′( 1

N )(x−1
N ) + · · · = H( 1

N ) +O(x−1
N ) (3.2.19)

for x ∈ I− small enough (that is, for K small enough). For θ > 1 all the boundary terms vanish and we are left in

(3.2.6) with

0 = 〈ρt, H〉 − 〈ρ0, H〉 −
∫ t

0

〈ρs,4H〉ds−
∫ t

0

ρs(0)∂uH(0) + ρs(1)∂uH(1)ds. (3.2.20)
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We recall that Dynkin’s martingale has mean zero. For θ = 1, we have that (3.2.6) equals

0 = 〈ρt, H〉 − 〈ρ0, H〉 −
∫ t

0

〈ρs,4H〉ds
∫ t

0

ρs(0)∂uH(0) + ρs(1)∂xH(1)ds−

− κ
∑
x∈IK−

∫ t

0

H(0)
(
αx(1− ρs(0))ρx−1

s (0)− γxρs(0)(1− ρs(0))x−1
)
ds−

− κ
∑
x∈IK+

∫ t

0

H(1)
(
βx(1− ρs(1))ρx−1

s (1)− δxρs(0)(1− ρs(1))x−1
)
ds.

(3.2.21)

Showing that ρ ∈ L2(0;T,H1(0, 1)) we may conclude that ρ : [0, T ] × [0, 1] → [0, 1] is a weak solution of the

heat equation (see Definition C.6.1) with Robin boundary conditions:

∂uρt(0) = −κ
∑
x∈IK−

(
αx(1− ρt(0))ρx−1

t (0)− γxρt(0)(1− ρt(0))x−1
)
, (3.2.22)

∂uρt(1) = κ
∑
x∈IK+

(
βx(1− ρt(1))ρx−1

t (1)− δxρt(0)(1− ρt(1))x−1
)
, (3.2.23)

which is coherent with the particular case of the linear SSEP (K = 1) and of [24], taking β = 1, α = 0, κ = j/2.

We will not adress the formal proof for general K, given that the techniques used will be the same. Instead, we

will focus on the particular case K = 2, where correlations are already present, which is the main feature of our

model. Nevertheless, we will make references through the next sections regarding the differences between general

K and K = 2, which will be mostly a few more computations and notation. In this way, for K = 2, the Dynkin’s

martingale has the expression

MN
t (H) = 〈πNt , H〉 − 〈πN0 , H〉 −

∫ t

0

〈πNs ,∆NH〉 ds

−
∫ t

0

∇+
NH(0)ηsN2(1)−∇−NH(1)ηsN2(N − 1) ds

−
∫ t

0

κN1−θH( 1
N )(α1 − (α1 + γ1)ηsN2(1)) + κN1−θH(N−1

N )(β1 − (β1 + δ1)ηsN2(N − 1)) ds

−
∫ t

0

κN1−θH( 2
N )(α2ηsN2(1)− γ2ηsN2(2)− (α2 − γ2)ηsN2(1)ηsN2(2))ds

−
∫ t

0

κN1−θH(N−2
N )(δ2ηsN2(N − 2)− β2ηsN2(N − 1)− (δ2 − β2)ηsN2(N − 1)ηsN2(N − 2))ds

(3.2.24)

and by the same arguments as above, this will be shown to satisfy the weak formulation, for θ = 1, referenced

in (C.6.8). That is, ρs(u) is a (weak) solution to the heat equation with non-linear Robin boundary conditions.

For θ > 1, the already mentioned weak formulation for the heat equation with Neumannn boundary conditions,

also referenced in (C.6.9). We end this section with some surprising observations. Looking at (3.2.24), note that

for δ2 = β2 and γ2 = α2 and K = 2 the action of the reservoirs disappears in the continuous setting, and we

have the same PDE as for K = 1. For the general setting, K > 2, another surprising condition arises. By taking

αx+1 = αx, γx+1 = γx (and similar for the right boundary), the reservoirs induces no explicit correlations until
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the end of the windows IK± . To see this, note that

(1− η(x))(τ−x−1)(η) = −
(
(τ−x )(η)− (τ−x−1)(η)

)
= −∇x(τ−x )(η),

η(x)(τ−x−1)(1− η) = −(1− η(x)− 1)(τ−x−1)(1− η) = −∇x(τ−x )(1− η),
(3.2.25)

where we are using the notation in (C.1.1). In this way, summing by parts (C.1.1) we have

∑
x∈ΛN

H( xN )αx(1− η(x))(τ−x )(η) =

K∑
x=2

(τ−x−1)(η)∇x[αxH( xN )] + α1H( 1
N )− αKH(KN )(τ−K)(η), (3.2.26)

where we used that (τ−0 )(η) = 1 by definition. In this way, by the product rule (C.1.1) we have

∇x[αxH( xN )] = αx∇xH( xN ) +H(x−1
N )∇xαx, (3.2.27)

and the term in (3.2.26) becomes

α1H( 1
N )− αKH(KN )(τ−K)(η) +

K∑
x=2

(τ−x−1)(η)[αx∇xH( xN ) +H(x−1
N )∇xαx]. (3.2.28)

By the Taylor expansion, H( xN ) = H( 1
N ) + O(N−1), taking the expectation and assuming that the mean of the

product is the product of the mean, we have

α1H( 1
N )− αKH(KN )(τ−K)(ρN ) +H( 1

N )

K∑
x=2

(τ−x−1)(ρN )∇xαx +O(N−1). (3.2.29)

By analogous computations one gets a similar expression for the other term for the left boundary, and the terms for

the right boundary.

3.3 Proof of the Hydrodynamic Limit

To show convergence of the formulation for Dynkin’s martingale (3.2.24) to (C.6.7) we will use a standard

methodology named Entropy method1. Before presenting the method and the main result of this chapter, we

will introduce some definitions. Recalling Definition 3.2.1 (empirical measure), and that the probability PµN is

associated to the process {ηt}t≥0, we will associate a probability measure QN to πNt in the following definition.

Definition 3.3.1 (QN -measures). Recalling that given an initial measure µN , PµN is associated to the process

{ηt}t≥0, the sequence of probability measures in DM[0, T ], {QN}N≥1 corresponds to the process {πNt }t≥0, and

is defined as the push-forward of PµN induced by the map

(
D{0,1}ΛN [0, T ],PµN

)
−→

(
DM[0, T ],QN

)
(3.3.1)

{ηt}t≥0 7→ {πNt }t≥0. (3.3.2)

Definition 3.3.2 (Initial profile). Let ρ0 : [0, 1] → [0, 1] be a measurable function. We say that a sequence of
1The methodology was developed by M. Z. Guo, G. C. Papanicolaou and S. R. S. Varadhan [14].
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probability measures {µN}N≥1 in {0, 1}ΛN is associated with the profile ρ0(·) if for any continuous function

H : [0, 1]→ R and ∀δ > 0 we have

lim
N→∞

µN

(
η ∈ {0, 1}ΛN :

∣∣∣∣∣ ∑
x∈ΛN

1

N − 1
H( xN )η(x)−

∫ 1

0

H(u)ρ0(u)du

∣∣∣∣∣ > δ

)
= 0. (3.3.3)

The convergence above means that the empirical measure at time t = 0 converges in probability with respect

to a fixed measure µN to the deterministic measure ρ0(u)du, which is absolutely continuous with respect to the

Lebesgue measure, and the density is the profile ρ0(·).

Example 3.3.3. Let µN be the Bernouli product measure, that is, νNγ(·)(η : η(x) = 1) = γ( xN ), with γ smooth.

Furthermore, consider the initial profile given by ρ0(u) = γ(u). Then, by Markov’s inequality we can bound the

previous probability from above by

1

δ
EνN

γ(·)

[∣∣∣∣∣ ∑
x∈ΛN

1

N − 1
H( xN )η(x)−

∫ 1

0

H(u)γ(u)du

∣∣∣∣∣
]
. (3.3.4)

From the continuity of both H and γ, the previous expectation vanishes as N →∞.

Defined an initial profile, the Hydrodynamic Limit extends this micro-to-macro relation to any t ∈ [0, T ]:

Theorem 3.3.4 (Hydrodynamic Limit). Let {ηt}t≥0 be the process in {0, 1}ΛN with generatorL defined in (3.1.6),

and let ρ0 : [0, 1] → [0, 1] be a measurable initial profile and {µN}N≥1 a sequence of probability measures in

{0, 1}ΛN associated with ρ0. Then, for all 0 ≤ t ≤ T, δ > 0 and H ∈ C[0, 1]

lim
N→∞

PµN

(
η· :

∣∣∣∣∣ 1

N − 1

∑
x∈ΛN

H( xN )ηN2t(x)−
∫ t

0

H(u)ρt(u)du

∣∣∣∣∣ > δ

)
= 0, (3.3.5)

where ρt(u) is a weak solution of the heat equation with boundary conditions as in (C.6.8), if θ = 1, or as in

(C.6.9), if θ > 1.

Remark 3.3.5. Note that, mathematically, the hydrodynamic limit is nothing more than the Law of Large Numbers.

Also note that the above convergence can be seen as weak convergence. Thus, the function H in the statement

above is not the test function of (C.6) and need not to be in C2[0, 1].

In order to express the statement in Section 3.3.4 in terms of the measure induced by π· in the trajectories space,

we will reformulate the statement. From [17] we know thatM endowed with the weak topology is metrizable (see

page 50 for an example of a metric). In this way, let δ(µ, ν) denote such a metric for µ, ν ∈ M. Then (3.3.5) can

be reformulated as

lim
N→∞

PµN
(
η· ∈ D{0,1}ΛN [0, T ] : δ(πNt , ρt(u)du) > δ

)
= 0, (3.3.6)

and the convergence above can be interpreted as πNt
PµN−−−−→
N→∞

ρt(u)du. To show (3.3.4) we will follow the entropy

method: we start by showing that the sequence of probability measures {QN}N≥1 is tight. This way, we know that

exist subsequences that converge. Assuming uniqueness of the weak solution of PDE (C.6.1) with either Robin
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or Neumann boundary conditions, in Section 3.3.2, we proceed to show that the limiting point of {QN}N≥1 is

absolutely continuous with respect to the Lebesgue measure, i.e., πNt
PµN−−−−→
N→∞

ρt(u)du, and that ρt(u) is a solution

to the PDE’s previously mentioned. This last step will be proved in two parts: first we see that the limit Q−measure

gives full weight to {π· ∈ DM[0, T ] : FR = 0} or {π· ∈ DM[0, T ] : FN = 0}, if θ = 1 or θ > 1, respectively. (

the definition for FR and FN can be found in (C.6.8) and (C.6.9), respectively) To see this, we use tightness and

Portmanteau’s theorem C.5.8 to move back to the discrete space and show that indeed the limit of the sequence

{QN}N≥1 gives the full weight desired, where we have to use some replacement lemmas, shown in the Appendix

A . The second part consists in finally showing that ρt(u) is the weak solution desired− i.e., it lives in the Sobolev

Space L2(0;T ;H1(0, 1)). This will be accomplished through the named energy estimate, in the Appendix B.

3.3.1 Tightness

To show the tightness of {QN}N≥1 we will use Aldous conditions in Theorem C.5.5.

Proposition 3.3.6. The sequence {QN}N≥1 is tight under the Skorohod topology of DM[0, T ].

Proof. By [17] (chapter 4) we know that {QN}N≥1 is relatively compact if {QN,H}N is relatively compact on

DR[0, T ], where H ∈ C2[0, 1] and QN,H is the probability measure induced by the map

(DM[0, T ],QN ) 3 πN· 7→ ψ(πN· ) = 〈πN· , H〉 ∈ (DR[0, T ],QN,H). (3.3.7)

Now we proceed to show the Aldous’ conditions.:

• ∀t ∈ [0, T ], ε > 0 , ∃Kt(ε) ⊂ S compact such that supN≥1 QN,H
(
〈πN· , H〉 ∈ DR[0, T ] : 〈πNt , H〉 /∈ Kt(ε)

)
<

ε.

Take H ∈ C[0, 1] and ε > 0. Then

∣∣〈πNt , H〉∣∣ =

∣∣∣∣∣ 1

N

∑
x∈ΛN

H( xN )ηt(x))

∣∣∣∣∣ ≤ sup
u∈[0,1]

|H(u)| = ‖H‖∞. (3.3.8)

Choose Kt(ε) = Br(0) : r > ‖H‖∞. Then clearly

QN,H
(
〈πN· , H〉 ∈ DR[0, T ] : 〈πNt , H〉 /∈ Br(0)

)
= 0 < ε. (3.3.9)

• limγ→0 lim supN→∞ supτ∈TN ,θ≤γ Q
(
〈πN· , H〉 ∈ DR[0, T ] :

∣∣〈πNτ+λ, H〉 − 〈πNτ , H〉
∣∣ > ε

)
= 0.

Note that by definition of QN,H :

QN,H
(
〈πN· , H〉 ∈ DR[0, T ] :

∣∣〈πNτ+λ, H〉 − 〈πNτ , H〉
∣∣ > ε

)
= QN

(
πN· ∈ DM[0, T ] :

∣∣〈πNτ+λ, H〉 − 〈πNτ , H〉
∣∣ > ε

)
= PµN

(
η· ∈ D{0,1}ΛN [0, T ] :

∣∣〈πN (ητ+λ), H〉 − 〈πN (ητ ), H〉
∣∣ > ε

)
.

(3.3.10)

Fixed H , and recalling that MH
t is a martingal with respect to the natural filtration of η, summing and subtracting
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the appropriate terms we have that

〈πNτ , H〉 − 〈πNτ+λ, H〉 = MN,H
τ −MN,H

τ+λ −
∫ τ+λ

τ

N2LN 〈πNs , H〉ds. (3.3.11)

And we can bound the last term in (3.3.10) as follows

PNµ
(
η· ∈ D{0,1}ΛN [0, T ] :

∣∣〈πNτ+λ, H〉 − 〈πNτ , H〉
∣∣ > ε

)
≤ PNµ

(
η· ∈ D{0,1}ΛN [0, T ] :

∣∣∣∣∣
∫ τ+λ

τ

N2LN 〈πNs , H〉ds

∣∣∣∣∣+
∣∣∣MN,H

τ −MN,H
τ+λ

∣∣∣ > ε

)

≤ PNµ

(
η· ∈ D{0,1}ΛN [0, T ] :

∣∣∣∣∣
∫ τ+λ

τ

N2LN 〈πNs , H〉ds

∣∣∣∣∣ > ε/2

)
+

+ PNµ
(
η· ∈ D{0,1}ΛN [0, T ] :

∣∣∣MN,H
τ −MN,H

τ+λ

∣∣∣ > ε/2
)
.

(3.3.12)

Applying Chebyshev’s inequality in the term on the third line of the previous display and Markov’s inequality on

the fourth line, (3.3.12) is bounded from above by:

≤ 1

ε
EµN

[∣∣∣∣∣
∫ τ+λ

τ

N2LN 〈πNs , H〉ds

∣∣∣∣∣
]

+
1

ε2
EµN

[(
MN,H
τ −MN,H

τ+λ

)2
]
. (3.3.13)

Now we work with the first term in the previous sum. Note that
∣∣4NH( xN )

∣∣ ≤ 2‖H ′′‖∞ and
∣∣∇±NH( xN )

∣∣ ≤
‖H ′‖∞, where we used that H ∈ C2[0, 1]. Furthermore, note that

∣∣〈πNt , H〉∣∣ ≤ ‖H‖∞. Recalling the compu-

tations in Section 3.2, and bounding every η(y) that appears there by 1, one can easily check that there exists

constants such that

∫ τ+λ

τ

N2Ln〈πNs , H〉ds .
∫ τ+λ

τ

1
Nθ−1 ‖H ′‖∞ + 1

Nθ−1 ‖H ′′‖∞ds, (3.3.14)

where the notation . means "less than a constant times" (also refered as approximately less than). In this way, we

clearly have for θ ≥ 1

lim
γ→∞

lim sup
N→∞

sup
τ∈TT ,λ≤γ

EµN

[∣∣∣∣∣
∫ τ+λ

τ

N2LN 〈πNs , H〉ds

∣∣∣∣∣
]

= 0. (3.3.15)

Now we need to show that

lim
γ→∞

lim sup
N→∞

sup
τ∈TT ,λ≤γ

EµN
[(
MN,H
τ −MN,H

τ+λ

)2
]

= 0. (3.3.16)

From stochastic calculus (MN,H
t )2 − [MN,H ]t is a martingale with respect to the natural filtration Fηt (2.0.33)

(see [? ] for a reference). The trick here is to write the expression (3.3.16) as a function of the quadratic variation

and then bound it by a constant, similarly to what we have just done. Also from (3.2.24) we have that [MF ]t :=∫ t
0
BFs ds is the quadratic variation of MF

t , and that (MF
t )2 − [MF ]t is a mean zero martingale (2.0.16). Thus, let

BN,Hs := N2
(
LN 〈πN (ηs), H〉2 − 2〈πN (ηs), H〉LN 〈πN (ηs), H〉

)
(3.3.17)
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where BH,Ns := BH,Ns,− +BH,Ns,0 +BH,Ns,+ , each term corresponding to LN,−,LN,0,LN,+, respectively. This way,

we have that

EµN
[(
MN,H
τ −MN,H

τ+λ

)2
]

= EµN

[∫ τ+λ

τ

BN,Hs ds

]
. (3.3.18)

Now we prooceed to bound BH,Ns . The contribution from the bulk dynamics can be bounded as follows:

BN,Hs,0 = N2
∑

x∈{1,N−2}

(
〈πN (ηx,x+1

s ), H〉 − 〈πN (ηs), H〉
)2

=
∑

x∈{1,N−2}

(ηs(x)− ηs(x+ 1))2(H(x+1
N )−H( xN ))2 ≤ N−1

N2

∥∥(H ′)2
∥∥
∞.

(3.3.19)

We will only make the computations for the left boundary, since for the right it is analogous. Bounding the rates

in the generator by a constant, we have

BN,Hs,− . κ
N2

Nθ

∑
x∈I−

(
(〈πN (η(x)

s ), H〉2 − 〈πN (ηs), H〉2)−

−2〈πN (ηs), H〉(〈πN (η(x)
s ), H〉2 − 〈πN (ηs), H〉2)

)
= κ

N2

Nθ

∑
x∈I−

(
〈πN (η(x)

s ), H〉 − 〈πN (ηs), H〉
)2

≤ c κ

Nθ−1
‖H‖2∞.

(3.3.20)

Analagoulsy, we have that BN,Hs,+ . κ
Nθ−1 ‖H‖2∞. and we have

lim
γ→∞

lim sup
N→∞

sup
τ∈TT ,λ≤γ

EµN
∫ τ+λ

τ

BN,Hs ds = 0. (3.3.21)

We conclude that {QN,H}N≥1 is tight ∀H ∈ C2[0, 1], and by Theorem C.5.5 we conclude that {QN}N≥1 is tight

in DM[0, T ] .

3.3.2 Characterization of limit points

Now that we know that {QN}N≥1 has limit points, in this subsection we will characterize them. We will

start by showing that every limit point is concentrated on absolutely continuous trajectories with respect to the

Lebesgue measure (that is, πNt (du) −→ πt(du) = ρt(u)du). To see this, we will apply Portmanteau’s theorem,

and the following lemma, that can be found on most measure theory books.

Lemma 3.3.7. If a measure µ is such that ∀G ∈ C[0, 1] we have |〈µ,G〉| ≤
∫ t

0
|G(u)|du, then µ is absolutely

continuous with respect to the Lebesgue measure.

After that, we will show that the Q−measure gives full weight to trajectories π· ∈ DM[0, T ], where ρt(u) is

weak solution to the heat equation with either Robin or Neumann boundary conditions, depending on the value of

θ.

Proposition 3.3.8. Let limN→∞{QN}N≥1 = Q. Then Q is concentrated on trajectories of measures absolutely

continuous with respect to the Lebesgue measure.
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Proof. For fixed H ∈ C[0, 1], define the map πN· 7→ Θ(πN· ) = sup0≤t≤T
∣∣〈πNt , H〉∣∣. Bounding ηt(x) ≤ 1 we

have

Θ(πN· ) ≤ 1

N

∑
x∈ΛN

∣∣H( xN )
∣∣⇔ QN

(
π· ∈ DM[0, T ] : Θ(π·) ≤

1

N

∑
x∈ΛN

∣∣H( xN )
∣∣) = 1. (3.3.22)

By continuity of H , we have for all ε > 0, that there exists N ∈ N such that ∀n > N ,∣∣∣∣∣ ∑
x∈ΛN

∣∣H( xN )
∣∣− ∫ 1

0

|H(u)|du

∣∣∣∣∣ < ε. (3.3.23)

Thus we can write

QN
(
π· ∈ D{0,1}ΛN [0, T ] : Θ(π·) ≤

∫ t

0

|H(u)|du+ ε

)
= 1. (3.3.24)

If we show that for fixed ε the setAε := {π· ∈ D{0,1}ΛN [0, T ] : Θ(π·) ≤
∫ t

0
|H(u)|du+ε} is closed with respect to

the Skorohod topology, then we can apply Portmanteau’s theorem C.5.8 to get Q(Aε) ≥ lim supN→∞QN (Aε) =

1, which clearly implies that Q(Aε) = 1. To check that Aε is closed we will show that any sequence in Aε has

limit in Aε. This way, let πN·
N→∞−−−−→ π· in the Skorohod topology, where {πN· }N≥1 ∈ Aε and π· ∈ DM[0, T ].

In particular, by [17] we have that ∀s < T πN·
N→∞−−−−→ π· ⇒ πNs

N→∞−−−−→ πs. Taking a sequence (tk)k ↘ t

such that ∀k ≥ 1 πNtk
N→∞−−−−→ πtk we have

ε+

∫ 1

0

|H(u)|du ≥ |〈πtk , H〉|
k→∞−−−→ |〈πt, H〉|. (3.3.25)

Thus, Aε is closed, and by Portmanteau’s theorem, Q(Aε) = 1.

Theorem 3.3.9. Let Q be a limit point of {QN}N≥1, whose existence follows from the fact that the sequence

{QN}N≥1 is tight. Then we have

Q (π· ∈ DM[0, T ] : Fθ = 0) = 1 (3.3.26)

where Fθ is given in (C.6.8) for θ = 1 and (C.6.9) for θ > 1.

Proof. Recall that we already showed that the limit point of πNt is absolutely continuous with respect to the

Lebesgue measure, that is πt(du) = ρt(u)du. The idea to show (3.3.26) is the following: we will use Portman-

teau’s theorem (after a technicality, where we will use that ρt(u) lives in L2(0, T ;H1(0, 1)), whereH1(0, 1) is the

Sobolev Space on [0, 1]; see Definition B.0.2), to work with the measure QN . Then we will take advantage of the

Replacement Lemmas A.0.6 and A.0.5 to exchange ηN2s(1) by its average; η(2) by η(1), and then by its average

again. Afterwards, we use Dynkin’s martingale and Doob’s inequality (C.4.3) to show the correct convergence.
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We start with the case θ = 1. It is enough to show that ∀δ > 0:

Q
(
π· ∈ DM[0, t] : ρ ∈ L2(0;T,H1(0, 1)), πt(u) = ρt(u)du |

sup
0≤t≤T

| 〈ρt, Ht〉 − 〈ρ0, H0〉+

∫ t

0

〈ρs, (∂s +4)Hs〉 ds−

+

∫ t

0

{
ρs(1)∂uHs(1)− ρs(0)∂uHs(0)} ds

− κ
∫ t

0

{
Hs(1)(β1 − (β1 + δ1)ρs(1) + (δ2 − β2)(ρ2

s(1)− ρs(1)))
}
ds

−κ
∫ t

0

{
Hs(0)(α1 − (α1 + γ1)ρs(0) + (γ2 − α2)(ρ2

t (0)− ρt(0)))
}
ds |> δ

)
.

(3.3.27)

The condition ρ ∈ L2(0;T,H1(0, 1)) will be shown on the next section, and we will assume at the moment

to hold. For simplicity, we will take H to be time independent, but we remark that the arguments for H time

dependent are the same. We note that we cannot apply Portmanteau’s theorem directly. From [10] we know that

the maps π· 7→
∫ T

0
〈πs, H1(s)〉ds and π· 7→ sup0≤t≤T

∣∣∣〈πt, H2(t)〉 − 〈π0, H3(0)〉+
∫ t

0
〈πs, H4(s)〉ds

∣∣∣, for any

Hi ∈ C[0, 1] with i = 1, 2, 3, 4, are continuous with respect to the Skohorod topology. In this way, the problem

lies with the terms coming from the boundary conditions, thus making the set inside the probability above not an

open set in the Skorohod space. To solve this problem, we take the following functions:

←−ι uε (v) =
1

ε
1(u−ε,u](v) and −→ι uε (v) =

1

ε
1[u,u+ε)(v), (3.3.28)

and we define the inner product as

〈πs,
←−
ιuε 〉 =

1

ε

∫ u

u−ε
ρs(v)dv and 〈πs,

−→
ιuε 〉 =

1

ε

∫ u+ε

u

ρs(v)dv. (3.3.29)

To not overload the notation, we will omit the conditions ρ ∈ L2(0;T,H1(0, 1)), πt(u) = ρt(u)du from (3.3.27),

since it is clear from the context. Now we "replace" the terms that are not continuous to get

Q
(

sup
0≤t≤T

| 〈ρt, H〉 − 〈ρ0, H〉 −
∫ t

0

〈ρs,∆H〉 ds+

+

∫ t

0

{
〈πs,
←−
ι1ε 〉∂uH(1)− 〈πs,

−→
ι0ε 〉∂uH(0)} ds−

− κ
∫ t

0

{
H(1)(β1 − (β1 + δ1)〈πs,

←−
ι1ε 〉+ (δ2 − β2)〈πs,

←−
ι1ε 〉(〈πs,

←−−
ι1−εε 〉 − 1)

}
ds−

−κ
∫ t

0

{
H(0)(α1 − (α1 + γ1)〈πs,

−→
ι0ε 〉+ (γ2 − α2)〈πs,

−→
ι0ε 〉(〈πs,

−→
ιεε 〉 − 1)

}
ds |> δ′

)
(3.3.30)
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plus the sum of the following terms

Q
(
π· : sup

0≤t≤T
|
∫ t

0

{(ρs(1)− 〈πs,
←−
ι1ε 〉)∂uH(1)} |> δ′

)
,

Q
(
π· : sup

0≤t≤T
|
∫ t

0

{(ρs(0)− 〈πs,
−→
ι0ε 〉)∂uH(0)}ds |> δ′

)
,

Q
(
π· : sup

0≤t≤T
| κ
∫ t

0

{H(1)((β1 + δ1)(ρs(1)− 〈πs,
←−
ι1ε 〉))}ds |> δ′

)
,

Q
(
π· : sup

0≤t≤T
| κ
∫ t

0

{H(1)(δ2 − β2)(ρs(1)− 〈πs,
←−
ι1ε 〉)(ρs(1)− 〈πs,

←−−
ι1−εε 〉)}ds |> δ′

)
,

Q
(
π· : sup

0≤t≤T
| κ
∫ t

0

{H(1)((δ2 − β2)(ρs(1)− 〈πs,
←−
ι1ε 〉)〈πs,

←−−
ι1−εε 〉)}ds |> δ′

)
,

Q
(
π· : sup

0≤t≤T
| κ
∫ t

0

{H(1)((δ2 − β2)(ρs(1)− 〈πs,
←−−
ι1−εε 〉)〈πs,

←−
ι1ε 〉)}ds |> δ′

)
,

Q
(
π· : sup

0≤t≤T
| κ
∫ t

0

(δ2 − β2){H(1)(ρs(1)− 〈πs,
←−
ι1ε 〉)}ds |> δ′

)
,

(3.3.31)

plus the terms from the left boundary. To see that all the terms above vanish in the limit, we show that

∣∣ρs(u)− 〈πs,←−ι
u
ε 〉
∣∣ ≤ 1

2
ε‖∂uρ‖22, (3.3.32)

as follows. Since for now we are assuming that ρ ∈ L2(0, T ;H1(0, 1)), the norm above is finite and we have for

u ∈ [0, 1]

1

ε

∫ ε

0

ρs(0)− ρs(u)du = −1

ε

∫ ε

0

∫ u

0

∂uρs(v)dvdu. (3.3.33)

By Cauchy-Schwarz’s inequality we have that the absolute value of the previous expression is bounded from above

by ∣∣∣∣1ε
∫ ε

0

[∫ u

0

(∂uρs(v))2dv

∫ u

0

1dv

]
du

∣∣∣∣ =

∣∣∣∣1ε
∫ ε

0

(
u

∫ u

0

(∂uρs(v))2dv

)
du

∣∣∣∣. (3.3.34)

Since
∫ u

0
(∂uρs(v))2dv ≤ ‖∂uρ‖22 <∞, we can bound the previous expression by

1

ε
‖∂uρ‖22

∫ ε

0

udu =
1

2
ε‖∂uρ‖22

ε→0−−→ 0. (3.3.35)

The same bound holds for 〈πs,−→ι
u
ε 〉.

Remark 3.3.10. For the general case K ≥ 2, the main problem are the terms of the form ρK−1
s (0) and (1 −

ρs(0))K−1 (and similar for the right boundary). A simple way to solve this is to proceed by induction.

Since a2 = (a + b1 − b1)(a + b2 − b2) = (a − b1)(a − b2) + b1(a − b1) + b2(a − b2) + b1b2 and we have

that b1b2a = b1b2(a + b3 − b3) = b1b2(a − b3) + b1b2b3, taking a ≡ ρs(0) and bj ≡ 〈πs,
−−−−→
ι(j−1)ε
ε 〉 for j ≥ 0,

we can replace ρK−1
s (0) by

∏K−2
j=0 〈πs,

−→
ιjεε 〉 plus a sum of terms that vanish when ε→ 0 in the limit. For the right

boundary the argument is analogous.

To finally apply Portmanteau’s theorem, we argue that we can approximate←−ι uε ,−→ι
u
ε by continuous functions
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in such a way that the error vanishes as ε→ 0. Now we apply Portmanteau’s theorem and, recalling the definition

of QN we bound from above (3.3.30) by

lim inf
N→∞

PµN
(
η· ∈ D{0,1}ΛN [0, T ] : sup

0≤t≤T
| 〈πNt , H〉 − 〈πN0 , H〉 −

∫ t

0

〈πNs ,∆H〉 ds

+

∫ t

0

{
〈πNs ,

←−
ι1ε 〉∂uH(1)− 〈πNs ,

−→
ι0ε 〉∂uH(0)} ds−

− κ
∫ t

0

{
H(1)(β1 − (β1 + δ1)〈πNs ,

←−
ι1ε 〉+ (δ2 − β2)〈πNs ,

←−
ι1ε 〉(〈πNs ,

←−−
ι1−εε 〉 − 1)

}
ds−

−κ
∫ t

0

{
H(0)(α1 − (α1 + γ1)〈πNs ,

−→
ι0ε 〉+ (γ2 − α2)〈πNs ,

−→
ι0ε 〉(〈πNs ,

−→
ιεε 〉 − 1)

}
ds |> δ′

)
.

(3.3.36)

Remark 3.3.11. Note that with Portmanteau’s theorem we are technically doing a discretization of the continuous

version of the equation above. The heuristic comes into play in having some insight to what weak solutions we

will get. This way, the computations above and below can be seen almost as "going backwards" from what we did

in Section 3.2.

Summing and subtracting
∫ t

0
LN 〈πNs , H〉ds in (3.3.36), and recalling our expression for the Dynkin’s martin-

gale in (3.2.24), we can bound the last probability by the sum of the following terms:

lim inf
N→∞

PµN ( sup
0≤t≤T

∣∣MN
t

∣∣ ≥ δ′′),
lim inf
N→∞

PµN ( sup
0≤t≤T

∣∣∣∣∫ t

0

〈πNs ,4NH〉 − 〈πNs ,∆H〉ds
∣∣∣∣ > δ′′),

lim inf
N→∞

PµN ( sup
0≤t≤T

∣∣∣η(N − 1)∇−NH(1)− 〈πNs ,
←−
ι1ε 〉∂uH(1)

∣∣∣ > δ′′),

lim inf
N→∞

PµN ( sup
0≤t≤T

∣∣∣η(1)∇+
NH(0)− 〈πNs ,

−→
ι0ε 〉∂uH(0)

∣∣∣ > δ′′),

lim inf
N→∞

PµN ( sup
0≤t≤T

∣∣∣H(N−1
N )(β1 − (β1 + δ1)ηsN2(N − 1))−H(1)β1 − (β1 + δ1)〈πNs ,

←−
ι1ε 〉
∣∣∣ > δ′′),

lim inf
N→∞

PµN ( sup
0≤t≤T

| H(N−2
N )(δ2 − β2)ηsN2(N − 1)ηsN2(N − 2)−

−H(1)(δ2 − β2)〈πNs ,
←−
ι1ε 〉(〈πNs ,

←−−
ι1−εε 〉 − 1) |> δ′′),

(3.3.37)

plus the terms from the left boundary. The second term on the last display vanishes asN →∞, since 〈πNs ,4NH〉−

〈πNs ,∆H〉
N→∞−−−−→ 0. To bound the first, we will use Doob’s inequality. For the others we will apply the replace-

ment lemmas as follows. Let

−→η εNsN2(1) :=
1

εN

1+εN∑
x=2

ηsN2(x), ←−η εNsN2(N − 1) :=
1

εN

N−2∑
x=N−1−εN

ηsN2(x) (3.3.38)

Then, since←−η εNsN2(N − 1) = 〈πNs ,←−ι
1
ε〉 (resp. −→η εNsN2(1) = 〈πNs ,−→ι

0
ε〉) we have←−−ηsN2

εN
(N − 1) ∼ ρs(1) (resp

−−→ηsN2
εN

(1) ∼ ρs(0)) , we will show in Section (A) that we can exchange ηsN2(N − 1) (resp. ηsN2(1)) by the

averages above. Due to the continuum embeding of {1, . . . , N − 1} in [0, 1], it is intuitive that points close enough

in the discrete setting will be indistinguishable in the continuous setting. We will also quantify this in the following

subsection, showing that we can indeed replace η(N − 2) by η(N − 1) (analogous for the left). Thus, we now
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proceed in the following way:

• For the bulk terms in (3.3.37), we apply Lemma A.0.6 with the choice ψ(η) = 1 and replace ηsN2(N − 1)

(resp. ηsN2(1)) by←−η εNsN2(N − 1) (resp. −→η εNsN2(1)), paying a price O(N−1).

• For the linear boundaries terms in (3.3.37), we apply again Lemma A.0.6 with ψ(η) = 1.

• We treat ηsN2(N−2) (resp. ηsN2(2)) by first applying Lemma A.0.5 with ψ(η) = 1 to replace ηsN2(N−2)

(resp. ηsN2(2)) by ηsN2(N − 1) (resp. ηsN2(1)). Again, we apply Lemma A.0.6 with ϕ(η) = ηsN2(N − 1)

(resp. ϕ(η) = ηsN2(1)) with a cummulative error of O(N−1).

• For the correlation terms ηsN2(N − 1)ηsN2(N − 2) (resp. ηsN2(1)ηsN2(2)), we first replace ηsN2(N − 2)

by −→η εNsN2(N − 1) with the choice ψ(η) = ηsN2(N − 1) (similar for the left). Now that we have the term

ηsN2(N − 1)−→η sN2(N − 1)εN , then we replace ηsN2(N − 1) by −→η εNsN2(N − 1) by Lemma A.0.6 with

ψ(η) = ηεNsN2(N − 1) with a cummulative error of O(N−1).

• Observing that 〈πNs ,−→ι
0
ε〉 = −→η εNsN2(1) , 〈πNs ,←−ι

1
ε〉 = −→η εNsN2(N − 1) and

〈πNs ,−→ι
0
ε〉〈πNs ,−→ι

ε
ε〉 = −→η εNsN2(1)←−η εNsN2(εN + 1) +O((εN)−1), (3.3.39)

we are done.

Now we are left with the contribution from the Dynkin’s martingale, that we shall bound as follows:

PµN
(

sup
0≤t≤T

∣∣MN
t

∣∣ > δ

)
≤ 2

δ
EµN

(∣∣MN
T

∣∣2) 1
2

=
2

δ
EµN

(∫ T

0

BN,Hs ds

) 1
2

(3.3.40)

where we applied Doobs’s inequality C.4.3 in the first step. Recalling that
∫ T

0
BN,Hs ds is the quadratic variation

of Dynkin’s martingale, one can proceed as we did in order to show tightness and we are done.

For θ > 1, by the same arguments we arrive at

lim inf
N→∞

PµN
(

sup
0≤t≤T

| 〈πNt , H〉 − 〈πN0 , H〉 −
∫ t

0

〈πNs ,∆H〉 ds

+

∫ t

0

{〈πNs ,
←−
ι1ε 〉∂uH(1)− 〈πNs ,

−→
ι0ε 〉∂uH(0)} ds

)
.

(3.3.41)

We proceed exactly the same way, summing and subtracting
∫ t

0
LN 〈πNs , H〉ds and bounding each term as in

(3.3.37), and applying the Replacement Lemma A.0.6 to exchange ηsN2(1) and ηsN2(N − 1) by respective boxes.

Afterwards, the procedure is identical.
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Chapter 4

Propagation of Chaos

The present chapter will be dedicated to expose the main arguments of [24] to show sharp estimates for the

so called v−functions, vε(x, t | µε), for "small times". These v−functions are closely related to the correlations

between particles, and to the propagation of chaos. In the literature, propagation of chaos refers to the property

that, in a particle system, any finite number of particles will evolve independently as the total number of particles

goes to infinity − as stated in [30]. Recalling the presentation of our model in section 3.1 and subsection 3.1.2

of the previous chapter, and recalling the master equation (2.0.32), we see that for K > 2 the reservoirs induce

correlations in (2.0.32), thus the equation is not closed in terms of ρN (t, x). Considering the solution to the

closed equation that we would have if all particles were independent of each other, the v−functions measure the

"closeness", in mean, of the system, as a whole, to the one where these correlations are absent. In this way, showing

sharp bounds for the v−functions as a function of the number of initial particles in the system indirectly shows the

propagation of chaos property, hence the name of the present chapter. For more results in this direction we refer

the reader to [23].

Through this chapter, we will make the necessary adaptations for our model, which are mostly introducing the

parameter θ in the right place, and doing the computations in the original article to see where this leads us to. In

this way, the largest difficulty lies mostly in understanding the computations and grasping the main ideas. Given

that the article if very technical, our main focus will be to explain to the reader the largest steps, ideas, difficulties

and intuition for the proofs. Thus, in some proofs we will refer the reader to [24] for the full computations.

Nevertheless, we will do many computations through this chapter.

Letting ε := 1/N , the main result of this chapter is that the v−functions are of the order of cn(ε−2t)−c
∗n,

for times smaller than εβ
∗
, where n is the initial number of particles in the system, cn, c∗ are constants (to be

specified), and β∗ > 0. Thus, the v−functions vanish as the number of particles goest to infinity. As mentioned in

the previous chapter, in [24] particles could only enter from the reservoir in the right, and leave from the reservoir in

the left. Plus, the "frequency" parameter θ was set to be equal to 1. Here, we show that this result holds (with a very

simple modification) for our model, for θ ≥ 1. We conjecture that for θ > 1 the correct bound is cn(ε−2t)−θc
∗n

instead, given that the action of the reservoirs is very slow. In some instances (to be explained in section 4.5) we

were able to show these estimates with slightly different arguments, but in others the main arguments in the original

paper could not be adapted in order to get the desired bound. Moreover, we could not formulate new arguments
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for these instances. In this way, the decay cn(ε−2t)−θc
∗n is still a conjecture. Since we were able to show this for

some cases, we believe there might be something missing, and not that the whole methodology does not work− in

contrast to the case θ < 1, as we will see.

The main body of this chapter will be as follows. In section 4.1, we present some definitions and notation for

the chapter, defining precisely what was explained above, regarding the v−functions. In the subsection 4.1.1, we

define the exclusion process in the bulk (in the present chapter, named stirring process) through another process,

named Active/Passive marks process, that registers every time a Poisson clock rings (as explained in section 3.1);

and define a coupling between the original process and a process with independent particles. In section 4.2, we

derive a discrete equation for v, then apply Duhamel’s formula to get an integral equation, where we proceed

to bound the transition probabilities by taking advantage of (E.1.2). We end this section by finding a series of

successive bounds for v. Each time we apply one bound to a term of v, we get a new expression, again in terms

of v but now with more or less particles. In this way, we see that one either applies these successive bounds

indefinitely, or arrives at a step where there are no more particles left in v. Thus, in section 4 we will classify

each term of these successive bounds/iterations through a process named skeleton and a branching process, that

determines the instant that a particle is removed (or added) from v. If we have infinitely many iterations, we will

truncate this series at a fixed step, hence the name truncated hyerarchy. Moreover, we will see that this hyerarchy

induces a partition in our time interval. We will then choose an appropriate partition, and break the following

proofs in two parts: when the times at each iteration are said to cluster to t or not (to be better explained in section

4.4). Finally, in the following section with respect to the one we just have just mentioned, we will derive bounds

when these times are said to either "cluster" or not. Here, the coupling described in section 4.1 will play a major

role in the proof of when there is a cluster. In the last section, 4.5, we derive the said estimates for the v−functions

for "small" times, i.e., t ≤ εβ∗ .

4.1 Notation and first definitions

Recalling the definition of our generator in section 3.1.2, we define for a function u the operators

D±,0u(x) := u(x)(τ±x±1)(1− u) and D±,1u(x) := (1− u(x))(τ±x±1)(u). (4.1.1)

We will denote IK± by I±, since K is fixed. Moreover, following the notation in [24], we let ε := N−1. With this

notation, the boundary generators applied to f(η) = η(x) now take the form

κεθLN,−η(x) =
∑
x∈IK−

κεθαiD−,1η(x)− κεθγiD−,0η(x) (4.1.2)

and similarly for the right. For simplicity, we will take κ = 1 and αi = α, βi = β, γi = γ, δi = δ. We will not

focus at all in these terms, and one can check that the proofs in the following sections are completely identical for

any choice of parameters. Moreover, will denote the generator of the bulk dynamics, LN,0, by the generator of the
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stirring process. If we had ⊥⊥x∈I± η(x) a direct application of Kolmogorov’s equation (2.0.32) would lead to:

∂

∂t
ρε(x, t) = 4ερε(x, t) + εθ−21x∈I− (αD−,1ρε(x, t)− γD−,0ρε(x, t))

− εθ−21x∈I+ (βD+,1ρε(x, t)− δD+,0ρε(x, t)) ,

(4.1.3)

with 4 defined below. In this way, refering to the initial condition as ρ(x, 0) = µε[η(x, 0) = 1], where µε is a

product measure, we shall rewrite the equation above by

∂

∂t
ρε(x, t) = 4ερε(x, t) + εθDε

±ρε

ρ(x, 0) = µε[η(x, 0) = 1].

(4.1.4)

The (discrete) laplacian is now a discrete laplacian with reflecting boundary conditions.

4εu(x) := u(x+ 1) + u(x− 1)− 2u(x), for 1 < x < N − 1 (4.1.5)

and for the boundaries,

4εu(N − 1) := −(u(N − 1)− u(N − 2)) and 4εu(1) := −(u(1)− u(2)), (4.1.6)

for a function u. Letting Λn,6=N with n ≥ 1 be the set of all sequences x = (x1, . . . , xn) such that xi 6= xj , we

define the v−functions as

vε(x, t | µε) := Eε

[
n∏
i=1

(η(xi, t)− ρε(xi, t))

]
, x ∈ Λn,6=N , n ≥ 1 (4.1.7)

where the process above starts with a product measure µε, and ρε(x, t) is solution to (4.1.3). The main result of

this chapter is the following bound for the v−functions:

Theorem 4.1.1. There exist c∗ > 0 so that, ∀β∗ > 0 and positive integer n, ∃cn < ∞ constant such that for any

ε > 0 and initial product measure µε, for θ ≥ 1 and t ≤ εβ∗ holds

sup
x∈Λn, 6=N

|vε(x, t | µε)| ≤ cn(ε−2t)−c
∗n. (4.1.8)

We will not show the extension for "long times" (t ≤ τ log ε−1 for some τ ), that can be found in [24]. We

remark, however, that although this result is shown in [24] with a short proof, the extension for "long times" is not

trivial, and an open problem for many models. For a complete discussion regarding this topic, we refer the reader to

[23]. We also remark that this extension is consequence of the solution to (4.1.3), where the Gauss Kernel (E.1.2)

plays the main role, which appears, in turn, as consequence of the exclusion process in the bulk. For the model

studied through this thesis, this extension is completely analogous, and the boundary conditions do not show many

technical difficulties, as opposed to the following sections.
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4.1.1 Coupling and probability estimates

In this section we will start by defining a realization of the stirring process in terms of an Active/Passive marks

process (A/P-process). This process is useful because it "saves" all the information regarding the movement of each

particle, registering the action of each clock, and atributing marks to each particle. Then, we will take advantage

of the dual process to look only at set of particles at a given time. Together with the A/P-process, given a set

of particles at a fixed time, we will trace the evolution back to the initial configuration and label each individual

particle. To completely define the evolution of the process, we mark the times when two particles are neighbors,

and each time a Poisson clock rings, through stopping times and Point processes. Finally, we will couple the

stirring process with a "similar" process, with the exception that every particle is independent of each other. In this

way, for the forbidden jumps in the original process to be well associated to the coupled process, we will define

these jumps in the coupled process as "colisions". In the end of this section, we will state the results, regarding the

coupling, that will be more useful though this chapter.

Definition 4.1.2 (A/P-process). The A/P-process is realized in a probability space (Ω, Pε). It is defined as a

product of Poisson processes indexed by {x, x + 1} with x ∈ Z. For each bond, we associate a Poisson process

with intensity ε−2. Its events are named "marks". To each mark we associate (independently) an atribute (passive

or active) with probability 1/2. Each Poisson process is mutually independent, and their common distribution is

denoted by Pε.

For any realization ω ∈ Ω, we define the evolution in ΛN as follows. When a particle is in a node where a

Poisson clock rings, it moves to its neighbor site. If that site is occupied, both particles exchange their positions.

Recalling our exposition of the dual process in (2.0.43), we will denote by X(t) ⊂ ΛN the set of occupied

particles at time t, i.e., x ∈ X(t) ⇔ η(x, t) = 1. It is clear that X(t) has the law of the stirring process, with

generator ε−2LN,0. From (2.0.43), we recall that the generator of the dual process has the evolution inverted. For

us, in practice, this means that given ω ∈ Ω and X(t), we follow backwards the process and then define X(0).

This leads to the proof of the following result, that can be found both in [17] and [22].

Proposition 4.1.3. For any X ⊂ ΛN , η0 ∈ {0, 1}ΛN and t > 0 we have

Eε

[∏
x∈X

η(x, t) | η(·, 0) = η0

]
= Eε

 ∏
x∈X(t)

η0(x) | X(0) = X

 . (4.1.9)

This is useful because now we can study the stirring process by looking at the particles that we have at the

moment. Given a realization ω, we can follow each particle and label them, as in the following definition.

Definition 4.1.4. Given ω ∈ Ω, denote by x = (xi1 , . . . , xin) a labeled configuration of n particles. The labels

are the indexes ik, while the particles are xik . We denote by x(t) the labeled version of X(t). Moreover, we let

x ≡ x(0) be the initial distribution of particles. Note that, while exchanging particles has no efect in X(t) since

X(t) only recorders the occupied positions, it does in x(t).

Now that the particles are labelled, we let x1 ∼ x2 mean that the particles x1 and x2 are neighbors (in other

words, are in the same bond). We denote the event of a mark appearing between particles x1 and x2 by x1Mx2.

Now, we define the (stopping) times associated to two neighbor particles.
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Definition 4.1.5. Given the initial position xi and xj of the particles i, j, we define in Ω the random multi-interval

Txi∼xj := {s ≥ 0 : xi(s) ∼ xj(s)}, that is, the "continuous" times when they are neighbors. Restricting this to

[0, t], we define Txi∼xj (t) := Txi∼xj ∩ [0, t]. Now we let

Ix1∼x2
(t) := {(s, y1, y2) : s ∈ Txi∼xj (t), yi = xi(s), y1My2}. (4.1.10)

We define the stopping time τx1∼x2
as mins ∈ Ix1,x2

(∞). Moreover, we associate a counting process to Ix1∼x2
(t),

Nx1∼x2(t) := |Ix1∼x2(t)|.

In order for the reader to be familiar with the labeled and the A/P process, from the definitions above we can

show the following lemma.

Lemma 4.1.6. Let x = (x1, . . . , xn), t > s > 0 and f(y1, . . . , yn) be an antisymmetric function under the

exchange of y1 and y2. Then

Eε,x
[
1τx1∼x2

≤sf(x(t))
]

= 0, (4.1.11)

where x is the initial condition, that is, Eε,x(·) = Ex [· | x(0) = x].

Proof. Given two particles x1, x2 and two realization of the A/P-process, ω, ω′ ∈ Ω, we say that ω and ω′ are

similar (and denote it by ω ≡ ω′) if all marks at all pairs {x, x + 1} occur at the same time both in ω and ω′,

and the active and passive attributes are the same in both, except for the marks in Ix1∼x2(s) i.e., when they are

neighbors.

In this way, we have that ω ≡ ω′ ⇒ the realizations evolved from the same initial configuration. Moreover,

∀t we have ω equals ω′ except at most for an exchange of the particles with label 1 and 2. Almost by definition

we see that ≡ is an equivalence relation (hence the notation). Clearly, ω ≡ ω and ω ≡ ω′ ⇒ ω′ ≡ ω. And since

they differ at most in the marks x1Mx2, given another realization ω′′ we have ω ≡ ω′, ω′ ≡ ω′′ ⇒ ω ≡ ω′′ since

all three will coincide except when x1Mx2, which does not alter the random walk of each particle. Thus, notice

that Nx1∼x2(s) is constant in each equivalence class of a realization ω. Let Nx1∼x2(s) = p. Then, we have that

#[ω]p = 2p, where [ω]p denotes the equivalence class of a realization such that Nx1∼x2
(s) = p, and #· simply

denotes the cardinality. We have 2p elements since there are p marks and the marks of particle x1 and x2 may

differ in each element of its class, each time there is a mark.

Each element is characterized by the active/passive attribute of the p marks in Ix1∼x2
(s). Thus, their dis-

tribution conditioned on a given class is a product of 1/2, 1/2 probabilities (recall that the marks active/passive

are attributed with probability 1/2). In this way, with some abuse of notation, we have that {τx1∼x2 ≤ s} =

∪p≥1{Nx1∼x2(s) ≥ p} = ∪p≥1{[ω]p}. Thus, we have that Law(x(t) | τx1∼x2 ≤ s) is symmetric under the

exchange of particles x1(t)↔ x2(t). Since f is antisymmetric under the exchange of particles, we are done.

As mentioned in [24], in [23] and [22] it was observed that tail estimates prove to be good ingredients to

construct good couplings. Through the present chapter, they will be most useful in section 4.4, since we will be

able to relate the "distance" of the original process and the coupled process explicitly in terms of time, and we have

estimates for when two particles are neighbors. Thus, we will state the following theorem.
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Theorem 4.1.7. There is c such that for all ε > 0

sup
x1∼x2

Pε[τx1∼x2
≥ t] ≤ c

(ε−2t)1/2 + 1
. (4.1.12)

Moreover, given any T > 0, for any ξ > 0 and any k ≥ 1 there is c such that for all t ≤ T and for all ε > 0

sup
x1,x2

Pε[Nx1∼x2
≥ (ε−2t)1/2+ξ] ≤ c(ε−2t)−k. (4.1.13)

To show the theorems above, the following proposition is useful.

Proposition 4.1.8. There is c such that for all ε > 0

sup
y1,y2

Pε,y1,y2
[|x1(s)− x2(s)| = 1] ≤ c

(ε−2s)1/2
, (4.1.14)

where the suffix y1, y2 recalls that yi(0) = yi, i = 1, 2.

Now we define the coupling.

Definition 4.1.9 (Coupling). Recalling the stirring process x, let x0 be a labeled configuration of independent

particles. We suppose, without loss of generality, that the labels are {1, . . . , n}, thus we let x = (x1, . . . , xn) and

x0 = (x0
1, . . . , x

0
n). Now define:

• σ - an arbitrary priority list, defined as a random permutation of {1, . . . , n};

A particle i has priority over a particle j if σ(i) < σ(j).

As stated in Definition 4.1.2, given a realization of the A/P-process, we define x(t) by looking at the marks in nodes

in ΛN only. In the same space as the A/P-process, we define the "evolution" of x0(t) = (x0
1(t), . . . , x0

n(t)) ∈ ΛnN ,

given the initial configuration x0(0) := x(0). The whole process x0(t) is defined by the times at which each

particle x0
i (·) "tries" to jump to a neighbor site. Again, the jumps out of ΛN are supressed. For that purpose, we

define:

• ti,l - the times when a particle x0
i (·) tries to move to the left. Similarly, we define ti,r.

We recall that the A/P-process is defined in the whole Z. In this way, the jumps outside of ΛN are supressed.

We remark that the times ti,l, ti,r determine x0(·), and not the opposite, since we cannot recover from x0(·) the

attempted jumps that t·,· registers. In this way, since we cannot recover the times directly from x0(·), we define an

auxiliary process y(t).

Definition 4.1.10 (Auxiliary process y(t)). Let t be the first time there is a mark in the bond {x, x+ 1}, and there

is at least one particle in this bond, i.e.,

t := inf{s > 0 | xMx+ 1, x(0) ∩ {x, x+ 1} 6= ∅}, (4.1.15)

with a clear abuse of notation. We start the process y in x0(0), that is ∀s ∈]0, t[ set y(s) := x0(0). For s ≤ t , y(t)

defines x0(s) as follows.
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• x(0) ∩ {1, N − 1} = ∅

If |x(0) ∩ {x, x+ 1}| = 1, let us denote this particle by xi(0).

If the mark is passive −→ y(t) = x0(0);

If the mark is active −→ yk(t) = x0
k(0),∀k 6= i and yi(t) = x0

i (0) ± 1, xi(0) = x, where we have

x0
i (0) + 1 if xi(0) = x, or x0

i (0)− 1, if xi(0) = x+ 1;

If x(0) ∩ {1, N − 1} = {xi(0), xj(0)}. Let us take σ(i) < σ(j).

If the mark is passive −→ yk(t) = x0
k(0), k 6= j, and yj(t) = x0

j (0) − (xj(0) − xi(0)). We say

that the particle j collides with particle i. That is, y(t) registers that the particle x0
j (·) "tried" to jump, while

x0
i (·) stands still;

If the mark is active−→ yk(t) = x0
k(0), k 6= i, and yi(t) = x0

i (0)+(xj(0)−xi(0)). We say that the

particle i collides with particle j. That is, y(t) registers that the particle x0
i (·) "tried" to jump, while x0

j (·)

stands still;

• x(0) ∩ {1, N − 1} 6= ∅. Let xi(0) = 1, i.e., the first site is occupied.

If the mark is passive −→ yk(t) = x0
k(0), k 6= j;

If the mark is active −→ yk(t) = x0
k(0), k 6= j and yi(t) = x0

i (0)− 1.

Note that the "particle" yi(t) actually leaves ΛN . Now for the time y(s),∀s ∈ [0, t], where we recall that t is the

"first mark time", as in (4.1.15).

• Set x0(s) = y(s) = x0(0) for s < t, and

x
0(t) = y(t), y(t) ∈ ΛnN

x0(t) = x0(0), otherwise
(4.1.16)

Now with x(t), x0(t), we define y(s) for t < s < t2, where t2 is the time of the next mark, by the same rules,

inductively. We remark that with the definition above we have y(t+) = x0(t). That is, while at first a particle

in y may jump to outside of ΛN , in the next instant it jumps back to ΛN , registering the time at which such

jump happened, i.e., y(t−) = y(t) 6= y(t+). Moreover, since the jumps out of ΛN are supressed, although

y register its time, nothing happens in x0. Moreover, if, for example, a particle yi(t) jumped outside of ΛN ,

from x = 1 at time t, then the two instantaneous jumps are {ti,l, ti,r}. Under this case, we only save the

"in" jump, ti,r. In this way, the process is well defined and, since we know particles only enter to ΛN if they

"instantaneously" left, both jumps can be recovered.

From [23], with the definition above, one can show many properties of this coupling, as:

• {ti,r, ti,l}i=1:n are mutually independent Poisson processes with rate ε−2;

• The Law of x0(t) equals the law of n independent random walkers in ΛN with jump rate ε−2;

• The particles xi, x0
i have different jumps only when one of them is at the site 1 or N − 1; or when there is

a collision with a different particle xj , and σ(j) < σ(i), i.e., xi has a higher priority and "xi collides with

xj".
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• For any i and t > 0 , xi(t) is completely determined by yj(s), s ∈ [0, t], where j is such that σ(j) < σ(i).

• The particle with the lowest priority have the same walk both in the coupled process and the original process,

with probability one, that is

σ(`) = 1 ∧ (x`(0) = x0
`(0))⇒ P (x`(t) = x0

`(t)) = 1, ∀t ≥ 0. (4.1.17)

On this list, the last two items, together with the theorem that we state below, that quantifies the "closeness" of

the stirring process to the "independent process", will be of great importance for us in section 4.4, specifically, in

showing Lemma 4.4.4. Regarding the last two items above, note that the first relates directly the stirring process,

x, and the "times" process y, where, fixed a particle i in the stirring process, we may only look at all the different

particles in y. The usefulness of the last one is clear: if we manage to choose the priority of a specific particle

as the lowest, then we may only look at the "independent" process. These two, together, allow us to, under some

conditions, treat the stirring process as a system of independent particles.

Theorem 4.1.11. Let T > 0 and x(0) = x0(0). Then, for any ξ > 0 and k there is c such that for all t ≤ T and

for all ε > 0

Pε[
∣∣x` − x0

`(t)
∣∣ ≥ (ε−2t)1/4+ξ] ≤ c(ε−2t)−k. (4.1.18)

4.2 Integral inequalities for the v-functions

In this section, we will start by deriving a particular stochastic equation for the v−function. For simplicity, we

will denote v(x, t) ≡ vε(x, t | µ). We recall from the previous chapter that N2LN,0ηtN2(x) = 4NηtN2(x), and

thus by Kolmogorov’s equation (2.0.32), we have for the stirring process only ∂
∂tρ

N
t (x) = 4NρNt (x). Here, we

will derive a "similar" expression for the v-functions. To take advantage of the sharp gradient estimate in (E.1.4),

and to exploit the smallness of the gradients of the v-functions, we will show that ∂
∂tv(X, t) = ε−2(L0v)(X, t) +

(C
(θ)
ε v)(X, t), where L0 is now the n−dimensional reflected laplacian. In order to do this, we gain an error

(C
(θ)
ε v)(X, t) from both the bulk and boundary dynamics. We "treat" this error by writing it as a function of the

gradients of ρε and v(X, t) as much as possible. After this, we will apply Duhamel’s formula , in order to get

an integral expression of the aforementioned differential equation. Settled this integral formulation, we will start

to bound the v−function. In this integral form, we will have transition probabilities, that we will bound with the

results of Appendix E. Every bound (that is, for the error arising from the boundary dynamics and from the bulk

dynamics) will again be a function of both our v−functions and ρε, but with the difference that the v−function will

have either less or more particles. After writting the labeled version of these bounds, we show, with an iterative

argument, that either we may apply these bounds indefinetly, or at some point we are left with no particles, thus

paving the way for the next section.

Definition 4.2.1 (A,B, and C operators). For X ⊂ ΛN , t > 0 we define the linear operator A acting on v such
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that (Av)(X, t) = 0, if |X| ≤ 1 otherwise, it is equal to

(Av)(X, t) =
∑
x,x∈X
x∼y

[
(ρε(x, t)− ρε(y, t))(v(X\{x}, t)− v(X\{y}, t))− (ρε(x, t)− ρε(y, t))2v(X\(x ∪ y), t)

]
.

(4.2.1)

For b(Z,Z ′, t) ∈ R to be specified later on, with Z,Z ′ ⊂ I+ or Z,Z ′ ⊂ I− we define B:

(B±v)(X, t) :=
∑
Z′⊂I±

b±(X ∩ I±, Z ′, t)v(X\[x ∩ I±] ∪ Z ′, t). (4.2.2)

Letting Bv := (B+ +B−)v we define C as

(C(θ)
ε v)(X, t) := ε−2((Av)(X, t) + εθ(Bv)(X, t)). (4.2.3)

For simplicity, let ηε(X, t) :=
∏
x∈X(η(x, t)−ρε(x, t)). Then, for a setX ⊂ ΛN we define the v-functions by

v(X, t) = Eε
∏
x∈X(η(x, t) − ρε(x, t)) ≡ Eεηε(X, t). We note that the v-function is symmetric in the variables

{xi : i = 1, · · · , n}. Therefore we consider it defined in the set of points of the form {(x1, · · · , xn) : 1 ≤ x1 <

x2 < · · · < xn ≤ N −1}. We extend the definition of the v-function to the boundary of the previous set by stating

that it is equal to zero when restricted to it. Therefore, the v-function v(X, t) is defined on sets of the form

V nN = {(x1, · · · , xn) ∈ {0, · · · , N}n : 1 ≤ x1 < x2 < · · · < xn ≤ N − 1}. (4.2.4)

Observe that when n = 2, the aforementioned set above is simply given by

V 2
N = {(x, y) ∈ {0, · · · , N}2 : 0 < x < y < N}, (4.2.5)

and its boundary ∂V 2
N = {(x, y) ∈ {0, · · · , N}2 : x = 0 or y = N}. In dimension d it is a simplex.

x

y

0 1 2 n− 1 n

1

2

n− 1

n

Figure 4.1: The set VN and its boundary ∂VN .
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4.2.1 A discrete equation for the v-functions

Now we derive the discrete equation for the v-functions.

Lemma 4.2.2.

∂

∂t
v(X, t) = ε−2(L0v)(X, t) + (C(θ)

ε v)(X, t) (4.2.6)

where the coefficients b in the definition of C(θ)
ε (specifically, in B±) are such that b(∅, Z ′, t) = 0, if |Z| = 1 then

b(Z, ∅, t) = 0, and

∀M ∈ Z : sup
t,|Z|≤M,|Z′|≤M

|b(Z,Z ′, t)| <∞ (4.2.7)

Above the operator L0 is the reflected d-dimensional discrete Laplacian defined as follows:

L0f(x1, · · · , xn) =

n∑
i=1

∑
|y−xi|=1

{f(x1, · · · , y, · · · , xn)− f(x1, · · · , xi, · · · , xn)}

if for all i ∈ {1, · · · , n} |xi − xi+1|> 1, otherwise, if there exists j such that |xj − xj+1|= 1, then

L0f(x1, · · · , xn) =

n∑
i=1

i 6=j,j+1

∑
|y−xi|=1

{f(x1, · · · , y, · · · , xn)− f(x1, · · · , xi, · · · , xn)}

+ {f(· · · , xj − 1, xj + 1, · · ·) + f((· · · , xj , xj + 2, · · ·)− f(· · · , xj , xj + 1, · · ·)}.

(4.2.8)

When the points (x1, · · · , xn) are close to the boundary the operator L0 is simply N times the discrete derivative.

Proof. Let ηε(X, t) :=
∏
x∈X(η(x, t) − ρε(x, t)), where η is our exclusion process, and ρε is the solution of

(4.2.6).

Then by Dynkin’s formula (2.0.33) we have

d

dt
v(X, t) = Eε

[(
Lε +

∂

∂t

)
ηε(X, t)

]
(4.2.9)

where the partial derivative acts on ρε and the generator on η. By the product rule we have

Eε[
∂

∂t
ηe(X, t)] ≡ Eε

[
∂

∂t

∏
x∈X

(η(x, t)− ρε(x, t))

]
= −

∑
x∈X

∂

∂t
ρε(x, t)Eε[ηε(X\x, t)] (4.2.10)

thus,

∂

∂t
v(X, t) = Eε[ε

−2(L0 + εθL±)ηε(X, t)]−Eε[
∑
x∈X

ηε(X\x, t)
∂

∂t
ρε(x, t)]. (4.2.11)

Recalling that we have an expression for ∂
∂tρε(x, t) from (4.1.3), we claim that we can rearrange the bulk terms to:

ε−2Eε[L0ηε(X, t)]−Eε[
∑
x∈X

ηε(X\x, t)4ερε(x, t)] = ε−2(L0v(X, t) + (Av)(X, t)). (4.2.12)
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Before we proceed we explain how to obtain last display. First let us suppose that X does not contain any pair of

neighbour points. Then,

L0ηε(X, t) =
∑
x∈X

v(X \ {x}, t)L0η̃(x, t) =
∑
x∈X

v(X \ {x}, t)∆η(x, t). (4.2.13)

From last identity we conclude that (4.2.12) is equal to Eε
∑
x∈X ηε(X\x, t)∆εη̃(x, t),and by the definition of the

operator L0 last expression is equal to ε−2(L0v)(X, t).

Now we analyse the case when there are at least two neighbouring points in the set X . To simplify the

exposition, let us consider the set X = {x, x+ 1, y}, where y is not neighbour of x nor x+ 1. The generalization

to other types of sets is completely analogous. Note that

L0ηε(X, t) = L0

(
η̃(x, t)η̃(x+ 1, t)η̃(y, t)

)
= η̃(x, t)η̃(x+ 1, t)∆η(y, t)

+ η̃(y, t)L0

(
η(x, t)η(x+ 1, t)− ρε(x, t)η(x+ 1, t)− ρε(x+ 1, t)η(x, t)

)
= η̃(x, t)η̃(x+ 1, t)∆η(y, t)

+ η̃(y, t)
(
η(x− 1, t)η(x+ 1, t) + η(x, t)η(x+ 2, t)− 2η(x, t)η(x+ 1, t)

)
− η̃(y, t)ρε(x, t)∆η(x+ 1, t)− η̃(y, t)ρε(x+ 1, t)∆η(x, t).

By writing the term on the fifth line of last display in terms of the variables η̃ we get

L0ηε(X, t) = η̃(x, t)η̃(x+ 1, t)∆η(y, t)

+ η̃(y, t)
(
η̃(x− 1, t)η̃(x+ 1, t) + η̃(x, t)η̃(x+ 2, t)− 2η̃(x, t)η̃(x+ 1, t)

)
+ η̃(y, t)

(
ρε(x+ 1, t)η(x− 1, t) + ρε(x− 1, t)η(x+ 1, t)− ρε(x+ 1, t)ρε(x− 1, t)

)
+ η̃(y, t)

(
ρε(x, t)η(x+ 2, t) + ρε(x+ 2, t)η(x, t)− ρε(x+ 2, t)ρε(x, t)

)
+ η̃(y, t)

(
ρε(x+ 1, t)η(x, t) + ρε(x, t)η(x+ 1, t)− ρε(x+ 1, t)ρε(x, t)

)
− η̃(y, t)ρε(x, t)∆η(x+ 1, t)− η̃(y, t)ρε(x+ 1, t)∆η(x, t).

Note that the expectation with respect to Eε of the two terms on the right hand side of the last display is equal to

(L0v)(X, t). Note also that, in this case, the second term at the right hand side of (4.2.12) is equal to

Eεη̃(x, t)η̃(x+ 1, t)4ερε(y, t) + Eεη̃(y, t)η̃(x+ 1, t)4ερε(x, t) + Eεη̃(y, t)η̃(x, t)4ερε(x+ 1, t).

Putting together the previous computations, by a tedious, but simple computation, we can conclude that (4.2.12) is

equal to

Eε(L0v)(X, t)

+Eεη̃(y, t)
(
ρε(x, t)η(x+ 2, t) + ρε(x+ 2, t)η(x, t)− ρε(x+ 2, t)ρε(x, t)

)
+Eεη̃(y, t)

(
ρε(x+ 1, t)η(x, t) + ρε(x, t)η(x+ 1, t)− ρε(x+ 1, t)ρε(x, t)

)
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−Eεη̃(y, t)ρε(x, t)∆η(x+ 1, t)−Eεη̃(y, t)ρε(x+ 1, t)∆η(x, t)

−Eεη̃(x, t)η̃(x+ 1, t)4ερε(y, t) + Eεη̃(y, t)η̃(x+ 1, t)4ερε(x, t) + Eεη̃(y, t)η̃(x, t)4ερε(x+ 1, t).

A simple computation shows that last terms can be written exactly as defined in the operator A and this proves the

claim. Now, we are left with the boundary terms:

εθ

(
EεL±ηε(X, t)−Eε

∑
x∈X

ηε(X\x, t)D±ρε(x, t)

)
. (4.2.14)

We will study the term D+,1ρε(x, t) only, since for the others the analysis is completely analogous. Recalling that

the generator L+ acts on each η(x) we have

EεL+ηε(X, t) = Eε
∑
x∈X

ηε(X\x, t)L+η(x, t), (4.2.15)

where we recall that εθL+η(x, t) = εθ(βD+,1η(x, t)− δD+,0η(x, t)). That is, we will study

εθ

(
βEε

∑
x∈X

ηε(X\x, t)D+,1η(x, t)−Eε
∑
x∈X

ηε(X\x, t)D+,1ρε(x, t)

)
. (4.2.16)

In particular, we are interested in the quantity βD+,1η(x, t)−D+,1ρε(x, t). In the end we want to have v−functions,

thus we want to express the aforementioned quantity as a function of ρε as much as possible. Thus,

D+,1η(x, t) = (1− ρε(x, t)− (η(x, t)− ρε(x, t)))
N−1∏
y=x+1

((η(y, t)− ρε(y, t)) + ρε(y, t)) . (4.2.17)

By the distributive property the product term expands to all the combinations of products of |I+(x+ 1)| different

elements:

N−1∏
y=x+1

((η(y, t)− ρε(y, t)) + ρε(y, t)) =
∑

Z∈P(I+(x+1))

∏
z∈Zc

ρε(z, t)
∏
z∈Z

(η(z, t)− ρε(z, t)), (4.2.18)

where P(I+(x + 1)) are the parts of I+(x + 1). Now we separate the case where Z = ∅, that is, Zc are the

"diagonal" elements:

∏
z∈I+(x+1)

ρε(z, t) +
∑

Z∈P(I+(x+1))
Z 6=∅

∏
z∈Zc

ρε(z, t)
∏
z∈Z

(η(z, t)− ρε(z, t)),
(4.2.19)
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since
∏
∅ := 1. Replacing this in (4.2.16) we get:

εθEε
∑
x∈X

ηε(X\x, t)(βD+,1η(x, t)−D+ρε(x, t)) =

= εθEε
∑
x∈X

ηε(X\x, t)(β(1− ρε(x, t)− (η(x, t)− ρε(x, t)))(
∏

z∈I+(x+1)

ρε(z, t)+

+
∑

Z∈P(I+(x+1))
Z 6=∅

∏
z∈Zc

ρε(z, t)
∏
z∈Z

(η(z, t)− ρε(z, t)))−D+ρε(x, t))

= −εθβ
∑
x∈X

v(X, t)
∏

z∈I+(x+1)

ρε(z, t)− εθβ
∑
x∈X

∑
Z∈P(I+(x+1))

Z 6=∅

∏
z∈Zc

ρε(z, t)v(Z ∪X, t)−

− εθ(1− β)
∑
x∈X

v(X\x, t)D+ρε(x, t) + εθβ
∑
x∈X

∑
Z∈P(I+(x+1))

Z 6=∅

∏
z∈Zc

ρε(z, t)v(Z ∪ [X\x], t).

(4.2.20)

At this step, it is not difficult to derive the properties of B. We remark that we only used the term D+,1. For D+,0,

one derives an analagous expression, then after summing both we have the expression in the statement. Doing the

computations for the right boundary we are done.

4.2.2 Integral inequalities for the v−functions

By Duhamel’s formula and since v(X, t) is solution of (4.2.6) with v(X, 0) = 0, which is a consequence of

the fact that both the stirring process and the process in (4.1.3) start from the same configuration. We know that

v(X, t) = EX
[ ∫ t

0

(C(θ)
ε v)(X(s), t− s)) ds

]
=

∫ t

0

Ss(C
(θ)
ε v)(X(s), t− s)ds (4.2.21)

where St is the semigroup associated to the process X(t). We recall our discussion regarding the dual process, in

(2.0.43), and Proposition 4.1.3. To express the v-function in terms of transition probabilities for the process X(t),

we define

Pε(X
s−→ Y ) := Pε(X(s) = Y | X(0) = X), (4.2.22)

for X,Y ⊂ ΛN where |X| = |Y |. That is, Pε(X
s−→ Y ) is the probability that the process starts in X and arrives

in Y at time s. By partitioning the state space for the process at the time s, we can write

v(X, t) = EX
[ ∫ t

0

∑
Y

(C(θ)
ε v)(Y, t− s))1X(s)=Y ds

]
.

Using the linearity of the expectation and the fact that EX [1X(s)=Y ] = Pε(X
s−→ Y ) we, conclude that

v(X, t) =

∫ t

0

∑
Y

(C(θ)
ε )(Y, t− s)Pε(X

s−→ Y ) ds. (4.2.23)

On the following lemma we bound the terms associated to B±:

45



Lemma 4.2.3. Let

ψu := εθ−2
∑

Y,Z′⊂Iu

Pε(X
s−→ Y )1{Y ∩Iu 6=∅}b(Y ∩ Iu, Z

′)v([Y \(Y ∩ Iu)] ∪ Z ′, t− s). (4.2.24)

Then ∀n, ξ > 0 ∃c : ∀X ⊂ ΛN , |X| = n, s < t < log
(
ε−1
)

we have, for u = ±

|ψu| ≤
∑
Z′⊂Iu
∅6=X′′⊂X
W⊂Icu

1{|Z′|=0,|X′′|=1}c
cεθ−2

(ε−2s)|X′′|/2 + 1
Pε(X\X ′′

s−→W )|v(W ∪ Z ′, t− s)|.
(4.2.25)

Proof. Again, we consider only B+,1. Recalling Andjel’s inequality, (E.2.1), we decompose Y into an union of

two elements, one contained in the window I+ and another contained in the bulk: Y = W ∪ Z, where W ⊂ Ic+,

Z ⊂ I+, |Z| > 0 and clearly, |W ∪ Z| = |Y |. For simplicity, let us denote η(X) :=
∏
x∈X η(x). In this way the

transition probabilities decompose to

Pε(X
s−→ Y ) = P (X

s−→W ∪ Z) ≡ Pε(X(s) = Z ∪W | X(0) = X)

= Pε(ηs(Z ∪W ) | η0(X)).
(4.2.26)

Then, by (E.2.1) we get

Pε(X
s−→ Y ) = P (ηs(Z) = 1 | η0(X) = 1)P (ηs(W ) = 1 | η0(X) = 1). (4.2.27)

Now note that

P (ηs(Z) = 1 | η0(X) = 1) =

=
∑
Y ′:

|Y ′|=|X|
Z⊂Y ′

P (ηs(Z) = 1 | ηs(Y ′) = 1, η0(X) = 1)P (ηs(Y
′) = 1 | η0(X) = 1) ≤

∑
Y ′⊃Z

Pε(X
s−→ Y ′),

(4.2.28)

while for W ,

P (ηs(W ) = 1 | η0(X) = 1)

=
∑
Y :

|Y |=|X|
W⊂Y

P (ηs(W ) = 1 | ηs(Y ) = 1, η0(X) = 1)P (ηs(Y ) = 1 | η0(X) = 1)

≤
∑
Y⊃W

Pε(X
s−→ Y )

(4.2.29)

and we can see that

Pε(X
s−→ Y ) ≤

( ∑
Y ′⊃Z

Pε(X
s−→ Y ′)

)( ∑
Y⊃W

Pε(X
s−→ Y )

)
, (4.2.30)

by applying Andjel’s inequality to each W and Z fixed, then bounding each probability by their sum. By Ligget’s
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inequality ([21], pages 226− 228), we have

Pε(X
s−→ Y ′) ≤

∏
x∈X

∑
y∈Y ′

P (x
s−→ y). (4.2.31)

From (E.1.2) we have that for X = {x}, Y = {y} we have Pε(X
s−→ Y ′) = P

(ε)
s (x, y). Thus, we want to bound

∑
Y ′⊃Z

∏
x∈X

∑
y∈Y ′

P (ε)
s (x, y). (4.2.32)

By (E.1.2) this is bounded by c
(ε−2s)−|Z|/2+1

. To see this, first note that (in (E.1.2)) x − y ≥ 1. Doing a taylor

expansion in the exponential function and multiplying the terms, and noticing that (ε−2 + 1)|Z| ≥ ε|Z|/2 + 1 the

bound follows. Now rewrite the W term to the transition probability into W :

∑
Y⊃W

Pε(X
s−→ Y ) =

∑
X′⊂X

Pε(X
′ s−→W ) (4.2.33)

and we can now bound |ψ+| as follows:

εθ−2
∑

Y,Z′⊂I+
Y ∩I+ 6=∅

Pε(X
s−→ Y )|b(Y ∩ I+, Z ′)||v([Y \(Y ∩ I+)] ∪ Z ′, t− s)|

≤
∑

Y,Z′⊂I+
Y ∩I+ 6=∅

cεθ−2

(ε−2s)|Z|/2 + 1
(
∑
X′⊂X
|X′|=|W |

Pε(X
′ s−→W ))|b(Y ∩ I+, Z ′)||v([Y \(Y ∩ I+)] ∪ Z ′, t− s)|.

(4.2.34)

Noticing that Y ∩ I+ = Z , Y \[Y ∩ I+]∩Z ′ = W and recalling that |b(Z,Z ′)| ≤ c1{|Z|=1,|Z′|=0}c we can bound

the sum in Z ′ of the b terms by P(K). By the decomposition of Y , summing in Y is the same as summing in W

and Z, thus

∑
Z′⊂I+

∑
∅6=Z⊂I+

∑
W⊂Ic+:

|W∪Z|=|X|

c′εθ−2P(K)

(ε−2s)|Z|/2 + 1

∑
X′⊂X
|X′|=|W |

Pε(X
′ s−→W )1{|Z|=1,|Z′|=0}c |v(W ∪ Z ′, t− s)|.

(4.2.35)

Letting X ′ = X\X ′′ : |W | = |X\X ′′|, we have the bound in the statement.

We remark that the contribution of ε−2(Av)(X, t) still needs to be bounded. Before that, we will write the

labeled version of the bound in the previous lemma, and of (Av)(X, t). For that, we order arbitrarily the sites

of X , which will be denoted by x = (x1 . . . , xn). As seen before, v(X, t) is symmetric under the exchange of

position of particles, thus setting v(x, t) := v(X, t), we have that v(x, t) is symmetric under exchange of labels.

We denote by Eε,x the expectation with respect to the stirring process starting at time 0 from x (i.e., x ≡ x(0)).

We will sometimes write Eε,x ≡ Eε instead, when it is clear from the context. In this way, we denote the labeled

version of the following sets as X ′′ ≡ J and Z ′ ≡ z′, and noticing that the labeled version of

∑
W⊂Ic+:

|W |=|X\X′′|

Pε(X\X ′′
s−→W )|v(W ∪ Z ′, t− s)| is Eε,x

[
1{x(J)(s)⊂Ic±}

∣∣∣v(x(J)(s) ∪ z′, t− s
∣∣∣] ,

(4.2.36)
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we can rewrite the bound in Lemma 4.2.3 as:

∑
∅6=J⊂{1,...,n}

∑
z′⊂I±

1{|J|=1,|z′|=0}c
cεθ−2

(ε−2s)|J|/2 + 1
Eεx

[
1{x(J)(s)⊂Ic±}

∣∣∣v(x(J)(s) ∪ z′, t− s)
∣∣∣] , (4.2.37)

where x(J) is the labeled set X except the particles in J . Moreover, the labeled version of (Av) takes the form:

(Av)(x, t) :=
∑

xi,xj∈x
xi∼xj

[
(ρε(xi, t)− ρε(xj , t))(v(x(i), t)− v(x(j), t))− (ρε(xi, t)− ρε(xj , t))2v(x(i,j), t)

]
.

(4.2.38)

Remark 4.2.4. Note that on this expression we are evaluating ρε and v at time t with respect to the labeled

configuration/set x ≡ x(0) evolved up to t.

Putting the bound (4.2.37) in (4.2.21) with the labeled (Av) we get:

|v(x, t)| ≤
∫ t

0

ds

∑
u=±

∑
∅6=J⊂{1,...,n}

∑
z′⊂Iu

cεθ−2

(ε−2s)|J|/2 + 1
1{|J|=1,|z′|=0}c×

×Eε
[
1{x(J)(s)⊂Icu}

∣∣∣v(x(J)(s) ∪ z′, t− s
∣∣∣]+ ε−2Eε(Av)(x(s), t− s))

)
.

(4.2.39)

Remark 4.2.5. Note that it is the same as erasing the particles xj , j ∈ J either at time 0 or s. The particles can be

erased in the beggining since their labels must be completely new.

Recalling (E.1.4), we bound the gradients of ρε in (Av)(x, t−s) as in (4.4.10), and the squares of the gradients

as

(
c′

(ε−2t)1/2−ξ′ + 1

)2

≤ c

(ε−2t)1−ξ + 1
, (4.2.40)

by noticing that

((ε−2t)1/2−ξ′ + 1)2 = (ε−2t)1−2ξ′ + 1 + 2(ε−2t)1/2−ξ′ + 1 ≥ (ε−2t)1−ξ + 1. (4.2.41)

In this way we have the following bound for (Av):

Eε|(Av)(x(s), t− s)| ≤ c
∑

xi,xj∈x
xi∼xj

Eε

[
v(x(i)(s), t− s)− v(x(j)(s), t− s)

(ε−2(t− s))1/2−ξ + 1
+

v(x(i,j)(s), t− s)
(ε−2(t− s))1−ξ + 1

]
. (4.2.42)

Now we proceed to bound the "gradients" v(x(i), t) − v(x(j), t). For that, we will use the A/P process and, more

specifically, Lemma 4.1.6, by noticing that the function

fi,j(x, s) := (C(θ)
ε v)(x(s)\xi(s), t− s)− (C(θ)

ε v)(x(s)\xj(s), t− s) (4.2.43)

is antisymmetric under the exchange of i, j.
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Lemma 4.2.6.

∣∣∣v(x(i), t)− v(x(j), t)
∣∣∣ ≤ ∫ t

0

dsEε
[
1{τi,j≥s/2}×

×
∑
y

{
Pε(x

(j)(s/2)
s/2−−→ y) + Pε(x

(i)(s/2)
s/2−−→ y)

} ∣∣∣C(θ)
ε (y, t− s)

∣∣∣] . (4.2.44)

Remark 4.2.7. Pε(x(j)(s/2)
s/2−−→ y) = Pε(x(s/2) = y | x(0) = x(j)(s/2)) where x(j)(s/2) is the labeled

process starting from some x′(0) with particle j removed. So this means that we started from x′, evolved it up to

s/2, then set x = x(j)(s/2) and evolved it up to s/2 again. Thus, Pε(x(j)(s/2)
s/2−−→ y) is the probability to arrive

at y of the latter.

Proof. Recalling Lemma 4.1.6, letting fi,j(x, s) := (C
(θ)
ε v)(x(s)\xi(s), t− s)− (C

(θ)
ε v)(x(s)\xj(s), t− s), as

already mentioned, we have that fi,j(x, s) = −fj,i(x, s). Thus, if x(s) starts from x with both i, j particles we

have

v(x(i), t)− v(x(j), t) =

∫ t

0

dsEε

[
(C(θ)

ε v)(x(s)\xi(s), t− s)− (C(θ)
ε v)(x(s)\xj(s), t− s)

]
. (4.2.45)

Note that we are removing particle i, j at time s, since our process starts with both of them. By Lemma 4.1.6 we

have

∣∣∣v(x(i), t)− v(x(j), t)
∣∣∣ =

∣∣∣∣∫ t

0

dsEε
[
fi,j(x, s)1{τi∼j>s/2}

]∣∣∣∣ (4.2.46)

and we are almost done. Note that we could choose s/a for any a > 1. The choice s/2 is simply to uniformize the

bounds that we will get. Since

Eε

[
1{τi∼j>s/2}(C

(θ)
ε v)(x(s)\xi(s), t− s)

]
=

= EεEε,x(i)(s/2)

[
1{τi∼j>s/2}(C

(θ)
ε v)(x(s)\xi(s), t− s)

] (4.2.47)

we are done. Doing the same for (C
(θ)
ε v)(x(s)\xj(s), t − s) and applying the triangular inequality we have the

desired bound.

Recalling that C(θ)
ε := ε−2(A + εθB), we already have a bound for

∑
Y Pε(X

s−→ Y )|(B±v)(Y, t− s)| from

(4.2.37). Applying this bound for Pε(x(i)(s/2)
s/2−−→ y) and Pε(x(j)(s/2)

s/2−−→ y) we arrive at

∣∣∣v(x(i), t)− v(x(j), t)
∣∣∣ ≤

≤
∫ t

0

ds

∑
u=±

∑
∅6=J⊂{1,...,n}

∑
z′⊂I±

1{|J|=1,|z′|=0}c
c

(ε−2s/2)|J|/2 + 1
×

×Eε

[
1{x(J)(s)⊂Ic±}1{τi,j>s/2}

∣∣∣v(x(J)(s) ∪ z′, t− s)
∣∣∣]+

+ Eε

[
1{τi,j>s/2}ε

−2
{∣∣∣(Av)(x(i)(s), t− s)

∣∣∣+
∣∣∣(Av)(x(j)(s), t− s)

∣∣∣}]) ,
(4.2.48)

and we can use (4.2.38) to get a function of v-functions and bound ρε as in (E.1.4) again. Now, recalling that we
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have a bound for A from (4.2.42):

ε−2Eε(Av)(x(s), t− s) ≤

≤ cε−2
∑

xi,xj∈x
xi∼xj

Eε

[
v(x(i)(s), t− s)− v(x(j)(s), t− s)

(ε−2(t− s))1/2−ξ + 1
+

v(x(i,j)(s), t− s)
(ε−2(t− s))1−ξ + 1

]
,

(4.2.49)

we can bound again the v−functions as in (4.2.39) by

|v(x, t)| ≤
∫ t

0

ds

∑
u=±

∑
∅6=J⊂{1,...,n}

∑
z′⊂Iu

cεθ−2

(ε−2s)|J|/2 + 1
1{|J|=1,|z′|=0}c×

×Eε

[
1{x(J)(s)⊂Icu}

∣∣∣v(x(J)(s) ∪ z′, t− s
∣∣∣]+

+ cε−2
∑

xi,xj∈x
xi∼xj

Eε

[
v(x(i)(s), t− s)− v(x(j)(s), t− s)

(ε−2(t− s))1/2−ξ + 1
+

v(x(i,j)(s), t− s)
(ε−2(t− s))1−ξ + 1

] .

(4.2.50)

The idea is to iterate the bound for v with the inequalites above, truncating this recurrence at some step m. For a

better exposition, let us refer to the (first) bound for |v(x, t)| as

|vn(x, t)| ≤
∫ t

0

dsf1(vn−1, vn−2, vn−3, vn−J+z′ , t− s), (4.2.51)

where we write vn since we start with n particles, i.e. |x| = n. Similarly, we control the number of particles with

the other indexes on v. By the bound for
∣∣v(x(i), t)− v(x(j), t)

∣∣ and replacing theA′s by bounds on ρε and v, then

bounding v and so on, it is easy to see that we have successively bounds of this form:

|vn(x, t)| ≤
∫ t

0

dsf1(vn−1, vn−2, vn−3, vn−J1+z′1
, t− s)

≤
∫ t

0

ds

∫ t

t1

dt2f1(vn−2, vn−J1+z′1
, t− s)f2(vn−2, vn−3, vn−4, vn−1−J2+z′2

, t2)

≤
∫ t

0

ds

∫ t

t1

dt2

∫ t

t2

dt3f1(vn−J1+z′1
, t− s)f2(vn−3, vn−4, vn−1−J2+z′2

, t2)×

× f3(vn−3, vn−4, vn−5, vn−2−J3+z′3
, t3)

≤ · · ·

(4.2.52)

This recursion will be better quantified in the folowing section. Nevertheless, we can already note that we may

have some J and z′ sets such that our v function is empty in a finite number of iterations. Otherwise, we might

iterate the recursion above indefinitely. In this way, it will be important to consider a smart number of iterates and

check wheter we already have a nice bound for v, or if eventually our series of bounds explode.

4.3 The Truncated Hierarchy

In order to iterate (4.2.52), we will classify each term arising in the bounds that we derived in the previous sec-

tion, i.e., starting from the bound for |v(x, t)|, (4.2.50), which is a function of the gradient
∣∣v(x(i), t)− v(x(j), t)

∣∣,
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(4.2.48), and again of |v| but with less particles, etc. Thus, we need to classify the coefficients arising when we

"remove" 1 particle; remove 2 particles; remove or add a set of particles−and specify these sets. Fixed a number of

iterations m, each realization of these sucessive bounds is denoted by skeleton, that we define below inductively.

Thus, we are interested in the bounds comming from the sum of all these skeletons. In summary, we will associate

to each term of each sum of each iteration an index, then we sum over all possible combinations of indexes.

Finally, the series obtained by these finite number of iterations is denoted by the truncated hierarchy. Along

the way, we will need to quantify the time differences t− ti and ti− ti−1. This quantification will be artificial and

chosen as the more useful and simple possible. Defined this, we will specify when each particle is added/removed,

through a branching process, which in turn is defined by the A/P-process. Given the very many sets and sums

in each bound, it is good to interpret the skeletons as a stochastic process that determines additions and removals

of "particles" into/from our system, coupled with the jumps determined by the stirring process and boundary

dynamics.

Definition 4.3.1 (The skeleton). Each skeleton π is a sequence π = (πi)i=1:m(π), where m(π) ≡ m ≤ M , for

some M to be specified. Each i is a branching "time" (read time being discrete) and, fixed i, πi denotes which

particles die or are born. We will start with the particles A0 = {1, . . . , n} alive. In this way, at each time i we

will denote the set of alive particles by Ai, which are determined by the previous values of the skeleton, πj≤i (this

notation will be recurrent and denotes the set {πj}j≤i ). For each i, the term πi is a quadruplet

πi = (δi, Ji, ui, zi) (4.3.1)

where

• δi ∈ {0, 1, 2} - determines if we are going to have births and/or deaths and of which type;

• Ji - an increasing sequence of distinct integers such that |Ji| <∞ - determines the set of particles that die;

• ui ∈ {−, 0,+} - determines where particles are born/die;

• zi is a labeled configuration, with labels in J+
i - the new set of particles i.e., labeled births.

Say we already know πj<i. We define inductively πi as follows:

• δi = 0, 1 −→ ui = 0, zi = ∅, Ji = {ki, li} with ki < li,

δi = 1 −→ Ai = Ai−1\{ki, li},

δi = 0 −→ Ai = Ai−1\{li} i.e., the particle with the highest label in Ji dies.

Remark 4.3.2. Particles ki, li may not be neighbors.

• δi = 2 −→ ui 6= 0, Ji 6= ∅ Ai = (Ai−1\Ji) ∪ J+
i . Moreover, |Ji| = 1 −→

∣∣J+
i

∣∣ > 0

• m(π) < M −→ δm > 0, zm = ∅, |Jm| = |Am−1|, that is, Am = ∅, and we are considering the case

where all particles die (v ≡ v0).

• m(π) = M then AM is free: AM = ∅ ∨AM 6= ∅. It doesn’t matter since we will truncate it at this step.
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Remark 4.3.3. Note that we are considering m(π) to be the maximum number of iterations. That is, fixed

an integer M large "enough", at m(π) we are either without any particle (m(π) < M ), or we truncate our

series at the step M , (m(π) = M ). Thus, if m(π) = M we may have surviving particles at tM . Note also

that if Am = ∅, (i.e., |x(tm)| = 0) then we cannot define δm+1 = 2 since we would have Jm+1 6= ∅, neither

δm+1 = 0, 1, since we would have |Jm+1| = 2. Thus, the case where all particles die is well defined.

Now we define the times with respect to the stirring process that the particles are removed, according to the

skeleton π.

Definition 4.3.4 (The branching process). Given an initial configuration x ≡ x(0), a path ω ∈ Ω on the A/P-marks

space, that is, a realization of the process that defines x(·), steps m ≡ m(π) ≤M and times 0 = t0 < t1 < · · · <

tm < tm+1 =: t, and a skeleton π, we define x(t) by following the A/P-process in (ti, ti+1). At the endpoints, we

define as follows. At time ti:

• δi = 1 −→ particles xj(t−i ) with j ∈ Ji disappear from x(t−i );

• δi = 0 −→ particle with label ki remains alive, but the one with label li dies at the mid point of the time

interval [t,ti+1], that is, at time ti + (ti+1 − ti)/2;

• δi = 2 −→ we require that xj(t−i ) ∈ Icui for all j ∈ Ai−1\Ji. At time t+i we then add the particles zi.

Remark 4.3.5. Recall that the A/P-marks process does not remove particles at the boundaries, with jumps to

outside of ΛN being supressed.

Now that all the terms of the sums are defined in terms of skeletons, and the times at which we remove the

particles on the skeletons are defined in terms of the branching process, we will look at which coefficients we will

sum at each iteration. For simplicity, pi ≡ |Ji|, and the events Ri and Ti are defined as:

Ri := {xj(t−i ) ∈ Icui , j /∈ Ji} and Ti := {τki,li(ti) > (ti+1 + ti)/2}. (4.3.2)

• If δi = 0, we associate 1{xki∼xli}1Ti
ε−2

[ε−2(t−ti)]1/2−ξ+1
. That is, we are removing one particle (li), and

looking at the (Av) term in the last line of (4.2.48), after the bound from (4.2.49);

• If δi = 1, we associate 1{xki∼xli}
ε−2

[ε−2(t−ti)]1−ξ+1
. That is, we are removing two particles ({ki, li}), and

looking at the last term in the last line of (4.2.50).

• If δi = 2, we associate 1Ri
εθ−2

[ε−2(t−ti−1)]pi/2+1
. That is,

∣∣J+
i

∣∣ particles are born and |Ji| particles die, as in

the second line of (4.2.50).

In this way, bounding the v−functions by a constant on the iterations 1 : m = m(π), we define

wπ(x, t) :=

∫ t

0

dt1 · · ·
∫ t

tm−1

dtm
∏
|δi=0|

ε−2

[ε−2(t− ti)]1/2−ξ + 1∏
|δi=1|

ε−2

[ε−2(ti − ti−1)]
1−ξ

+ 1

∏
|δi=2|

εθ−2

[ε−2(t− ti)]pi/2 + 1

Eε

 ∏
|δi=0,1|

1{xki (ti)∼xli (ti)}
∏
|δi=0|

Ti
∏
|δi=1|

Ri

 ,
(4.3.3)
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where the products over the sets |δi = j| are defined as {i ≤ m : δi = j}. Recalling (4.2.52), it is clear that we

have |v(x, t)| ≤ c
∑
π wπ(x, t),for some constant c to be determined, dependent on the "in-out" rates, n and β∗.

Of course, for m(π) = M we may have
∣∣xb(t+M )

∣∣ > 0. These terms do not appear in the definition above because

we bounded them by 1.

Observing carefully wπ , note that if we ignore all constants and drop the +1 in the denominator, we are left

with successive integrals of the following form

∫ v

u

ds
1

(s− u)α(v − s)β
, (4.3.4)

with u < v, α, β < 1, which we know that are finite. Specifically, the integral above can be shown to be equal to

cα,β(v − u)1−(α+β). Thus, we want to control the difference 4ti := ti+1 − ti suitabily. For that, let us take a

quantity 4. Then, 4 ≥ t − tm or 4 > t − tm. We say that if 4tm ≤ 4, then the times cluster to t. Otherwise

(4tm > 4), we say that the times do not cluster to t. As we will see, when the times do not cluster, proofs are

simpler. When the times "cluster" to t, we will need to look only at the last cluster. For future reference, we state

this in the following definition.

Definition 4.3.6 (Cluster to t). Recall that the truncated hierarchy induces the partition [0, t] =
⋃

0≤i≤m[ti, ti+1],where

t0 := 0, tm+1 := t, and that4ti := ti+1− ti. Fixed m, for every skeleton πm let4≥ := {ti : 4 ≥ 4ti, i ≤

m}.

For such skeleton, for the smaller 0 ≤ H ≤ m possible, define

TH := {t1, . . . , tm | ∀i ≥ H ti ∈ 4≥, tH−1 /∈ 4≥}. (4.3.5)

Then the times CH := {tH , . . . , tm, t} are called the last cluster to t.

If we have H = 0 then CH = ∅ and, in particular, we have4 < t− tm. In this case, we say that the times do not

cluster to t.

In this way, denote the integrand in (4.3.3) by f1,...,m. Then differentiate the quantity in wπ (4.3.3) between

when we do not have clusters to t, or when we do, i.e., wπ(x, t) = w′π(x, t) + w′′π(x, t),where

w′π(x, t) :=

∫ t

0

dt1 · · ·
∫ t

tm−1

dtm1{tm<t−4}f1,...,m (4.3.6)

w′′π(x, t) :=

∫ t

0

dt1 · · ·
∫ t

tm−1

dtm1{tm≥t−4}f1,...,m. (4.3.7)

Moreover, we can decompose w′′π in quantities associated to each possible last cluster, by letting wπ(x, t) =∑
H≤m w

′′
π,H(x, t), where the integrand in w′′π is 1THf1,...,m. Note that the skeleton induces a partition of [0, t].

We will fix this partition as the uniform, i.e., ti − ti−1 = t
M+1 . The reason for this is mostly that this partition is

simple enough. As we will see in the following section, we will need that4 ≤ 1. For that, we will fix

4 =
t

M + 1
∧ εa, (4.3.8)

for some a > 0. The choice of a is only needed when we finally bound wπ(x, t), and therefore, the v−function.
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Specifically, in (4.5.44). Up to that point, we only need that4 ≤ 1. Nevertheless, let us already fix a = K
K+1 .

4.4 Bounds for the skeleton

Observing (4.3.3), note that we can bound the products in such a way that we get "full powers" of ε and4 now

that we can control the differences t − ti. In this way, the main problem is the expectation terms. We will solve

this by bounding inside the expectation, while taking advantage of the bounds that we already have for the events

inside the indicator function, from Theorem 4.1.7 and Proposition 4.1.8.

4.4.1 Bounds when times do not cluster

As mentioned in the previous section, we will bound the terms in w′π(x, t) in such a way to arrive at the integral

(4.3.4). This will be used in the main result of this section:

Proposition 4.4.1. ∀ξ > 0 ∃c such that ∀π : m = m(π) ≤M,x : |x| = n, ε > 0, t ≤ εβ∗ :

w′π(x, t) ≤ c(ε2t)−ξM4−S1(m)εS2(m)tS3(m)ε−S
(θ)
4 (m), (4.4.1)

where, for all i ≤ m

S1(m) = |δi = 1|+ 1

2
|δi = 0|,

S2(m) = |δi = 0, 1|+ |δi = 2, pi ≥ 2, δi−1 6= 0|,

S3(m) =
1

2
|δi = 1|+ |δi = 2, pi = 1|+ |δi = 2, pi ≥ 2, δi−1 = 0|,

S
(θ)
4 (m) = (1− θ) (|δi = 2, δi−1 > 0, pi ≥ 2|+ |δi = 2, δi−1 = 0, pi ≥ 2|+ |δi = 2, pi = 1|) .

(4.4.2)

To show this, the main problem is the expectation in the definition of wπ (the last line of (4.3.3)). Thus, we

will first show the following auxiliary result. Note that the definitions below are independent of θ.

Lemma 4.4.2. For π fixed and m = m(π), t0 := 0, tm+1 := t, and 1 ≤ h ≤ m,let

ψh :=
∏

δi≤h=0,1

1xki (ti)∼xli (ti)
∏

δi≤h=0

1Ti
∏

δi≤h=2

1Ri (4.4.3)

φh :=
∏

δi>h=0,1

1

ε−2(ti − ti−1)1/2 + 1

∏
δi>h=0

1

ε−2(ti+1 − ti)1/2 + 1
(4.4.4)

Defining ψ0 = φh = 1, and recalling that
∏
∅ := 1, we have that ∃c : ∀h ≤ m :

φhEεψh ≤ cφh−1Eεψh−1 (4.4.5)
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and in particular, Eεψh ≤ c′
∏

1≤i≤h
φi−1

φi
=: c′g1,...,h(t1, . . . , th) for some constant c′, where

g1,...,h(t1, . . . , th) :=
∏
|δi=0|

1

[ε−2(ti+1 − ti)]1/2 + 1

1

[ε−2(ti − ti−1)]
1/2

+ 1∏
|δi=1|

1

[ε−2(ti − ti−1)]
1/2

+ 1
.

(4.4.6)

Proof. For simplicity, note that

ψh = ψh−1

[
1xkh (th)∼xlh (th) (1Th,δh=0 + 1δh=1) + 1Rh,δh=2

]
. (4.4.7)

Let Ft := σ−algebra generated by the A/P-process in [0, t), and consider first the case δh = 0. Then we have

ψδh=0
h ≡ ψh = ψh−11xkh (th)∼xlh (th)1Th for h ≤ m.

⇒Eεψh = EεEFth

[
ψh−11xkh (t−h )∼xlh (t−h )1Th

]
= Eε

[
ψh−11xkh (t−h )∼xlh (t−h )EFth 1Th

]
, (4.4.8)

since Th /∈ Fth . Note that since we are conditioning on the σ-algebra with respect to the interval [0, t) with respect

to the marks process and x(s), the stirring process, we have the times t−h above. Recalling (4.1.7), since we are

conditioning on Fth , we may consider the configuration at the time th as the initial configuration and bound this

term as follows

EFth1Th ≤
c

(ε−24th
2 )1/2 + 1

=
21/2c

(ε−2(4th))1/2 + 21/2
≤ c′

(ε−2(4th))1/2 + 1
. (4.4.9)

For simplicity, let F+
th−1

:= Fth−1+ 1
24th−1

. Again by conditioning on this σ−algebra,

Eεψh−11xkh (t−h )∼xlh (t−h ) = EεEF+
th−1

[
ψh−11xkh (t−h )∼xlh (t−h )

]
= Eε

[
ψh−1EF+

th−1

1xkh (t−h )∼xlh (t−h )

]
,

(4.4.10)

where we conditioned on the time th−1+ 1
24th−1 because on this time we have ψh−1 ∈ F+

th−1
(from the definition

of ψ and Th−1). And by Proposition 4.1.8 we have

EF+
th−1

1xkh (t−h )∼xlh (t−h ) ≤
c

[ε−2(th − th−1)]1/2 + 1
, (4.4.11)

where to see this, one needs only to use the loss of memory property of the Markov processes. Collecting the terms

we get

Eεψh ≤
c

(ε−24th)1/2 + 1

c

(ε−24th−1)1/2 + 1
Eεψh−1. (4.4.12)
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Thus, recalling

φh =
∏

δi>h=0,1

c

(ε−24ti−1)1/2 + 1

∏
δi>h=0

c

(ε−24ti)1/2 + 1
= φh−1

c

(ε−24th−1)1/2 + 1

c

(ε−24th)1/2 + 1

(4.4.13)

we have the desired result. Now, for δh = 1 we have

ψδh=1
h = ψh−11xkh (t−h )∼xlh (t−h ). (4.4.14)

To get the result in the statement, simply take expectations and proceed as in (4.4.10). For δh = 2, simply bound

1Rh ≤ 1 and we have

ψδh=2
h = ψh−11Rh ≤ ψh−1. (4.4.15)

To get the quantity g1,...,h, compute the first ratio φh−1/ψh then proceed by induction just as if solving a geometric

recursion.

Proof of Proposition 4.4.1. From Lemma 4.4.2 since the times do not cluster to t, we have

w′π(x, t) ≤ c
∫ t

0

dt1 · · ·
∫ t−4

tm−1

dtmf1,...,m(t1, . . . , tm) (4.4.16)

where

f1,...,m(t1, . . . , tm) :=
∏
δi=1

ε−2

[ε−2(t− ti)]1−ξ + 1

1

[ε−2(ti − ti−1)]
1/2

+ 1∏
δi=0

ε−2

[ε−2(t− ti)]1/2−ξ + 1

1

[ε−2(ti − ti−1)]
1/2

+ 1

1

[ε−2(ti+1 − ti)]1/2 + 1∏
δi=2

εθ−2

[ε−2(ti − ti−1)]
pi/2 + 1

(4.4.17)

Note that ∀i t− ti > 4, since4 < t− tm < t− tm−1 < · · · < t.We can bound the terms in (4.4.17) as follows.

For the coefficient associated to δi = 1

ε−2

[ε−2(t− ti)]1−ξ + 1
<

ε−2

[ε−24]
1−ξ

+ 1
≤ ε−2ξ4ξ−1,

1

[ε−2(ti+1 − ti)]1/2 + 1
≤ ε

(ti+1 − ti)1/2
, (4.4.18)

for δi = 0 we have

ε−2

[ε−2(t− ti)]1/2−ξ + 1
≤ ε−2

[ε−24]
1/2−ξ

+ 1
≤ ε−2ξ4ξ−1/2ε−1. (4.4.19)

For δi = 2, we break in two cases. First, let δi−1 6= 0. Then, since pi/2 ≥ 1 > 1 − ξ, ∀ξ > 0, by the same

arguments as above we have

εθ−2

[ε−2(ti − ti−1)]
pi/2 + 1

1δi−1 6=0 ≤ 1pi≥2,δi−1 6=0
ε−2ξεθ

(ti − ti−1)1−ξ + 1pi=1,δi−1 6=0
ε−2ξεθ−1

(ti − ti−1)1/2−ξ . (4.4.20)
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For both pi = 1 and δi−1 = 0 we can bound by ε−2ξεθ−1

(ti−ti−1)1/2−ξ .

Thus we have the following bound:

f1,...,m(t1, . . . , tm) ≤
∏
δi=1

[ε−24]ξ4−1 ε

(ti − ti−1)1/2∏
δi=0

[ε−24]ξ4−1/2ε−1 ε

(ti+1 − ti)1/2

ε

(ti − ti−1)1/2

∏
δi=2

(
1δi−1 6=0,p1≥2

ε−2ξεθ

(ti − ti−1)1−ξ + (1pi≥2,δi−1=0 + 1pi=1)
ε−2ξεθ−1

(ti − ti−1)1/2−ξ

)
.

(4.4.21)

Looking only at the ξ terms, note that if did not have the terms ε−24, then we could bound the ξ terms uniformly

in M . In this way, now we take4 = εa ∧ t
M+1 , with a > 0, thus bounding4ξ by one and bounding the products

of the ε−2ξ uniformly in M , and we have that the expression in the previous display is bounded from above by

ε−2MξCθ(ε,4)f̂1,...,m(t1, . . . , tm), where

Cθ(ε,4) := ε|δi=1|+|δi=0|+θ(|δi=2,δi−1 6=0,pi≥2|)−(1−θ)(|δi=2,δi−1=0,pi≥2|+|δi=2,pi=1|)

(4−1)|δi=1|+ 1
2 |δi=0|

(4.4.22)

and

f̂1,...,m(t1, . . . , tm) :=
∏
δi=1

1

(ti − ti−1)1/2−ξ

∏
δi=2

1

(ti − ti−1)qi−ξ∏
δi=0

1

(ti+1 − ti)1/2

1

(ti − ti−1)1/2−ξ ,

(4.4.23)

where for simplicity we defined qi = 1, if δi−1 6= 0 ∧ pi ≥ 2, and qi = 1/2, if (pi ≥ 2 ∧ δi−1 = 0) ∨ pi = 1. In

this way, our bound for w′π takes the form:

w′π(x, t) ≤ cε−2MξCθ(ε,4)

∫ t

0

dt1 · · ·
∫ t−4

tm−1

dtm
∏
δi=1

1

(ti − ti−1)1/2−ξ

∏
δi=2

1

(ti − ti−1)qi−ξ∏
δi=0

1

(ti+1 − ti)1/2

1

(ti − ti−1)1/2−ξ ,

(4.4.24)

and we are finally in the step mentioned in (4.3.4). Iterating the integrals, and making a change of variables, one

can show that

∫ t

0

dt1 · · ·
∫ t−4

tm−1

dtmf̂1,...,m =

∫ t

0

dt1 · · ·
∫ t

tm−1

dtm1tm<t−4f̂1,...,m ≤ ctS (4.4.25)

with S ≥ 1
2 (|δi = 1|+ |δi = 2, pi = 1|+ |δi = 2, pi ≥ 2, δi−1 = 0|)− ξM.

4.4.2 Bounds when times cluster

We do not bound exactly as when the times do not cluster because now we may have t− ti < 4. In this way,

the factors (t − ti)−1/2 and (t − ti)−1 lead to a negative S in the final bound. Although this difficulty lies in the

final step of the proof and in a different argument, in the end the problem is completely analogous to consider the
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case θ < 1.

Definition 4.4.3 ("Old" particle set GH ). Recall that w′′π,H denotes the expression (4.3.3) restricted to the last

cluster CH , and that the times t1, . . . , tm ∈ TH . Recall also that δi < 2 ⇒ Ji = {ki, li} (from the definition of

skeleton (4.3.1)). Let

J0
H,i−1 := {{kj , lj} : δj = 0, H ≤ j < i}, (4.4.26)

that is, the set of pairs of particles that may die, from iterations H to i − 1. We define the index set GH as the

iterations after H where a particle ` was alive on iteration H − 1 and is set to die only on iteration i:

GH := {i ≥ H | δi = 0, 1,∃` ∈ AH−1 ∩ Ji : ` /∈ J0
H,i−1}. (4.4.27)

Note that in the definition of GH it is enough to consider δi = 0 and we do not need to set ` /∈ J1
H,i−1 (with

J1
· defined similarly), since on that case (see the definition of skeleton (4.3.1)) both particles {ki, li} would die

(and so their labels), and we would have AH−1 ∩ Ji = ∅. Moreover, let J+
H,i−1 be the particles that are born from

iterations H to i− 1, that is:

J+
H,i−1 :=

⋃
H≤j<i

J+
j . (4.4.28)

Then clearly we have that ` /∈ J+
H,i, where ` is the particle on the definition of GH . That is,

` /∈
(
J0,1
H,i−1 ∪ J

+
H,i−1

)
=: J 6=`, (4.4.29)

where J0,1
H,i−1 := J0

H,i−1 ∪ J1
H,i−1.

Recalling the definition of the "independent process" x0(s) (4.1.9), the auxiliary process y, where particles

collide and, most importantly, (4.1.17), we attributed a (random) priority list that determines which particles colide.

Letting the particle ` have the lowest priority we guarantee that this particle behaves as a simple random walker

from iterationsH to i−1 indepedent of any quantity. In this way, we can couple it with our stirring process, getting

independence in expectations to be determined, and random walk estimates. Together with Theorem 4.1.11, we

can show an analogous result to the one of Lemma 4.4.2.

Lemma 4.4.4. ∃c and ∀k, ∃c′ such that ∀H and t1, . . . , tm ∈ TH ; and ∀h : H ≤ h ≤ m we have

φ∗hEεψh ≤ cφ∗h−1Eεψh−1 + c′(ε−24)−k, (4.4.30)

where ψh is the same as in Lemma 4.4.2, and for h ≥ H:

φ∗h =
∏

i>h:i∈GH

1

[ε−24]1/4−ξ + 1

∏
i>h:δi=0

1

[ε−2(ti+1 − ti)]1/2 + 1 (4.4.31)

where for h < H we have φ∗h := φh as in (4.4.2).
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Proof. We start by considering the case h ≥ H and h /∈ GH . Recall that

ψh = ψh−1

[
1xkh (th)∼xlh (th) (1Th,δh=0 + 1δh=1) + 1Rh,δh=2

]
, (4.4.32)

and the events

Ri := {xj(t−i ) ∈ Icui , j /∈ Ji}, Ti := {τki,li(ti) > (ti+1 + ti)/2}. (4.4.33)

For δh = 0, 1 we can bound 1xkh (th)∼xlh (th) ≤ 1 and proceed to bound Eεψh = Eε [ψh−1 (1Th,δh=0 + 1δh=1)]

as in Lemma 4.4.2 to get:

Eεψ
δh=0
h ≤ Eε [ψh−11Th ] = EεEFth [ψh−11Th ] ≤ c

[ε−2(th+1 − th)]1/2 + 1
, (4.4.34)

while Eεψ
δh=1
h ≤ 1. For δh = 2 we bound 1Rh ≤ 1.

Now we consider the case h ≥ H and h ∈ GH . We factor: ψh = ψH−1ψ
6=l
H,hψ

`,+
H,h, where the lowerscript

restricts in ψ the products over H ≤ i < h and the upperscript restricts to the sets in (4.4.28) and (4.4.29)

ψ 6=`H,h :=
∏

H≤i<h:δi=0,1

1xli (ti)∼xki (ti)
∏

H≤i<h:δi=0

1Ti
∏

H≤i<h:δi=2

1xj(t−i )∈Icui , 6̀=j /∈Ji
, (4.4.35)

and ψ`,+H,h := ψ`H,h1Th where

ψ`H,h := 1xkh (th)∼xlh (th)

∏
H≤i≤h:δi=2

1x`(t−i )∈Icui
. (4.4.36)

We remark that ψ 6=`H,h ⊥⊥ x`(·). Bounding 1Th as in Lemma 4.4.2, we have

Eεψh = Eε

[
ψH−1ψ

6=`
H,hψ

`
H,h1Th

]
≤ c

Eε

[
ψH−1ψ

6=`
H,hψ

`
H,h

]
[ε−2(th+1 − th)]1/2 + 1

. (4.4.37)

Now we treat the expectation in the last inequality. Since h ∈ GH (hence implicit in ψ`H,h), we know the particle

` ∈ Jh = {kh, lh}. Without loss of generality let ` = lh. Again, by the law of total expectation we condition to

FtH−1
in order to bound the other terms, thus getting:

Eε

[
ψH−1EFtH−1

(
ψ 6=`H,hψ

`
H,h

)]
. (4.4.38)

Recalling (4.1.17) and the definition of branching process (4.3.4) we realize and couple the process x0(·) in each

interval ]ti,i+1 [ with i ≥ H − 1 with "births" (with new independent particles and new labels and priorities)

and "deaths" (with corresponding removal of labels) determined by π. Thus the process x0 starts from tH−1

with "initial" configuration x∗ = x(th). Giving ` the lowest priority we guarantee that it remains alive up to th

(see(4.1.17) and (4.4.27)). Moreover, particle ` has initial position x∗` . In this way, we will write

E∗
(
ψ 6=`H,hψ

`
H,h

)
:= EFtH−1

(
ψ 6=`H,hψ

`
H,h

)
. (4.4.39)
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Recall from (4.1.17) that we have

(
σ(`) = 1 ∧ x`(0) = x0

`(0)
)
⇒ Pε(x`(t) = x0

`(t)) = 1 ∀t ≥ 0, (4.4.40)

where σ = 1 is the lowest priority. In this way, if the particle ` has the same walk both in the independent process

and the original process, any stirring particle position xs, with m 6= ` and tH−1 ≤ s ≤ t is then a function of only

the independent processes x0
k(s), tH−1 ≤ s ≤ t and k 6= `. Thus, expression (4.4.39) becomes an expectation of

independent particles, since ∀i, t ≥ 0, xi(t) is completely determined by yi(s), s ∈ [0, t] and j : σ(j) ≤ σ(i)

(recall the other items in (4.1.17)). In order to exploit Theorem 4.1.11, we decompose the identity function as

1 = χ+ (1− χ), where

χ = 1|x`(th)−x0
`(th)|≤(ε24)1/4+ξ

∏
H≤i≤h:δi=2

1|x`(ti)−x0
`(ti)|≤(ε24)1/4+ξ . (4.4.41)

Now define the event χ`H,h := {∃i ∈ (δ[H,h] = 2) :
∣∣x`(ti)− x0

`(ti)
∣∣ > (ε24)1/4+ξ}. Then {χ = 0} =⋃

H≤j≤h χ
`
j . In this way, we have

P ∗(χ = 0) ≤
∑

i∈(δ[H,h]=2)

P ∗(
∣∣x`(ti)− x0

`(ti)
∣∣ > (ε24)1/4+ξ) (4.4.42)

and by Theorem 4.1.11, this is bounded by (h−H + 1)c(ε−24)−k = c′(ε−24)−k for any k > 1, where we used

the bound (ti − tH−1)−k ≤ (i− (H − 1))−k4−k ≤ 4−k. Using this, we have

E∗
(
ψ 6=`H,hψ

`
H,h

)
= E∗

(
ψ 6=`H,hψ

`
H,h(1− χ)

)
+ E∗

(
ψ 6=`H,hψ

`
H,hχ

)
≤ c′(ε−24)−k + E∗

(
ψ 6=`H,hψ

`
H,hχ

)
,

(4.4.43)

where we bounded ψ 6=`H,h, ψ
`
H,h ≤ 1 in the first expectation. Now we only need to worry with the last term in the

previous display. With a clear abuse of notation we will write {
∣∣x`(t−i )− Iui

∣∣ > 0} = {x`(t−i ) /∈ Iui} . In this

way, define the set F>i := {x ∈ ΛN : |x− Iui | > (ε−24)1/4+ξ}, that is, all the sites that are not in a radius of

(ε−24)1/4+ξ from any point of Iui . Define also (δH,h = 2)`
0 /∈F := {k ∈ (δ[H,h] = 2) : x0

`(tk) /∈ F>k } i.e., all the

iterations H ≤ k ≤ h where δk = 2 and the independent particles are in a radius smaller or equal to (ε−24)1/4+ξ

from some point of Iui . Finally, define

ω =

i , i = min(δH,h = 2)`
0 /∈F

h , (δH,h = 2)`
0 /∈F = ∅.

(4.4.44)

The variable above gives the first step when an independent particle is in the aforementioned radius, if such event

ever happens, or takes the value h if that never happens. It is clear that
∑
i∈(δ[H,h]=2) 1ω=i = 1.

We consider first the case ω < h. In this case we have

E∗

ψ 6=`H,hψ`H,hχ(
∑

i∈(δ[H,h]=2)

1ω=i)

 =
∑

i∈(δ[H,h]=2)

E∗
(
ψ 6=`H,hψ

`
H,hχ1ω=i

)
. (4.4.45)
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Looking at the summand in the expression above, we can bound ψ`H,hχ ≤ 1, thus getting

E∗
(
ψ 6=`H,hψ

`
H,hχ1ω=i

)
≤ E∗

(
ψ 6=`H,h1ω=i

)
. (4.4.46)

Treating the indicator function, we get:

{ω = i} = {i = min(δH,h = 2)`
0 /∈F } =

⋂
k∈(δH,h=2)

{k : x0
`(tk) /∈ Fk, k ≥ i}. (4.4.47)

Thus, 1ω=i ≤ 1x0
`(ti)/∈Fi . Moreover, ψ 6=`H,h ⊥⊥ x0

` ⇒ ψ 6=`H,h ⊥⊥ f(x0
`) and we can take the expectation of the product

as the product of expectations in (4.4.46):

E∗ψ 6=`H,hP
∗(ω = i) ≤ E∗ψ 6=`H,hP

∗(x0
`(ti) /∈ Fi), (4.4.48)

and one can bound P ∗(x0
`(ti) /∈ Fi) ≤ c

(ε−24)1/4−ξ+1
. Now we consider the case ω = h. Recall that we want

to bound
∑
i∈(δ[H,h]=2) E

∗
(
ψ 6=`H,hψ

`
H,hχ1ω=i

)
, and, in particular, the summand E∗

(
ψ 6=`H,hψ

`
H,hχ1ω=i

)
, where

ψ`H,h = 1xkh (th)∼xlh (th)

∏
H≤i≤h:δi=2 1x`(t−i )∈Icui

. Note that ∀i ∈ (δ[H,h] = 2) with i < h, by the definition of ω

and χ we have 1x`(ti)/∈Iuiχ1ω=h = χ1ω=h.

Now let us focus in the term 1xkh (th)∼xlh (th)χ1ω=h. Note that,

|x`(th)− xkh(th)| =
∣∣x0
`(th)− xkh(th)− (x0

`(th)− x`(th))
∣∣ ≥ ∣∣x0

`(th)− xkh(th)
∣∣− ∣∣(x0

`(th)− x`(th))
∣∣.

(4.4.49)

If
∣∣(x0

`(th)− x`(th))
∣∣ ≤ (ε−24)1/4+ξ and x`(th) ∼ xkh(th), the inequality above takes the form

∣∣x0
`(th)− xkh(th)

∣∣ ≤ 1 + (ε−24)1/4+ξ (4.4.50)

and we can bound 1xkh (th)∼xlh (th)χ1ω=h ≤ 1|x0
`(th)−xkh (th)|≤1+(ε−24)1/4+ξχ1ω=h. Bounding χ1ω=h ≤ 1 we

get

E∗
(
ψ 6=`H,hψ

`
H,hχ1ω=h

)
≤ E∗

(
ψ 6=`H,hψ

`
H,h1|x0

`(th)−xkh (th)|≤1+(ε−24)1/4+ξ

)
. (4.4.51)

Now we can follow x` by conditioning on the σ−algebra generated by all the other variables x0
j , j 6= `, that is

F 6=,`. This way, and recalling that we have already bounded ψ`H,h, we have ψ 6=`H,h ∈ F6=,` and

E∗
(
ψ 6=`H,hψ

`
H,h1|x0

`(th)−xkh (th)|≤1+(ε−24)1/4+ξ

)
≤ E∗

(
ψ 6=`H,hEF6=,`1|x0

`(th)−xkh (th)|≤1+(ε−24)1/4+ξ

)
.

(4.4.52)

Since, under F6=,`, the particle x0
` is a simple random walker we can bound

EF6=,`

(
1|x0

`(th)−xkh (th)|≤1+(ε−24)1/4+ξ

)
≤ c

(ε−24)1/4−ξ + 1
. (4.4.53)
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Noticing that Eε(ψH−1ψ
6=`
H,h) = Eεψh−1, one can collect all the estimates to get the final bound in the statement.

Now we have all the ingredients to prove an analogous bound of Proposition 4.4.1. The arguments for the

proof are analogous, except for one step. Recall that in Lemma 4.4.4 we have the term c′(ε−24)−k for any k.

In this way, in the bound above we chose k large enough for this term to be negligible. Then, one may proceed

analagously to Lemma 4.4.4 to show the bound below.

Proposition 4.4.5. ∀ξ > 0∃ c : ∀π such that m = m(π) ≤M,x : |x| = n, ε > 0, t ≤ εβ∗ we have

w′′π,H(x, t) ≤
{
c(ε2t)−Mξ4−S1(H−1)εS2(H−1)tS3(H−1)ε−S

(θ)
4 (H−1)

}
×

×
{
c(ε24)−Mξ(ε−24)−

1
4 |GH |4

1
2 |δi≥H=2|ε(θ−1)|δi≥H=2|

}
,

(4.4.54)

with the Sk(·) exponents as in Proposition 4.4.1:

S1(H − 1) = |δi = 1|+ 1

2
|δi = 0|,

S2(H − 1) = |δi = 0, 1|+ |δi = 2, pi ≥ 2, δi−1 6= 0|,

S3(H − 1) =
1

2
|δi = 1|+ |δi = 2, pi = 1|+ |δi = 2, pi ≥ 2, δi−1 = 0|,

S
(θ)
4 (H − 1) = (1− θ) (|δi = 2, δi−1 > 0, pi ≥ 2|+ |δi = 2, δi−1 = 0, pi ≥ 2|+ |δi = 2, pi = 1|) ,

(4.4.55)

with i ≤ H − 1.

4.5 Proof of the v-functions estimate

Now the main idea is to play with the exponents in such a way that the desired bound arises. If m = M , then

the idea is to bound the terms in order to get an expression slightly larger than M in the exponent. In this way, we

may bound the exponent from below by M and then choose M accordingly. If m < M , then the arguments are

different. The idea is to bound directly in terms of n, thus the arguments will rely in inequalities relating the final

balance of particles. In order to give the reader some intuition for the following computations, we will derive some

inequalities that will be useful for the following proofs.

• Let m(π) = M and w′π:

M = |δi = 0|+ |δi = 1|+ |δi = 2| (4.5.1)

M ≤ |δi = 1|+ |δi = 0|+ |δi = 2, pi ≥ 2|+ |δi = 2, pi = 1| (4.5.2)

n− (|δi = 1|+ |δi = 0|) + (K − 1)|δi = 2, pi ≥ 2| ≥ 0 (4.5.3)

The first equality is the definition ofM . For the second, we simply break |δi = 2| in two. For the last, note that for

m(π) = M we did not kill all the particles. Thus, we have a positive balance of particles: n−deaths+birhts ≥ 0.

For δi = 0, 1, the total number of deaths is 2|δi = 1| + |δi = 0|. For δi = 2 we know that pi = 1 ⇒
∣∣J+
i

∣∣ >
0, thus we have b1|δi = 2, pi = 1| births under these conditions (for some b1 > 0). Trivially, we have under
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these conditions |δi = 2, pi = 1| deaths. Recall that if pi ≥ 2 then J+
i might be empty. Thus, we have at least

2|δi = 2, pi ≥ 2| deaths (exactly d|δi = 2, pi ≥ 2| for some d ≥ 2) and b2|δi = 2, pi ≥ 2| births, for some b2 ≥ 0.

Since we may have at most, K births per step, we know that 0 ≤ b1, b2 ≤ K. Finally, we conclude that

n− 2|δi = 1| − |δi = 0|+ (b1 − 1)|δi = 2, pi = 1|+ (b2 − d)|δi = 2, pi ≥ 2| ≥ 0 (4.5.4)

For some constants b1, b2, d.

Since M is fixed, the number of skeletons is finite. In this way, recalling that |v(x, t)| ≤ c
∑
π wπ(x, t), it

suffices to show the bounds

max
π

w′π(x, t) ≤ c(ε−2t)−c
∗n, max

π,H
w′′π,H(x, t) ≤ c(ε−2t)−c

∗n (4.5.5)

Recalling Proposition 4.4.1, we have:

w′π(x, t) ≤ c(ε2t)−ξM4−S1(m)εS2(m)tS3(m)ε−S
(θ)
4 (m) (4.5.6)

• m(π) = M,w′π,4 = εa, θ = 1.

Note that since t ≤ 1, we have tS3(m) ≤ t 1
2 |δ2=2,pi=1|. Rearranging (4.5.6):

w′π(x, t) ≤ c(ε2t)−Mξ[ε4−1]|δi=1|4− 1
2 |δi=0|ε|δi=0|+|δi=2,pi≥2,δi−1 6=0|t

1
2 |δi=2,pi=1|. (4.5.7)

Since all the terms are of order of ε, and a < 1 on the definition of 4, the idea is to group ε,4 as [ε4− 1
2 ]k for

some k function of δi not present in the t and ε4−1 terms. In this way, we can bound the exponents to something

"close" to M :

4− 1
2 |δi=0|ε|δi=0|+|δi=2,pi≥2,δi−1 6=0| ≤ 4− 1

2 |δi=0|ε|δi=0|+|δi=2,pi≥2| = [ε4− 1
2 ]

1
2 (|δi=0|+|δi=2,pi≥2|)

ε
1
2 |δi=0|+|δi=2,pi≥2,δi−1 6=0|− 1

2 |δi=2,pi≥2|4 1
4 |δi=2,pi≥2|+ 1

4 |δi=0|.
(4.5.8)

Now note that4 1
4 |δi=2,pi≥2|+ 1

4 |δi=0| ≤ 1 and

ε
1
2 |δi=0|+|δi=2,pi≥2,δi−1 6=0|− 1

2 |δi=2,pi≥2| ≤ ε 1
2 (|δi=0|+|δi=2,pi≥2,δi−1 6=0|−|δi=2,pi≥2|), (4.5.9)

where we can bound the last expression by 1 with the following argument. For sets A,B,C we have

|A ∩B| = |A ∩B ∩ (C ∪ Cc)| ≤ |A ∩B ∩ C|+ |A ∩B ∩ Cc|. (4.5.10)

Letting A ≡ {δi = 2}, B ≡ {pi ≥ 2} and C ≡ {δi−1 > 0} we have

|δi = 0|+ |δi = 2, pi ≥ 2, δi−1 > 0| ≥ |δi = 2, pi ≥ 2|, (4.5.11)

and we get w′π(x, t) ≤ c(ε2t)−Mξ[ε4−1]|δi=1|[ε4− 1
2 ]

1
2 (|δi=0|+|δi=2,pi≥2|)t

1
2 |δi=2,pi=1|. Since t ≤ εβ

∗
we can
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set εb := max{ε4−1, [ε4− 1
2 ]

1
2 , ε

1
2β
∗} to get

w′π(x, t) ≤ c(ε−2t)−Mξ[εb]|δi=1|+|δi=0|+|δi=2,pi≥2|+|δi=2,pi=1|. (4.5.12)

By the same argument as (4.5.10) the exponent on εb is bounded from below by M . Applying the bound on f we

have w′π(x, t) ≤ c(ε2+β∗)−MξεMb, and we can choose bM ≥ 2n to get w′π(x, t) ≤ c′εn . Taking ξ small enough

and c∗ < 1/2 the proof is done.

• m(π) = M,w′π,4 = εa, θ > 1.

Note that for this case −Sθ4(m) ≥ 0. Instead of bounding ε−S
θ
4 (m) ≤ 1 we shall do a little better. Recalling (4.5.1)

note that

|δi = 0|+ |δi = 1|+ |δi = 2, pi ≥ 2| ≤M. (4.5.13)

In this way, we have that

|δi = 2, pi ≥ 2| ≥ |δi = 1|+ |δi = 0|
K − 1

− n

K − 1
. (4.5.14)

replacing |δi = 2, pi ≥ 2| in (4.5.13) we get

(|δi = 1|+ |δi = 0|)(1 +
1

K − 1
) ≤M +

n

K − 1
⇔ |δi = 1|+ |δi = 0| ≤MK − 1

K
+
n

K
. (4.5.15)

Thus, we can relate δi = 2 and M,K, n through a nice bound:

|δi = 2| = M − (|δi = 0|+ |δi = 1|) ≥M(1− K − 1

K
)− n

K
≥ |δi = 2| ≥ M − n

K
. (4.5.16)

Now note that S(θ)
4 (m) ≥ (1− θ)|δi = 2| ≥ (θ − 1)M−nK . This way, we can bound

εS
(θ)
4 (m) ≤ ε(θ−1)M−nK . (4.5.17)

Proceeding exactly as for the case θ = 1 and leaving the term above be still, we arrive at

w′π(x, t) ≤ c(ε2+β∗)−MξεMb+(θ−1)M−nK . (4.5.18)

Looking at the exponent: Mb+(θ−1)(M−n)/K = (M(bK + θ − 1)− (θ − 1)n) /K, one can chooseMbK ≥

n(θ − 1) to get w′π(x, t) ≤ c′εc∗θn for ξ small enough .

• m(π) = M,w′π,4 = t
M+1 , θ = 1

Rearrange (4.5.6) to:

w′π(x, t) ≤ c(ε2t)−Mξ[t1/2]|δi=2,pi=1|+|δi=2,pi≥2,δi−1=0|ε|δi=2,pi≥2,δi−1 6=0|

ε|δi=0|+|δi=1|[4−1]|δi=1|+ 1
2 |δi=0|[t1/2]|δi=1|.

(4.5.19)
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We can group and bound the last three terms as follows:

[εt−1/2]|δi=0|+|δi=1|[t4−1]|δi=1|+ 1
2 |δi=0| ≤ [εt−1/2]|δi=0|+|δi=1|, (4.5.20)

since4 is of order of t. Thus,

w′π(x, t) ≤ c(ε2t)−Mξ[εt−1/2]|δi=0|+|δi=1|ε|δi=2,pi≥2,δi−1 6=0|[t1/2]|δi=2,pi=1|+|δi=2,pi≥2,δi−1=0|. (4.5.21)

Recall that we are considering only "small" times, t ≤ εβ
∗
. This way, εt−1/2 ≤ ε1−

1
2β
∗

and if β∗ ≤ 2 we can

bound [εt−1/2]|δi=0|+|δi=1| ≤ 1.

Remark 4.5.1. Note that β∗ ≤ 2 means that our bounds are good only for t ∈ [ε2, εβ ]. For t ≤ ε2 we bound the

v-functions by 1.

With the bound mentioned above we have

w′π(x, t) ≤ c(ε2t)−Mξε|δi=2,pi≥2,δi−1 6=0|[t1/2]|δi=2,pi=1|+|δi=2,pi≥2,δi−1=0|. (4.5.22)

Again, note that t ≥ ε2 ⇒ t−Mξ ≤ ε−2Mξ ⇒ (ε2t)−Mξ ≤ (ε2)−4Mξ. This way we have only powers of ε, but no

δi = 0, 1 to relate with M . Still, we can apply (4.5.16) to get powers of M,n and K:

w′π(x, t) ≤ cε−4Mξε|δi=2,pi≥2,δi−1 6=0|+ β∗
2 (|δi=2,pi=1|+|δi=2,pi≥2,δi−1=0|). (4.5.23)

Now note that ε2 ≤ εβ
∗ ⇒ ε ≤ εβ

∗/2 thus, we have ε|δi=2,pi≥2,δi−1 6=0| ≤ ε
1
2β
∗(|δi=2,pi≥2,δi−1 6=0|), and we can

bound

w′π(x, t) ≤ cε−4Mξε
β∗
2 (|δi=2,pi≥2,δi−1 6=0||δi=2,pi=1|+|δi=2,pi≥2,δi−1=0|)

≤ cε−4Mξε
β∗
2 |δi=2| ≤ cε−4Mξε

β∗
2K (M−n).

(4.5.24)

Letting β∗

2KM ≥ 3nK we get w′π(x, t) ≤ cε−4Mξε2n. Taking ξ small enough and c∗ < 1/2 we get the result in

(4.5.5).

• m(π) = M,w′π,4 = t
M+1 , θ > 1

The result follows by simply applying (4.5.17):

εS
(θ)
4 (m) ≤ ε(θ−1)M−nK , (4.5.25)

and proceeding exactly as we did for θ = 1. In the end we get

w′π(x, t) ≤ cε−4Mξε
β∗
2K (M−n)ε(θ−1)M−nK = cε−4Mξε

β∗+2(θ−1)
2K (M−n) (4.5.26)

Now we may take, for example M > 2Kn.

• m(π) < M,w′π,4 = t
M+1 , θ = 1.
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Recall that for m(π) < M all particles have died on iteration m - there is no more v-function. In this way, we have

n− 2|δi = 1| − |δi = 0|+ (b1 − 1)|δi = 2, pi = 1|+ (b2 − d)|δi = 2, pi ≥ 2| ≤ 0, (4.5.27)

and we have that

n ≤ 2|δi = 1|+ |δi = 0|+K|δi = 2, pi ≥ 2|. (4.5.28)

Multiplying and dividing (4.5.6) by t
1
2 |δi=2,pi≥2,δi−1 6=0| and rearranging the terms we have

w′π(x, t) ≤ c(ε2t)−Mξ(εt−1/2)|δi=0|+|δi=1|+|δi=2,δi−1 6=0,pi≥2|

t
1
2 (|δi=2,pi=1|+|δi=2,pi≥2|)t|δi=2,δi−1 6=0,pi≥2|(t4−1)

1
2 |δi=0|+|δi=1|.

(4.5.29)

Since4 is of the order of t, we bound the last line on the previous display by a constant. By (4.5.28) and factoring

|δi = 2, p1 ≥ 2| as in (4.5.11) we get

(K + 1)|δi = 0|+ 2|δi = 1|+K|δi = 2, pi ≥ 2, δi−1 > 0| ≥ n. (4.5.30)

Since

|δi = 0|+ |δi = 1|+ |δi = 2, δi−1 6= 0, pi ≥ 2| ≥

≥ |δi = 0|+ 2

K + 1
|δi = 1|+ K

K + 1
|δi = 2, δi−1 6= 0, pi ≥ 2| ≥ n

K + 1
,

(4.5.31)

we automatically have the bound w′π(x, t) ≤ c(ε2t)−ξM (εt−1/2)
n

K+1 , which is consistent with (4.5.5) if we have

that c∗ < 1
2(1+K) .

• m(π) < M,w′π,4 = εa, θ = 1

Bounding tS3(m) by one and rearranging the terms we arrive at

w′π(x, t) ≤ c(ε2t)−ξM (ε4−1)|δi=1|(ε4− 1
2 )|δi=0|ε|δi=2,pi≥2,δi−1>0|

= c(ε2t)−ξM (ε
1
24− 1

2 )2|δi=1|(ε4− 1
2 )|δi=0|[ε

1
K ]K|δi=2,pi≥2,δi−1>0|

≤ c(ε2t)−ξM max
(
ε

1
24− 1

2 , ε4− 1
2 , ε

1
K

)n
.

(4.5.32)

For the choice of a = K
K+1 , one can check that the dominant term is ε

1
24− 1

2 , and we have the bound c(ε2t)−ξM ε
n

2(K+1) .

Provided c∗ < 1
4(K+1) , this bound is compatible with (4.5.5).

The main problem with considering θ > 1 is the inequality (4.5.30). When m(π) = M , after bounding the

terms we still have to choose M , thus we can treat the terms involving θ separatedly, and in the end choose a

number of iterations M such that the bound is as expected. This is possible because we can relate |δi = 2| with

both M and n. When m < M , however, we lose a "variable" and we have inequalities only relating n and the

other terms, |δi = 0, 1|. While we could then group all the terms, and in the end have a bound for w′π where the

exponent is of the order of θ, whenever we try to group the terms, in the end the parameter θ ends up having no

real effect in our bounds. For the case below, the argument is slightly different from the above, but it is also based
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on (4.5.30), which leads again for our bounds to fail. Of course, the same holds for the bounds for w′′π,H(x, t). In

terms of computations, we found the problem of getting a bound for wπ of order εθn similar to the one for θ < 1.

The idea to treat the exponents when θ < 1 was to group them in such a way that, if m = M , we choose M

accordingly, or if m < M , derive appropriate inequalities. While for m < M we can further restrict the interval

for t such that ε−θt ≥ 1 (which is, clearly, not optimal), when m = M we have the same issue: while for θ > 1

we lose the order of the exponent, for θ < 1 we have to make more restrictions, and in the end our bounds are

not useful. We know from the original article, [24], that this method does not work for θ = 0. Still, one might

expect that works for some non trivial interval in (0, 1). Unfortunately, to our knowledge, this is not the case. For

θ > 1, our conjecture is very reasonable, and since this method works for m = M , there might sill be something

missing. Now that we exposed, in specific, the issue with both θ < 1 an θ > 1, for the following cases we will

bound ε−S
θ
4 (m) by 1, and conclude the exposition of [24].

For each case, the arguments for bounding w′′π(x, t) are very similar to the ones used to bound w′′π(x, t). We

"play" with the exponents and use analogous bounds for the terms in the last cluser. The remaining terms are

bounded similarly. We recall that from Proposition 4.4.5 we have

w′′π,H(x, t)
{
≤ c(ε2t)−Mξ4−S1(H−1)εS2(H−1)tS3(H−1)ε−S

(θ)
4 (H−1)

}
×

×
{
c(ε24)−Mξ(ε−24)−

1
4 |GH |4

1
2 |δi≥H=2|ε(θ−1)|δi≥H=2|

}
,

(4.5.33)

with the Sk(·) exponents as in Proposition 4.4.1

• m(π) = M,w′′π,H ,4 = εa, θ ≥ 1.

Let |δi = j|<H : |i < H : δi = j| and |δi = j|≥H := |i ≥ H : δi = j| (the definition is analogous for any other

set). If, for example, we have H ≥ M
2 , then we can bound the second factor in (4.4.5) to get

w′′π,H(x, t) ≤ c(ε−2t)−ξM εb(H−1) ≤ c(ε−2t)−ξM ε
b
2 (M−2), (4.5.34)

where we proceeded exactly as for the analogous case for w′π , thus, b is the same. Choosing M such that 1
2b(M −

2) > 2n we get w′′π,H(x, t) ≤ c(ε−2t)−ξM εn, where we need only that c∗ < 1/2.

If H < M
2 , we bound the first factor in (4.5.33) by 1 to get

w′′π,H(x, t) ≤ c(ε−2t)−ξM (ε24)−
1
4 |GH |4

1
2 |δi=2|≥H = [(ε24)−

1
8 ]2|GH |[4 1

2 ]|δi=2|≥H . (4.5.35)

Since

− 2GH + |δi = 0, 1, {ki, li} ∩AH−1 6= ∅|≥H ≤ 0,

− |δi = 0, 1, {ki, li} ∩AH−1 = ∅|+K|δi = 2|≥H ≥ 0,
(4.5.36)

we have that

w′′π,H(x, t) ≤ c(ε−2t)−ξM max
(

[(ε24)−
1
8 ],4 1

2

)2|GH |+|δi=2|≥H
. (4.5.37)
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Denoting the maximum by εb
′
, and applying the bounds in (4.5.36), we have

w′′π,H(x, t) ≤ c(ε−2t)−ξM εb
′(|δi=0,1,{ki,li}∩AH−1 6=∅|≥H+|δi=2|≥H). (4.5.38)

Now assume that |δi = 0, 1, {ki, li} ∩AH−1 6= ∅|≥H ≥
1
2 |δi = 0, 1|≥H . Then, from (4.5.36) we get that |δi = 2|≥H ≥

1
2K |δi = 0, 1|≥H , and

|δi = 0, 1, {ki, li} ∩AH−1 6= ∅|≥H + |δi = 2|≥H ≥
1

2
|δi = 2|≥H +

1

4K
|δi = 0, 1|≥H

≥ M −H
4K

≥ M

8K
,

(4.5.39)

where we used that K > 1, and this case is done. Now say that we have |δi = 0, 1, {ki, li} ∩AH−1 6= ∅|≥H <

1
2 |δi = 0, 1|≥H . Then we can simply bound as follows

εb
′(|δi=0,1,{ki,li}∩AH−1 6=∅|≥H+|δi=2|≥H) ≤ ε 1

2 b
′(M−H). (4.5.40)

Taking M such that M −H ≥M/2 we are done.

• m(π) = M,w′′π,4 = t
M+1 , θ ≥ 1

For the first factor in (4.5.33) we bound as in w′π . For the second, we bound everything by4|δi=2|≥H to get

w′′π,H(x, t) ≤ cε−4ξM ε
1
2β
∗|δi=2|<H4|δi=2|≥H . (4.5.41)

Now that the exponents are only functions of δi = 2, one can use the same argument as in the analogous case for

w′π . In the end, we will need c∗ < 1/2. We remark that these arguments are exactly the ones we want to use to

show the specific bound already mentioned, for θ > 1, since S(θ)
4 (m) is function of essentially δi = 2, and also

works for4 = εa. As already mentioned, the problem lies in the case m < M .

• m(π) < M,w′′π,4 = εa, θ ≥ 1.

Since all particles die before the iteration M , we derive the analogous of (4.5.28). Recalling the definiton of GH

in (4.4.27), since for every particle l ∈ AH−1 ∃i ≥ H : δi = 0, 1, l ∈ {ki, li}, it is not difficult to see that we have

|AH−1| ≤ 2|GH |+K|δi = 2|. (4.5.42)

The terms in the first factor can be bounded as in the analogous case for w′π . Thus, the bound arising from these

terms is ε
1

2(K+1)
(n) ≤ ε

1
2(K+1)

(n−|AH−1|), modulo the (ε2t)−ξM term. We used the last bound in order to group it

with the one from the last cluster, as we will see. The terms from CH , the second factor, can be bounded as follows

(ε24)−
1
4 |GH |4|δi=2|H = (ε24)−

1
8 (2|GH |)4 1

K (K|δi=2|H) ≤ max
(

(ε24)−
1
84 1

2K

)|AH−1|
. (4.5.43)

If |AH−1| ≥ n, we are done. Otherwise, the largest term in the previous display is4 1
2K , by the choice of a. In the

end, we will need c∗ < 1
4(K+1) .

68



• m(π) < M,w′′π,4 = 4 = t
M+1 , θ ≥ 1

By the same arguments as for the previous case, we bound the second factor by

(ε24)−ξM max
(

(ε2t)−
1
8 t

1
2K

)|AH−1|
. (4.5.44)

Again, either if |AH−1| < n or |AH−1| ≥ n, we bound the first factor in (4.5.33) as in the analogous case for

w′π , to arrive at the bound (ε2t)−ξM (εt−
1
2 )

n
1+K ≤ (ε2t)−ξM (ε−2t)−

n−|AH−1|
2(1+K) . If |AH−1| ≥ n then we are done.

Otherwise, recalling that ε−2t ≥ 1, and that t ≥ εβ∗ , we have

max
(

(ε2t)−
1
8 t

1
2K

)
≤

t
1

2K , t ≥ ε
2K
K+4

(ε−2t)−
1
8 , ε2 ≤ t ≤ ε

2k
K+4

. (4.5.45)

To uniformize the bounds, note that t
1

2K ≤ (ε−2t−1)
1

2(K+2) for any ε
2K
K+4 ≤ t ≤ εa. When the dominant term is

(ε−2t)−
1
8 , clearly (ε−2t)−

1
8 ≤ (ε−2t)−

1
2(1+K) . In the end, we need c∗ < 1

2(2+K) .
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Chapter 5

Matrix Product Ansatz

In this chapter we explore the Matrix Product Ansatz (MPA) for systems with the SSEP dynamics acting in the

bulk, and general boundary dynamics acting in a window of size 2. For some models, the MPA allows us to obtain

the probability of any configuration given through a matrix product. For the model studied through this thesis, we

know that the Bernoulli product measure is not an invariant measure, and we have no information regarding what

the invariant measure, in general, might be. The reason that the Bernoulli product measures with parameter γ, νNγ ,

are not invariant for the whole choice of the parameters αi, γi, βi and δi, is the following. Suppose that there exists

a constant γ such that νNγ is invariant. From (2.0.39) for any cylindrical function f we must have

νNγ (Lf) = 0. (5.0.1)

Choosing f(η) = η(1), one can we see that for (5.0.1) to be true, we need to impose γ = α1

α1+γ1
. For the choice

f(η) = η(2) we see that we need to impose α2 = γ2. For the choice f(η) = η(1)η(2), we see that we need to

impose γ1α2 = 0. Then, if α2 = 0, we also have γ2 = 0 and we are back to the linear SSEP for which one can

prove that the Bernoulli product measures νNγ are, in fact, reversible. If we assume that this is not the case, then

we need to have γ1 = 0. For the choice f(η) = η(1)(1 − η(2)) we see that we get a contradiction. So, apart the

case of the linear SSEP, these measures are not invariant.

As mentioned in the first chapter, we know that for K = 2 , α2 = γ2 and β2 = δ2 there are no explicit

correlations in the integral formulation obtained through Dynkin’s martingale. Under this choice of parameters,

one can simply compute Kolmogorov’s equation and, under the stationary regime, explicitly solve the system. For

a more general choice of parameters that is not possible due to the presence of correlations. In [26] it was shown

that for general K, but αi = 0 = δi, γi = 1 = βi and θ = 1 the (stationary) empirical profile is associated to a

linear function in the continuum setting where the boundary conditions are solution of a polynomial of degree K.

In this way, the MPA formulation is a possible candidate to obtain some information regarding the stationary state.

Unfortunately, as we will see, the current methodology is not enough to solve our problem. Thus, we present here

the problems with the current methodology, study the SSEP with linear reservoirs to give the reader some context

(Subection 5.1.3), and propose an extension for the methodology (Section 5.2). We believe that the first indicator

that our extension works is the consistency of the algebra, which is what we will show in the Subsection 5.2.2.
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5.1 Usual Methodology

The idea of the MPA is to assume that the probability of a configuration η in the stationary regime can be formu-

lated as a product of matrices. These matrices, in general of infinite dimension, must satisfy a set of rules induced

by the generator of the process. These rules are given by an algebra. From the Kolmogorov equation (2.0.32), one

gets that the time derivative of the probability of a configuration with respect to the stationary measure vanishes,

thus the stationary measure lies at the kernel of the generator. To get this condition, the current methodology relies

on a cancelling mechanism (also known as telescopic rules), proposed in [8]. Since its proposal it has been shown

that, under some conditions, these rules are consequence of the integrability of the model, and are closely related

to the well known Bethe Ansatz [32]. Unfortunately, this formulation only seems to work for "simple" models.

Here, simple does not mean the complexity of the dynamics per se, but the dimension of the action of each local

operator that defines the dynamics. For closed boundaries, or open but with each boundary acting on one site less

than the bulk dynamics [18] we have a theorem that states the existence of such matrices, if one can show that

the algebra is consistent [19]. Moreover, even showing that such factorization exists, the problem of computing

any physical quantity is not trivial, due to the complex structure of these matrices (for more details in this topic

check [6]). Much simpler are the cases when one does not need the representation of the matrices to compute any

quantity - which was our main motivation for solving this problem. Nevertheless, existence of such matrices is still

a problem not studied well enough in the literature.

We analise deeply the linear SSEP with general rates from the algebraic point of view, in order to give the

reader some insight to what we will do next. Along the way, we make some corrections to the algebra for the linear

SSEP with slow reservoirs. To our knowledge, the subtle incapacities of the paradigmatic algebra for the linear

SSEP with slow reservoirs were never detected in the current literature. Afterwards, we propose a natural extension

of this method, and show under what conditions the algebra is consistent. Given the extent of this thesis, we will

not compute any quantity, but only pave the ground for a future work. Before showing (or not) the existence of such

matrices, we prefered to take advantage of our algebra and check the consistency, given that there is no theorem

that guarantees that our method works yet. Both the representation of the matrices and estimates for quantities of

interest will be addressed in a forthcoming work.

Although previous methodology still "works" for our model, the restricitions to the parameters space are too

strong. We were able to relax these restrictions by considering some extra boundary matrices (or vectors, depending

on the point of view). We have no knowledge of work being done in this direction in the literature. Up to now, our

extension has proven to be successful.

5.1.1 Mathematical framework

In this section we will introduce the mathematical framework for the MPA. We will use the tensor product

formalism, given its simplicity for constructing the probability vectors and in general more compact expressions.

We will make a brief summary of the theory from [32]. For a more detailed exposition, and relationships with

integrable models and the Bethe Ansatz we direct the reader to the aforementioned work. By the time of the

writing of this thesis we noticed that a new formalism has been recently developed, in the context of Hidden

Markov Chains. For more details, we direct the reader to [2].
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Recall that for each site i ∈ ΛN (we now denote a site by i given the different context of this chapter) we have

a local configuration variable ηi ∈ {0, 1}, where ηi = 0 if the site is empty and ηi = 1 if the site is full. Note that

we have 2N−1 possible configurations. In order to express the probabilities of configurations in a vector form, we

need to construct a vector space with a chosen basis. Thus, to each configuration η = (η1, . . . , ηN−1) we associate

a basis vector |η1, . . . , ηN−1〉, and to each ηi we associate a basis vector |ηi〉 of C.

Definition 5.1.1. For ηi = 0, 1 the vector |η〉 is defined by |1〉 = (0, 1)†, |0〉 = (1, 0)†, where .† denotes the

transposed vector. {|0〉 , |1〉} consititutes the canonical basis of C.

Definition 5.1.2. The vector |η1, . . . , ηN−1〉 is defined by |η1, . . . , ηN−1〉 = |η1〉 ⊗ |η2〉 ⊗ · · · ⊗ |ηN−1〉 .

Example 5.1.3. The definition above states that we can add more sites by simply taking the tensor product of

elements of our basis. In this way, while the local configuration ηi take values

|0〉 =


0

1
 and |1〉 =


1

0
 , (5.1.1)

the basis associated to two sites takes the form:

|0〉 ⊗ |0〉 =

(
1 0 0 0

)†
, |0〉 ⊗ |1〉 =

(
0 1 0 0

)†
, |1〉 ⊗ |0〉 =

(
0 0 1 0

)†
, |1〉 ⊗ |1〉 =

(
0 0 0 1

)†
,

(5.1.2)

where each element corresponds to the empty lattice, second site full, first site full and full lattice, respectively.

Now we can define the probability vector as

|Pt〉 = (Pt(0, . . . , 0, 0), Pt(0, . . . , 0, 1), . . . , Pt(1, . . . , 1, 1))
†

=
∑

0≤η1,...,ηN−1≤N

Pt(η1, . . . , ηN−1) |η1〉 ⊗ · · · ⊗ |ηN−1〉 ,
(5.1.3)

where to each configuration the associated probability is stored as a coefficient. We are interested only on models

such that the dynamics can be encoded by a Markov matrix (a real square matrix with each row summing to 1)

that can be decomposed as a sum of local operators acting only on two neighbor sites. For closed boundaries this

dynamics can be encoded by the operator

M =

N−1∑
i=1

mi,i+1, (5.1.4)

with mi,i+1 a local jump operator acting on sites i, i+ 1: mi,i+1 = 1⊗i−1 ⊗m⊗ 1⊗N−i−1, with the conventions

m⊗0 = 1 and m⊗1 = m; where m is a matrix of size 4 × 4 acting on the vector space C ⊗ C (i.e., two adjacent

sites), and 1 is the identity matrix with dimension 2× 2.

Remark 5.1.4. Notice that under this notation, for local configurations (ξ, ξ′) and (τ, τ ′) with (ξ, ξ′) 6= (τ, τ ′),

the element 〈ξ| ⊗ 〈ξ′|m |τ〉 ⊗ |τ ′〉 corresponds to the probability rate that the system goes from the configuration

(η1, . . . , ηi−1, τ, τ
′, ηi+2, . . . , ηN−1) to (η1, . . . , ηi−1, ξ, ξ

′, ηi+2, . . . , ηN−1). The reader can thus make a clear
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correspondence between m and the transition rates in the definition of the generator in (2.0.27). Moreover, this

rate depends on the local configuration only, and not on the states of the other sites. This is important because the

rules induced by our dynamics are thus local, taking into consideration only the sites they act on. Altough this

makes the MPA problem simpler, as we will see we also lose some important dependencies in our system.

Example 5.1.5. For the SSEP dynamics, with respect to the ordered vector basis {|0〉 ⊗ |0〉 , |0〉 ⊗ |1〉 , |1〉 ⊗

|0〉 , |1〉 ⊗ |1〉}, we have

m =


0

0

0

0

0

1

−1

0

0

−1

1

0

0

0

0

0
 . (5.1.5)

In practice, to obtain this matrix, one fixes a base, then the entry m(i, j) corresponds to the transition rate to go

from the local configuration associated to the basis vector i to the local configuration associated to the basis vector

j. This will be more clear when we relate more explicitly this local operator with the generator.

In the case of open boundaries with coupled reservoirs acting on a single site each, the operator M simply takes

the form:

M =

N−1∑
i=1

mi,i+1 +BL +BR, (5.1.6)

where BL = bL ⊗ 1⊗(N−2) and BR = 1⊗(N−2) ⊗ bR, and bL, bR are 2× 2 matrices acting on the first (resp. last)

site.

Example 5.1.6 (Continuation). Consider the dynamics where, at the left, a particle can be injected to the first

site with rate α if that site is empty, and removed with rate γ if the site is full (the classical SSEP with "linear"

reservoirs, the particular case of the dynamics studied through this work with K = 1). For the right, we exchange

α to β and γ to δ. Under the ordered basis {|0〉 , |1〉}, these jump operators are written as

bL =


α

−α

−γ

γ
 , bR =


β

−β

−δ

δ
 . (5.1.7)

5.1.2 General idea

As already stated, the main idea for the MPA is to assume that the probability of a configuration can be factor-

ized into a matrix product. For that, we associate a matrix E to an empty site, and a matrix D to a full site. In this

way, we can associate a configuration η to the ordered product

N−1∏
i=1

[(1− ηi)E + ηiD] . (5.1.8)

In order to get a real number, we apply a trace operator (since we will only work with 1 specie of particles (i.e., the

particles are not distinguished) one can simply state vectors 〈W | and |V 〉) to the product on the previous display,
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and normalize it to send the result to [0, 1]. Thus, since under the invariance condition (2.0.39) we have

(L†µNss)(η) = 0, ∀η ∈ ΩN , (5.1.9)

where we recall that (µL)(η) ≡ (L†µ)(η) (the transposed operator L† is the adjoined of L with respect to the

standard scallar product), one can express physical quantities with respect to the stationary measure as

µNss(η) =
1

ZN−1
〈W |

N−1∏
i=1

[(1− ηi)E + ηiD] |V 〉 , (5.1.10)

where ZN−1 is the normalization for a system with N − 1 sites. Letting C := D + E, it is easy to see that the

normalization ZN−1 takes the simple form ZN−1 = 〈W |CN−1 |V 〉. Recalling the notation in (5.1.3), thanks to

the tensor product formalism one can recast (5.1.3), with a clear abuse of notation, as

|P 〉 =
1

ZN−1
〈W |


D

E
⊗(N−1)

|V 〉 . (5.1.11)

Recalling the master equation (2.0.32), one can check that, with this notation, the mentioned equation can be

written as ∂t |Pt〉 = M |Pt〉 , where M is the operator defined in (5.1.6). Under the stationary state, the left hand-

side of the master equation vanishes and we get the invariance condition (5.1.9). Defining the Intensity matrix H

by the matrix elements

Hξ,η :=

−c(ξ, η) ξ 6= η∑
η∈ΩN\ξ c(η, ξ) ξ = η

(5.1.12)

where c(ξ, η) are the transition rates, as defined in (2.0.26), one can check that M = −H is the intensity matrix of

the process generated by L, and we have (Lf)(η) = −
∑
ξ∈ΩN

Hξ,ηf(ξ).

As already mentioned, the current methodology relies on forcing condition (5.1.9) through a telescopic rule,

which we state on the following definition.

Definition 5.1.7. Let X := (X1, X2)† and X := (E,D)†. Given a bulk local jump operator m, we say that X

and X satisfy the bulk telescopic relation if

mX ⊗X = X ⊗X − X ⊗X. (5.1.13)

Moreover, we call the vector X the auxiliary vector.

Proposition 5.1.8. If the vectors X , X satisfy the bulk telescopic relation, and we also have

〈W | bLX = 〈W | X bRX |V 〉 = −X |V 〉 (5.1.14)

then the matrix product state (5.1.11) satisfies M |P 〉 = 0. If |P 〉 6= 0 this formulation provides the stationary

state associated to M .
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Proof. The proof of this result is simple and relies only on computing M |P 〉 and applying the telescopic rules.

For details check [32].

Although the telescopic rules guarantee that we have the stationary state (if one has no inconsistencies on the

algebra and the normalization does not degenerate), there is no guarantee to whether one can easily compute any

quantity. We know that some models are algebraically solvable, i.e., one can compute any quantity using only the

induced algebra. Nevertheless, to guarantee that matrices that satisfy these rules exist, one has to either find them,

or be in the conditions of Definition 5.1.7 and Proposition 5.1.8. Advances on the generalization of Poposition

5.1.8 have been very few. For any multispecies dynamics it is known that Proposition 5.1.8 holds with only a slight

modification on the basis and, clearly, the jump operator M . For more details regarding multispecies dynamics

see [32] and [29]. Still, one has to restrict to the action of the boundaries on 1 site only each, and the bulk on

2 sites. A natural and simple generalization was proved successfull in [18], where one can extend the action of

each reservoir to r − 1 sites - still, the bulk must act on r sites. The reason for this is simply that the cancelation

mechanism in Definition 5.1.7 still holds with this choice. Only very recently (in fact, we noticed this by the time

of the writing of this thesis) that the open zero-range process was shown to be exactly solvable through a MPA [5]

- both algebraically and through the matrices representation. On the next subsection we will analyse the algebraic

formulation for the linear SSEP. Since this example will be lenghty enough, we will give its own subsection. The

MPA formulation was first introduced in [8] in a more "heuristic" direction to express correlations for the TASEP,

and since then the MPA has been shown to be a reformulation of a problem, for systems with reservoirs acting

in one site each, and the bulk dynamics acting in two [19], thus not an ansatz method under these conditions.

The slow boundary case was first studied in [28]. Here we introduce a new look on the linear SSEP, presenting

a slight correction in the algebra for the slow boundary case, with a completely algebraic approach and trying to

"dismistify" the choice for the usual algebra.

5.1.3 A new look on the linear SSEP

Recalling the jump matrices (5.1.5) and (5.1.7) one can compute the telescopic rules in Definition 5.1.7:

m


D

E
⊗2

=


D

E
⊗


X2

X1

−

X2

X1

⊗

D

E
 (5.1.15)

to get

0 = EX1 −X1E,

ED −DE = EX2 −X1D,

−ED +DE = DX1 −X2E,

0 = DX2 −X2D,

(5.1.16)
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and for the boundaries

〈W | bL


D

E
 = 〈W |


X2

X1

⇔

〈W |αE − γD

〈W | − αE + γD
 =


〈W |X2

〈W |X1

 , (5.1.17)

bR


D

E
 |V 〉 = −


X2

X1

 |V 〉 ⇔

βE − δD |V 〉

−βE + δD |V 〉
 =


−X2 |V 〉

−X1 |V 〉
 . (5.1.18)

Instead of choosing a priori the auxiliary vector in (5.1.7) as the simplest possible that works, as in [6], we will

exploit the relations to see which choice is the most natural. Bulk relations (5.1.16) can be written as

[E,X1] = 0, [E,D] = EX2 −X1D, [E,D] = X2E −DX1, [D,X2] = 0, (5.1.19)

where [E,D] is the commutator of E and D : [E,D] = ED−DE. Thus we must have the consistency condition

[E,D] = EX2 −X1D = X2E −DX1 ⇔ [E,X2] = −[D,X1]. (5.1.20)

Recalling that C := D+E, summing [D,X2] = 0 and [E,X1] = 0 on both sides on the previous display we have

by definition

[C,X2] = −[C,X1]⇔ [C,X1 +X2] = 0. (5.1.21)

Now let us look at the boundary rules (5.1.17). In order for this algebra to be consistent we must have

(〈W | − αE + γD = 〈W |X1 = −〈W |X2)⇒ 〈W | (X1 +X2) = 0. (5.1.22)

And for the right we also have (X1 +X2) |V 〉 = 0. Unfortunately, relying only on these relations for the aux-

iliary vector we cannot compute any quantity. Before proceeding, will define more precisely what we mean by

algebraically solvabe.

Definition 5.1.9. Given a MPA formulation for a dynamics where each reservoir acts on K sites (that is, bL, bR

acts on CK), we say that the bulk is algebraically solvable if we can express configurations with a fixed number of

particles in the bulk as functions of configurations with particles at a distance ≤ K from a boundary.

We say the boundary is algebraically solvable if we can express local configurations with a fixed number of

particles in a distante ≤ K from a boundary as a function of the normalization constant only.

The bulk and boundary rules suggest that we have X2 = −X1. As we will see, this is enough to compute at

least up to two-sites correlations. Note that the empirical mean at a site x in a system of N − 1 particles has the

formulation

EµNss [η(s)] :=< η(x) >N−1=
1

ZN−1
〈W |Cx−1DCN−1−x |V 〉 , (5.1.23)

where µNss is the stationary measure. Now note also that [D,C] = [D,E], since [D,D] = 0 by definition.
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Moreover, with the choice X = X2 = −X1 our rules take the form

[E,X] = [D,X] = 0, [D,E] = XC, 〈W |αE − γD = 〈W |X, δD − βE |V 〉 = X |V 〉 . (5.1.24)

In this way, since [D,C] = XC, one can show by induction that

Cx−1D = Cx−2DC −XCx−1 = · · · = DCx−1 − (x− 1)XCx−1. (5.1.25)

Thus, the auxiliary vector defined by X = (−X,X)† induces the algebraic solvability of the bulk. Using this, the

empirical mean takes the form

< η(x) >N−1=
1

ZN−1
〈W |DCN−2 |V 〉 − (x− 1)

1

ZN−1
〈W |X1C

N−2 |V 〉 . (5.1.26)

Noticing that

〈W |X = 〈W |αE − γD = 〈W | − (α+ γ)D + αC ⇔ 〈W |D = 〈W | (α+ γ)−1(−X + αC), (5.1.27)

one concludes that

< η(x) >N−1=
α

α+ γ
− 〈W |XC

N−2 |V 〉
ZN−1

(
(x− 1) +

1

α+ γ

)
. (5.1.28)

Again, X2 = −X1 induces the algebraic solvability of the left boundary, and by symmetry also the right boundary.

We conclude that the linear SSEP is algebraically solvable under this choice. Note that we do not need to make any

specification regarding the nature of X . This can either be a matrix or a constant. Of course, if we send "particle"

D to the right in (5.1.26) instead, we must have the same result. In this way, we also have

< η(x) >N−1=
1

ZN−1
〈W |CN−2D |V 〉+ (N − 1− x)

〈W |CN−2X |V 〉
ZN−1

. (5.1.29)

By analogous computations as in (5.1.27) we have that D |V 〉 = (β + δ)−1(βC +X) |V 〉 . Thus,

< η(x) >N−1=
β

β + δ
+
〈W |CN−2X |V 〉

ZN−1

(
N − 2− (x− 1) +

1

β + δ

)
. (5.1.30)

In this way, to have consistency on the computation for the empirical mean we must equate (5.1.28) and (5.1.30):

α

α+ γ
− 〈W |XC

N−2 |V 〉
ZN−1

1

α+ γ
=

β

β + δ
+
〈W |CN−2X |V 〉

ZN−1

(
N − 2 +

1

β + δ

)
⇔〈W |X1C

N−2 |W 〉
ZN−1

=

α
α+γ −

β
β+δ

N − 2 + 1
α+γ + 1

β+δ

.

(5.1.31)

Replacing this in (say) (5.1.28) one gets

< η(x) >N−1=
α

α+ γ
−
(
x− 1 +

1

α+ γ

) α
α+γ −

β
β+δ

N − 2 + 1
α+γ + 1

β+δ

. (5.1.32)
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Depending on the structure of the matrices D,E, each component of the auxiliary vector X = (−X,X)† does

not need to be a constant. Still, when computing higher correlations the constant choice seems more obvious. But

before that, note that since we chose general rates, one can also study the slow boundary SSEP easily from the

previous computations. Let

α = N−θα′, β = N−θβ′, γ = N−θγ′, δ = N−θδ′, (5.1.33)

then one gets

< η(x) >N−1=
α

α+ γ
−
(
x− 1 +

Nθ

α+ γ

) α
α+γ −

β
β+δ

N − 2 + Nθ

α+γ + Nθ

β+δ

. (5.1.34)

We will denote N−θα′ by N−θα, N−θβ′ by N−θβ, and so on for simplicity, since it is clear that we are working

on the slow boundary case. Clearly, the empirical mean converges to different expressions depending on the values

of θ. Letting

JN−1(θ) := N
〈W |X1C

N−2 |V 〉
ZN−1

= N1−θ α(α+ γ)−1 − β(β + δ)−1

N1−θ − 2N−θ + (α+ γ)−1 + (β + δ)−1
. (5.1.35)

With this quantity, one can rewrite the empirical mean (5.1.34) as

< η(x) >N−1≡ ρN (u) =
α

α+ γ
− uJN−1(θ) +Nθ−1 JN−1(θ)

α+ γ
+
JN−1(θ)

N
(5.1.36)

where we used the substitution u = x/(N − 1). Computing the limit N →∞ the interested reader can check that

the densitity ρ(u) := limN→∞ ρN (u) depends on the choice of θ, as expected:

ρ(u) =


α

α+γ − u
αδ−βγ

(β+δ)(α+γ) , θ ∈ [0, 1),

α(1+β+δ)+β
β+δ+α(1+δ+β)+γ(1+β+δ) − u

αδ−βγ
β+δ+α(1+δ+β)+γ(1+β+δ) , θ = 1,

α+β
α+β+δ+γ , θ > 1.

(5.1.37)

In particular, the quantity N−1JN−1(θ) is the discrete current in the bulk, which is independent of the location

(recall that [D,E] = XC). One can check that these quantities agree with [28] under the choice α + γ = 1 and

β + δ = 1. As already mentioned, when computing the correlations some problems arise. The expression for the

two-sites correlation (x < y) is given by

< η(x)η(y) >N−1=
1

ZN−1
〈W |Cx−1DCy−x−1DCN−1−y |V 〉 . (5.1.38)

For simplicity, denote by < η >wN−1 the weight of the configuration η, i.e., < η >wN−1:= ZN−1 < η >N−1.

Moreover, let us introduce the L/R "operators".

Definition 5.1.10. Given a configuration with a particle at site y, we let Ly(x) < η >N−1 mean that we will

send the "particle" y to the site x < y whenever the configuration at sites {x, . . . , y − 1} is free, that is, there

are no particles fixed in between x and y, i.e., {x, . . . , y − 1}. Similarly, we write Rx(y) < η >N−1 when we
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send a particle from the position x to y with x < y and no particles in {x + 1, . . . , y}. Moreover, we will write

Ly(1) ≡ Ly and Ry(N − 1) ≡ Ry .

In this way, to check the consistency for the computations of the empirical mean in (5.1.31) we actually showed

that ZN−1 is such that (Lx − Rx) < η(x) >wN−1= 0. To compute the weight for the correlation the idea is

completely analogous to computing the mean: we want to send a "particle" D to the boundary, use our boundary

relations and check whether we can compute all the terms explicitly. Thus,

Lx < η(x)η(y) >wN−1= −(x− 1) 〈W |XCy−2DCN−y−1 |V 〉+ < η(1)η(y) >wN−1 . (5.1.39)

Now we compute

Ly 〈W |XCy−2DCN−y−1 |V 〉 =
α

α+ γ
〈W |XCN−2 |V 〉 − (y − 2 +

1

α+ γ
) 〈W |XXCN−3 |V 〉

Ry 〈W |XCy−2DCN−y−1 |V 〉 =
β

β + δ
〈W |XCN−2 |V 〉+ (N − y − 1 +

1

β + δ
) 〈W |XXCN−3 |V 〉 .

(5.1.40)

Thus the condition (Ly −Ry) 〈W |XCy−2DCN−y−1 |V 〉 = 0 reads

(
α

α+ γ
− β

β + δ

)
〈W |XCN−2 |V 〉 = −

(
N − 3 +

1

β + δ
+

1

α+ γ

)
〈W |XXCN−3 |V 〉 . (5.1.41)

Of course, checking when (Lx − Rx) 〈W |XXCx−3DCN−x−1 |V 〉 = 0 results in an analogous expression as

above, but with an extra X and N − 4 explicitly instead of N − 3. Recalling (5.1.31), one can clearly see that

X = x ∈ R\{0} is a very natural choice. Moreover, looking at the expression for the mean (5.1.34) we have that

under this choice x would be a free variable. Furthermore, the choice x = −1 (and therefore X = (1,−1)†) is

the canonical choice for the algebra for the (linear) SSEP. To our knowledge, two-site correlations for this model

were first computed through the MPA in [28]− to where we refer the reader for the conclusion of the computations

above (with slightly different parameters). Our goal with this section is to state a quite simple observation and

make the reader familiar with the computations. Let us take X1 = x ∈ R\{0} and in-out rates as functions of the

size of our system, as in (5.1.33). Then, note that the correlation for a system with N − 1 sites is a function of

systems with a smaller number of sites. Consider the quantity

< (η(1)(1− η(2))− (1− η(1))η(2)) η(N − 1) >wN−1 . (5.1.42)

We will denote by 〈W | (resp. |V 〉) if we use our left (resp. right) relations to compute a local configuration at the

left (resp. right) boundary. In this way, we must have

〈W |(DE − ED)CN−4D |V 〉 = 〈W | (DE − ED)CN−4D|V 〉. (5.1.43)

Recalling our algebra (5.1.24), now we have DE − ED = xC. Therefore we compute:

〈W |(DE − ED)CN−4D |V 〉 = x < η(N − 2) >wN−2= x

(
β

β + δ
ZN−2 +

x(N − 1)θ

β + δ
ZN−3

)
, (5.1.44)
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while

〈W | (DE − ED)CN−4D|V 〉 =
β

β + δ
< η(1)(1− η(2))− (1− η(1))η(2) >wN−1 +

+
xNθ

β + δ
< η(1)(1− η(2))− (1− η(1))η(2) >wN−2=

β

β + δ
xZN−2 +

x2Nθ

β + δ
ZN−3.

(5.1.45)

We conclude that

〈W |(DE − ED)CN−4D |V 〉 6= 〈W | (DE − ED)CN−4D|V 〉 (5.1.46)

for θ 6= 0. Nevertheless, for large N we clearly have that (N − 1)θ ≈ Nθ thus the error is negligible, but still,

it removes one of the main features of the MPA with slow/fast boundaries: exact solutions. The big issue lies in

computing higher order correlations, thus making this error not negligible.

From [28] we know that the MPA solution for (5.1.38) exactly solves the discrete PDE for the correlation

between two sites induced by the model, which has a unique solution− also in accordance with [9]. Both the MPA

solution and the derivation of the PDE, however, were computed withNθ fixed through all the computations, which

lead to the correct result. Making Nθ completely dependent of the size of the system through the computations,

however, and we’ll have a small inconsistency. Our "solution" is to simply letX be a matrix. In this way one cannot

decrease the size of the system and X behaves as a "ghost particle", thus fixing the boundary rates. Although this

trick works for the well studied linear SSEP, for other non algebraically solvable models, or by solving the problem

through the representation, one must have in mind that N−θ is in fact fixed. The problem here lies in knowing

how to formally fix this parameter, connecting with the mathematical framework, which we were not able to.

Proceeding inductively, it easy to see from (5.1.31) that we have

ZN−1 = 〈W |XN−1 |V 〉
(

α

α+ γ
− β

β + δ

)−N N−1∏
i=0

(
i− 1 +

Nθ

β + δ
+

Nθ

α+ γ

)
. (5.1.47)

5.2 Extension of the methodology

We consider essentially the same base and framework as in (5.1.1), with a slightly different cancelation mech-

anism: at the boundaries we associate different matrices to the local configuration, and at the bulk we consider the

usual cancelation mechanism with auxiliary vectors. The difference lies in not considering any auxiliary vector at

the boundaries, thus letting the cancelation be more "natural". In this way, our MPA formulation for the invariant

measure takes the form of the ordered product

µwN−1(η) = 〈W | (η1DL + (1− η1EL))×
N−2∏
i=2

[(1− ηi)E + ηiD]× (ηN−1DR + (1− ηN−1ER)) |V 〉 ,

(5.2.1)

where the boundary matrices DL,R, EL,R can be different from the bulk matrices D,E. Dividing by the normal-

ization constant,

ZN−1 := 〈W | (DL + EL)CN−3(DR + ER) |V 〉 , (5.2.2)
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we have the invariant probability measure µNss. The exact reason for this will be explained shortly. We let each

boundary act on 2 sites, thus the jump operator M in (5.1.6) now takes the form

M =

N−2∑
k=1

mk,k+1 +BL1,2 +BRN−2,N−1, (5.2.3)

and the invariance condition (5.1.9) is again satisfied if ∂t |P (t)〉 = M |P (t)〉 = 0. We defined above the boundary

operators as BL1,2 := bL ⊗ 1⊗N−3, and similar for the right, where bL acts on C ⊗ C. We force this condition by

applying the telescopic rules in Definition 5.1.7 in the bulk only, and forcing the remaining terms to cancel with

each boundary. Thus, letting (5.1.13) act on D,E matrices only, the remaining terms from the bulk are

−〈W |XL ⊗X ⊗X⊗N−4 ⊗XR |V 〉 and 〈W |XL ⊗X⊗N−4 ⊗X ⊗XR |V 〉 . (5.2.4)

Letting the term in left, on the previous display, cancel with 〈W | (bL +m)XL ⊗X ⊗ · · · |V 〉 and the terms in the

right, on the previous display, cancel with 〈W | · · · ⊗X ⊗XR(bR +m) |V 〉, we have the rules

mX ⊗X = X ⊗X − X ⊗X,

0 = 〈W | ((bL +m)XL ⊗X − 〈W |XL ⊗X ) ,

0 = (X ⊗XR + (bR +m)X ⊗XR) |V 〉 .

(5.2.5)

5.2.1 Induced Algebra

As already seen in the previous section, the choice X1 = −X2 is enough to guarantee the algebraic solvability

of the bulk induced by the SSEP dynamics. In this way, we will let X2 ≡ X = −X1 and fix our bulk algebra as in

(5.1.24):

[E,X] = [D,X] = 0, [D,E] = XC. (5.2.6)

This way, we write the boundary algebra (5.2.5) more explicitly as:

0 = 〈W |

(m+ bL)


DL

EL

⊗

D

E
−


DL

EL

⊗

X

−X
 , (5.2.7)

0 =

(m+ bR)


D

E
⊗


DR

ER

+


X

−X
⊗


DR

ER

 |V 〉 . (5.2.8)
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We consider the most general boundary dynamics acting on two sites, in order to have a better control regarding

under which choice of parameters our method works:

| 00 | 10

| 11| 01

α1

α3

γ1

γ3 α2

γ1

α1

γ2

00 | 01 |

10 | 11 |

β3

β1

δ3

δ1

β1

δ2 β2

δ1

(5.2.9)

where we wrote | · and · | as the left and right reservoirs, respectively. The local jump operator acting in the bulk,

m, is as in (5.1.5), but now the boundary jump operators are:

bL =


0

α1

α3

−(α1 + α3)

α1

0

−(α1 + γ2)

γ2

α2

−(α2 + γ1)

0

γ1

−(γ1 + γ3)

γ3

γ1

0
 (5.2.10)

bR =


0

β3

β1

−(β1 + β3)

β2

0

−(β2 + δ1)

δ1

β1

−(β1 + δ2)

0

δ2

−(δ1 + δ3)

δ1

δ3

0
 . (5.2.11)

Addicionally, we will focus on the slow boundary case, as in (5.1.33). Since all entries on bL, bR are aditive on the

rates parameters, one can simply consider the matrices b(θ)L := N−θbL, b
(θ)
R := N−θbR.

5.2.2 Consistency

The objective of this section is to find under which conditions our algebra is consistent. As a byproduct, we

will show that a closed expression for the normalization constant, ZN−1(θ) := 〈W |CLCN−3CR |V 〉 , exists,

where CL := DL + EL and CR := DR + ER. Given the complexity of the rules (5.2.7) and (5.2.8), we found

more convenient to work under a different "basis". From the previous section, we know that the boundaries are

algebraically solvable if we can transform "particles" D into functions of the normalization constant − more

specifically, in C matrices. In this way, we will rewrite our rules as functions of C, as much as possible. Since our

boundary dynamics acts in two sites each, it is natural to think that the two-sites correlation will play an important

role. Moreover, note that CLD = DCL − DLE − ELD (and similar for the right). In this way, we considered

CLC,DLC,DLD and DLE − ELD as our fundamental quantities (and similar for the right). Thus, consider the
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following substituitions on the boundary relations

[D,E] = CD −DC, EE = CC −DC − CD +DD, (5.2.12)

ED = DC − [D,E]−DD, DE = DC −DD (5.2.13)

and defining4L = DLE − ELD and4R = DER − EDR, we arrive at the relations

〈W |

(m∗L + b∗,θL )


4L

DLD

DLC

CLC
−


DLX

−DLX

(CL −DL)X

−(CL −DL)X


 = 0 (5.2.14)

and similar for the right, with new matrices b∗,θL , b∗,θR , dependent of θ, as in the previous section (these matrices

can be found in (D.2)). By either solving the boundary systems above as a linear system on the boundary terms of

order 2, or by setting the common terms of each relation to be equal until we get a final relation and then replacing

back, that is, for example (for the left):

• Let DLD be on the left hand-side of all expressions;

• Equate them two by two (first with second, second with third, third with fouth);

• Now we have 3 expressions instead of the initial four. Do the same for (say)4L;

• Now we have 2 expressions. Doing the same for (say) DLC shows that these two are already equal;

• Replace back DLC into one expression for4L (note that they are all the same);

• Replace back4L into DLD and now these three expressions are enough.

Our rules can be reduced to:

〈W |DLC = 〈W | dL1 (N0)CLC + dL2 (Nθ)DLX + dL3 (Nθ)CLX, (5.2.15)

〈W |4L = 〈W | tL1 (N−θ)CLC + tL2 (N0)DLX + tL3 (N0)CLX, (5.2.16)

〈W |DLD = 〈W | fL1 (N0)CLC + fL2 (Nθ)DLX + fL3 (Nθ)CLX (5.2.17)

and for the right

CDR |V 〉 = dR1 (N0)CCR + dR2 (Nθ)XDR + dR3 (Nθ)XCR |V 〉 ,

4R |V 〉 = tR1 (N−θ)CCR + tR2 (N0)XDR + tR3 (N0)XCR |V 〉 ,

DDR |V 〉 = fR1 (N0)CCR + fR2 (Nθ)XDR + fR3 (Nθ)XCR |V 〉 ,

(5.2.18)

where the exponent on N denotes the order of the coefficient, for example, d·1(N0) = O(c), d·2(Nθ) = O(Nθ),

and so on. To reduce our rules, we programmed a Mathematica routine. The script can be found in here. Moreover,

84

https://drive.google.com/drive/folders/1FbLdU1bbMnipbkdyx07842awiS4vqHhF?usp=sharing


the coefficients vanish under the following choice of parameters:

tL2 = 0⇔ α1 + γ1 = 0 ∨ α2 + γ3 = γ2 + α3

tL3 = 0⇔ α1 + γ1 = 0 ∨ α1 + α2 + γ1 + γ3 = 0

dL2 = 0⇔ α2 + γ3 = γ2 + α3.

(5.2.19)

For the right boundary the roots are analogous, considering the substitutions (α, γ) 7→ (β, δ). We will frequently

write, for example, α, to denote {α1, α2, α3}, unless it is not clear from the context. The other coefficients vanish

under expressions dependent on θ (for more details see (D.1)).

We will refer to the boundary algebra through the boundary coefficients in the following way:

AθL


γ

α
 =


fL1

tL1

dL1

fL2

tL2

dL2

fL3

tL3

dL3

 and AθR


δ

β
 =


fR1

tR1

dR1

fR2

tR2

dR2

fR3

tR3

dR3

 . (5.2.20)

Thus, on this basis our boundary algebra is fully characterized (with some abuse of notation) by

〈W |


DLD

4L

DLC
 = 〈W | AθL


CLX

DLX

CLC
 ,


DDR

4R

CDR

 |V 〉 = AθL


XCR

XDR

CCR

 |V 〉 . (5.2.21)

Example 5.2.1. Under this local "basis", the linear SSEP boundary algebra, studied on the previous section, is

expressed as

Aθ=0
L


γ

α

0

0

0

0
 =

(
α

α+γ

)2

0

α
α+γ

− 1
α+γ

0

0

−α(α+γ+1)
(α+γ)2

1

− 1
α+γ

 , Aθ=0
R


δ

β

0

0

0

0
 =

(
β
β+δ

)2

0

β
β+δ

1
β+δ

0

0

β(β+δ+1)
(β+δ)2

1

1
β+δ

 .

(5.2.22)

The main interest of considering different boundary matrices is that (tL,R1 , tL,R2 , tL,R3 ) 6= (0, 0, 1), that is

4L,R 6= XC. In this way, we allow the current at the windows (where the reservoirs act) to be different than the

one flowing in the bulk. In order to make the reader believe that this formulation indeed describes the stationary

state, we will start by checking the conditions on the discrete PDE for the mean, that should be satisfied by

definition and, hopefully, without any aparent inconsistency. But first, let us define the boundary recursions:

AN−3 = 〈W |DLC
N−3CR |V 〉 , BN−3 = 〈W |CLCN−3DR |V 〉 , CN−3 = 〈W |CLCN−3CR |V 〉 ,

DL
N−3 = 〈W |DLDC

N−4CR |V 〉 , DR
N−3 = 〈W |CLCN−4DDR |V 〉 ,

4LN−3 = 〈W |4LCN−4CR |V 〉 , 4RN−3 = 〈W |CLCN−44R |V 〉 .

(5.2.23)
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Since the element X will appear on the following computations, we will write

XnCN−3−n := 〈W |CLXnCN−3−nCR |V 〉 (5.2.24)

and simillar for the other recursions above. Note that X is completely free in the bulk (recall that [D,X] =

[E,X] = 0), thus we can always rearrange it to the left/right. From direct application of the Kolmogorov’s

equation (2.0.32), one arrives at the following left boundary conditions

α1N
−θ < 1− η1 >N−1 −γ1 < η1 >N−1 + < η2 >N−1 − < η1 >N−1= 0

N−θα2 < η1(1− η2) >N−1 −N−θγ2 < (1− η1)η2 >N−1 +N−θα3 < (1− η1)(1− η2) >N−1 −

−N−θγ3 < η1η2 >N−1 + < η3 >N−1 −2 < η2 >N−1 + < η1 >N−1= 0,

(5.2.25)

for the sites 1 and 2, respectively. Simplifying the conditions above we arrive at

− < η(1) >N−1 (N−θ(α1 + γ1) + 1)+ < η(2) >N−1 +N−θα1 = 0

< η(1) >N−1 (N−θ(α2 − α3) + 1)− < η(2) >N−1 (N−θ(γ2 + α2) + 2)+ < η(3) >N−1 +

+ < η(1)η(2) >N−1 N
−θ(γ2 − α2 + α3 − γ3) = 0.

(5.2.26)

Again, for the sites 1 and 2, respectively. Now note that 〈W |CLD = 〈W |DLC − 4L and 〈W |CLCD =

〈W |DLC
2 − 4LC − CLCX . In this way, taking the mean and writing in terms of the boundary recursions

(5.2.23), then sending all particles to the left with the relations just mentioned, one arrives at

−AN−3N
−θ(α1 + γ1)−4LN−3 +N−θα1CN−3 = 0

AN−3N
−θ(α2 − 2α3 − γ2) +4LN−3(N−θ(γ2 + α3) + 1)−XCN−4+

+DL
N−3N

−θ(γ2 − α2 + α3 − γ3) = 0.

(5.2.27)

Replacing our boundary algebra (5.2.15),(5.2.16) and (5.2.17), one has coefficients such that

l1CN−3 + l2XAN−4 + l3XCN−4 = 0 and s1CN−3 + s2XAN−4 + s3XCN−4 = 0 (5.2.28)

for the sites 1 and 2, respectively, where

l1 = NθtL1 − α1 + (α1 + γ1)dL1 , l2 = (α1 + γ1)dL2 +NθtL2 , l3 = NθtL3 + (α1 + γ1)dL3 ,

s1 = dL1 (α2 − γ2 − 2α3)N−θ + tL1 (γ2 + α3)N−θ + fL1 (γ2 − α2 + α3 − γ3)N−θ + tL1 + α3N
−θ,

s2 = dL2 (α2 − γ2 − 2α3)N−θ + tL2 (γ2 + α3)N−θ + fL2 (γ2 − α2 + α3 − γ3)N−θ + tL2 ,

s3 = dL3 (α2 − γ2 − 2α3)N−θ + tL3 (γ2 + α3)N−θ + fL3 (γ2 − α2 + α3 − γ3)N−θ + tL3 − 1.

(5.2.29)

Although these coefficients are long, the interested reader can check that, indeed, li = si = 0 for any parameter

(α, γ) and θ ≥ 0. For the right, the results are completely analogous. Now that we have checked that the

formulation is correct, one needs to see whether the normalization constant is different than zero, that is, if there

are no inconsistencies in our algebra. For that, let us first find an expression for the normalization.
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Proposition 5.2.2. For all x ∈ ΛN :

(Rx − Lx) < ηx >
w
N−1= 0⇔ AN−3 −BN−3 = 4LN−3 +4RN−3 + (N − 4)XCN−4. (5.2.30)

Proof. Computing from the left we have Lx < ηx >
w
N−1= −(x − 2)XCN−4 + AN−3 − 4LN−3, and from the

right: Rx < ηx >
w
N−1= (N − (x + 2))XCN−4 + BN−3 +4RN−3. Equating both expressions we get the result

in the statement. Simillarly, letting x = 1 or x = N − 1 in the left hand-side of (5.2.30), we get

R1 < η(1) >wN−1= 4LN−3 +4RN−3 + (N − 4)XCN−4 +BN−3 = AN−3

L1 < η(N − 1) >wN−1= −4LN−3 −4RN−3 − (N − 4)XCN−4 +AN−3 = BN−3.
(5.2.31)

The main problem with finding a closed expression for CN−3, that is, only in terms of CN−k with k > 0,

are the coefficients dL,R2 and tL,R2 . The attentive reader might have noticed that these coefficients vanish exactly

when there are no explicit correlations. Moreover, under these conditions, replacing our algebra it is immediate

that (5.2.30) is a geometric recursion in terms of C − the same form as for the linear SSEP. However, this is the

only case we found that brings inconsistencies to our algebra. Although this might seem counterintuitive − the

simplest case being the one that does not work − with some thought this does make some sense. Recalling the

normalization for the linear SSEP given in (5.1.47), we must have α
α+γ 6=

β
β+δ , otherwise ZN−1 = 0. For the

more particular and more commonly studied choice of parameters, α + γ = β + δ = 1, we must have α 6= β.

Recalling that dL2 = tL2 = 0 ⇔ α2 + γ3 = α3 + γ2, we also have some sort of "equilibrium" in the non-linear

rates, which makes the MPA to fail. To finally see when our algebra is consistent, note that the rules (5.2.15) and

(5.2.17) are not always consistent. For that, we will deduce (5.2.17) from (5.2.15). Recalling the mentioned rules:

〈W |DLC = 〈W | dL1 (N0)CLC + dL2 (Nθ)DLX + dL3 (Nθ)CLX, (5.2.32)

〈W |DLD = 〈W | fL1 (N0)CLC + fL2 (Nθ)DLX + fL3 (Nθ)CLX, (5.2.33)

the idea is to reduce (5.2.15) and (5.2.17) by multiplyingC through the right, then using commutators and the other

relations to group all the "particles" in the left. We only do the computations for the left boundary, and supress the

vector 〈W | and L upperscript in the coefficients for simplicity, unless it is not clear from the context. In this way,

note that

DLCD = DLDC −DLCX = d1CLCD + d2DLDX + d3CLDX. (5.2.34)

Computing each term on the right hand-side of the last display

CLCD = (DLC −4L − CLX)C = ((d1 − t1)CLC + (d2 − t2)DLX + (d3 − t3 − 1)CLX)C,

DLDX = f1CLCX + f2DLCX + f3CLXX,

CLDX = DLCX −4LX = DLCX − t1CLCX − t2DLXX − t3CLXX,

(5.2.35)
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we have

DLDC −DLCX = d1 ((d1 − t1)CLCC + (d2 − t2)DLCX + (d3 − t3 − 1)CLCX) +

+ d2 (f1CLCX + f2DLCX + f3CLXX) + d3 (DLCX − t1CLCX − t2DLXX − t3CLXX) .
(5.2.36)

Rearranging the terms:

DLDC = CLCC (d1(d1 − t1)) + CLCX (d1(d3 − t3 − 1) + f1d2 − d3t1) +

+CLXX (d2f3 − d3t3) +DLCX (d1(d2 − t2) + d2f2 + d3 + 1)−DLXXd3t2.
(5.2.37)

But by (5.2.17) we must have the last term equal to f1CLCC + f2DLCX + f3CLCX . Equating the expression

in the previous display to the one we just mentioned, and rearranging the terms we have

CLCC (f1 − d1(d1 − t1)) = CLCX (d1(d3 − t3 − 1) + f1d2 − d3t1 − f3) +

+ CLXX (d2f3 − d3t3) +DLCX (d1(d2 − t2) + d2f2 + d3 + 1− f2)−DLXXd3t2.
(5.2.38)

Now it is clear the inconsistency by setting dL2 = tL2 = 0. If these coefficients vanish, then the expression

on the previous display is a closed recursion for the normalization, but inconsistent with (5.2.30). While we

could have that, after replacing our algebra in DLCX , all the coefficients vanish, this is not the case and we will

always have to make further restrictions in our parameter space. Let dL2 , t
L
2 6= 0, and most of our problems are

solved. By replacing our algebra in DLCX , one has an expression for DLXX as a function of CLCC,CLCX

and CLXX . This is good because now we can successively replace this back in (5.2.15) and (5.2.16) to get an

expression for DLC and 4L as a function of the normalization only (modulo X matrices). Replacing this in our

expression for the normalization (5.2.30), and doing completely analogous computations for the right boundary,

one can see that CN−3 ≡ ZN−1 is a second order recurrence. While this means that we cannot fully solve the

MPA problem algebraically, we can get good enough approximations for any physical quantity by iterating the

recurrence. Furthermore, we can solve the continuous PDE exactly by simply taking the limit, and noticing that

we have CN−4

CN−3
= O(N−1) for θ ∈ [0, 1], and CN−4

CN−3
= O(N−a) with a > 1 for θ > 1, just as for the linear SSEP.
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Chapter 6

Conclusions and future work

As seen in Chapter 3 and 4, the slow reservoirs impose not much difficulty when θ ≥ 1. When θ < 1, however,

these arguments do not work. In Chapter 3, we saw in the heuristics for the hydrodynamic limit, Section 3.2, that

θ < 1 is a problem, since the martingale would "explode" as N → ∞. We can work around this by choosing

a more appropriate test function and notion of weak solution. In the formal proof, we see the same problem

when showing the tightness of the sequence {QN}N≥1, by the end of Subsection 3.3.1, and when showing the

Replacement Lemmas. In [3] it is shown that the sequence is tight for all θ ∈ [0, 1) and K = 1, where the trick

lies in taking a different test function H that, instead of only being in C2, it has now compact support. The same

argument works for general K, but then we run into the problem again in the proof of the Replacement Lemmas−

to be more specific, in (A.0.27), for example, where we bound the Dirichlet form. A solution might be to exchange

the measure to a more appropriate one, through the entropy inequality. Following on this direction, one could use

the MPA formulated in Chapter 5, for K = 2. Nevertheless, we were successful in proving the Hydrodynamic

Limit for θ ≥ 1, and in the treatment of the correlation terms.

For the propagation of chaos, from the moment that we compute the bounds for w′π and w′′π,H in terms of "full

powers", in Proposition 4.4.5 and Lemma 4.4.2, it is clear that for θ < 1 the exponents are too large to treat. For

θ > 1, as already mentioned, we are confident in the bound cn(ε−2t)−nθc
∗

for the v−functions, since we were

able to show it for m = M , that is, when we truncate the series of iterations for the v−functions.

To show the Hydrodynamic Limit for θ < 1, we have a preliminary work where we consider the generator of a

random walker that is absorbed in the boundaries, instead of reflected as in Chapter 4. This leads to the estimation

of other quantities, after an application of Feynman-Kac’s formula. We believe that the study of the article [24]

will prove to be fruitfull in terms of ideas for the proof.

Regarding the Matrix Product Ansatz, we have not mentioned the existence of such matrices. In fact, a lot of

work has been done in this direction, but it is still not ready yet. Our strategy was to adapt the bulk matrices, D and

E, presented in [8], then apply the boundary relations to find the vectors 〈W0| := 〈W |EL , 〈W1| := 〈W |DL, and

similar for the right. From [8], we were able to find 2 more matrices that satisfy the bulk condition [D,E] = C

(note that we considered θ = 0 and x = 1). For one of them, we were able to find a reccursion relation for

each boundary vector, thus showing existence. The problem lies in noticing (which we only did in a final stage of

this thesis) that we may sum any constant b to each matrix, and the bulk relations still hold (for example, letting
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D′ := 1b + D), and this constant is, clearly, incorporated into our boundary vectors. Thus, one needs to show

that either the constant is free (in the sense that it vanishes when computing any quantity), or fix it. Even later in

the development of this thesis, we noticed in [5] that one may "force" this constant in order to have the correct

result for the MPA, but with a catch: one needs the explicit solution of the homogenous discrete PDE that the

empirical mean satisfies. The strategy is quite simple: explicitly compute the mean through the left by using the

representation, then through the right, equate them both, and check what the constant b may be in order to match

with the known stationary solution of the PDE. For K = 2 one can, however, explicitly solve the continuous

homogenous equation (the problem lies in solving polynomials of degree 4, but one may choose the parameters

appropriately to simplify the problem). Thus, our strategy is to compute the mean with the representation, take the

limit N → ∞ then check wether b vanishes or not. But again, we have a new problem. Due to our number of

boundary rules and their complexity, and the infinite representation of the bulk matrices, the vectors have infinite

entries different than zero, and we could not compute any quantity. Professor Gunter M. Schutz suggested two new

matrices, that still need to be tested. Thus, there is plenty of work in this direction.

Regarding the MPA still, we remark that we considered the boundary to act in the same number of sites as the

bulk, and we know that if the boundaries act in one site less than the bulk, the current methodology, in principle,

should work, unless there are inconsistencies in the algebra for any non trivial choice of parameters. One could

consider the opposite problem, and let the boundaries act in more sites than the bulk. To our knowledge, there

has not been any work in this direction. While one could proceed exactly as we did through this thesis, it is clear

that the rules will be completely chaotic. It would be interesting to consider our method as a particular case of a

cancelation mechanism acting in the window that each reservoir acts on −similar to what it is done in the bulk.

In this way, one may focus more in the rules induced by the auxiliary matrices, rather than all the terms in the

boundary relations as we did. Moreover, we know that the TASEP (Totally Asymmetric Exclusion Process) is

algebraically solvable (in fact, the TASEP was the first model solved through the MPA, in [8]), and also the zero-

range process, as already mentioned. It would be interesting to see how consistent the boundary rules are with

respect to the extension in this thesis, under this change of bulk dynamics.

Regardless of all the technical difficulties for θ < 1, with respect to the Hydrodynamic Limit and the propaga-

tion of chaos; and the complexity of the MPA’s representation, we were sucessfull in showing the Hydrodynamic

Limit for a new and technically interesting model, and in studying regimes not yet studied in [24] as a particular

case. Moreover, we deconstructed a difficult article and showed that the propagation of chaos still holds for our

model; made corrections in a classic algebra, introduced new tools for an algebraic study, and extended a method

in a direction not yet successfully extended since its formulation, which not only opens new doors for different

extensions, but allows us to study large deviations and the Hydrostatic Limit with a simpler approach for models

not studied yet. And for that, we are proud.
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Appendix A

Replacement Lemmas

In this section we prove the Replacements Lemmas that are needed in order to get the weak formulation of

solutions to the hydrodynamic equation. As already mentioned, we will only make the proofs for K = 2, since

the arguments for general K are analogous. We start with some definitions. We recall from Example 3.3.3 the

definition of the Bernoulli product measure, νNγ(·), defined by the marginals

νNγ(·)(η : η(x) = 1) = γ( xN ), (A.0.1)

where γ : [0, 1] → [0, 1] is a measurable profile. Note that the total probability of a configuration takes the form

νNγ(·)(η) =
∏
x∈ΛN

(γ( xN ))η(x)(1−γ( xN ))1−η(x), and if γ is a constant function then νNγ is invariant for the change

of variables,that is, νNγ (ηx,x+1) = νNγ (η).

Definition A.0.1 (Dirichlet form). For a probability measure µ on ΩN and a density f : ΩN → R with respect to

µ, the Dirichlet form LN of f is defined as 〈
√
f,−LN

√
f〉µ. In our case we have

〈
√
f,−LN

√
f〉µ = 〈

√
f,−LN,0

√
f〉µ + κ

Nθ
〈
√
f,−LLN,b

√
f〉µ + κ

Nθ
〈
√
f,−LNLN,b

√
f〉µ, (A.0.2)

where we recall that 〈f, g〉µ =
∫

ΩN
f(η)g(η) dµ, for all functions f, g : ΩN → R.

Our first computation is a comparison between the Dirichlet form just defined and the next quantity, also known

in the literature as careé du champ:

DN (
√
f, µ) := DN,0(

√
f, µ) +

κ

Nθ
DL
N,b(

√
f, µ) +

κ

Nθ
DNL
N,b(

√
f, µ), (A.0.3)

where

DN,0(
√
f, µ) :=

n−2∑
x=1

∫
ΩN

[√
f(ηx,x+1)−

√
f(η)

]2
dµ,

DL
N,b(

√
f, µ) = DL

N,−(
√
f, µ) +DL

N,+(
√
f, µ) and DNL

N,b(
√
f, µ) = DNL

N,−(
√
f, µ) +DNL

N,+(
√
f, µ),

(A.0.4)
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with

DL
N,−(

√
f, µ) =

κ

Nθ

∫
(α1(1− η(1)) + γ1η(1))[

√
f(η1)−

√
f(η)]

2
dµ,

DL
N,+(

√
f, µ) =

κ

Nθ

∫
(β1(1− η(N − 1)) + δ1η(N − 1))[

√
f(ηN−1)−

√
f(η)]

2
dµ,

(A.0.5)

and

DNL
N,−(

√
f, µ) =

κ

Nθ

∫
(α2η(1)(1− η(2)) + γ2(1− η(1))η(2))[

√
f(η2)−

√
f(η)]

2
dµ,

DNL
N,+(

√
f, µ) =

κ

Nθ

∫
(β2η(N − 1)(1− η(N − 2)) + δ2(1− η(N − 1))η(N − 2))[

√
f(ηN−2)−

√
f(η)]

2
dµ.

(A.0.6)

The reason for us to introduce these quantities is simple. Looking at the statements of the Replacement Lemmas

A.0.6 and A.0.5, we will use the entropy inequality (C.3.2) to "exchange" the measure µN to a simpler one, while

controling the entropy between both. In this way, we want to use a measure where the entropy of the measure

induced by our process with respect to the new one is going to be small enough, and product Bernoulli with

constant profile, as we will see, is enough for θ ≥ 1. Once applied the entropy inequality, we can use Feynman-

Kac’s inequality, thus needing to estimate the quantities defined above.

We claim that for θ ≥ 1 and for γ : [0, 1] → [0, 1] a constant profile equal to, for example, γ, the following

bound holds

〈LN
√
f,
√
f〉νNγ . −DN (

√
f, νNγ ) +O(N−θ). (A.0.7)

The following estimates are not difficult to obtain and rely essentialy on writing the terms 〈LN,·
√
f,
√
f〉νNγ as its

half plus its half, summing and subtracting the appropriate terms in one of the halfs to get −DN (
√
f, νNγ ) plus

a new term. Then, group the remaining half and the new term, and make an appropriate change of variables to

take advantage of the particularity of νNγ being invariant for the change of variables η 7→ ηx,x+1 (for the bulk), or

replace νNγ (η) 7→ νNγ (ηx) with a small error, for the boundary terms. Thus, we will refer the reader to C.2.2 for

the full statement, and only refer at the moment that we know that:

〈LN,0
√
f,
√
f〉νNγ = −DN,0(

√
f, νNγ ) and 〈LLN,−

√
f,
√
f〉νNγ . −D

L
N,−(

√
f, νNγ ) +O(N−θ). (A.0.8)

Thus, it is only necessary to control the contribution from LNLN,b. For that purpose we recall the following lemma

from [4]:

Lemma A.0.2. Let T : η ∈ ΩN → T (η) ∈ ΩN be a transformation, and c : η → c(η) be a positive local function.

Let f be a density with respect to a probability measure µ on ΩN . Then, we have that∫
c(η)[

√
f(T (η))−

√
f(η)]

√
f(η) dµ . −

∫
c(η)

[√
f(T (η))−

√
f(η)

]2
dµ+

+

∫
1

c(η)

[
c(η)− c(T (η))

µ(T (η))

µ(η)

]2 [√
f(T (η)) +

√
f(η)

]2
dµ.

(A.0.9)
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From this lemma we have

∫
α2η(1)(1− η(2) + γ2(1− η(1))η(2))[

√
f(η2)−

√
f(η)]

√
f(η)dνNγ (A.0.10)

. −DNL
N,−(

√
f, νNγ ) +

∫
N−θ

[
1−

νNγ (η2)

νNγ (η)

]2

[
√
f(η2)−

√
f(η)]2dνNγ , (A.0.11)

where we bounded α2η(1)(1− η(2)) +γ2(1− η(1))η(2) and α2η(1)η(2) +γ2(1− η(1))(1− η(2)) by a constant.

Since νNγ is Bernoulli with constant marginals, we have (A.0.7).

Remark A.0.3. For the general case K > 2 the only difference lies in the fact that we will have to consider

LNLN,− ≡
∑
x≥2 L

NL,x
N,− where for each x we have the non linear dynamics acting at the sites 2, . . . , x . Just as in

the case studied above we have LNLN,− ≡ L
NL,2
N,− , with the aforementioned notation. In this way, the error from the

non linear dynamics would be of order (K − 1)N−θ.

The next lemma will allow us to prove one of the Replacement Lemmas that is needed in the proof of hydro-

dynamics.

Lemma A.0.4. Let x < y ∈ ΛN and let ϕ : Ω → Ω be a positive and bounded function which satisfies ϕ(η) =

ϕ(ηz,z+1) for any z = x, · · · , y − 1. For any density f with respect to νNγ and any positive constant A, it holds

that ∣∣∣〈ϕ(η)(η(x)− η(y)), f〉νNγ
∣∣∣ . 1

ADN (
√
f, νNγ ) +A.

Proof. Note that η(x)− η(y) =
∑y−1
z=x(η(z)− η(z + 1)). Summing and subtracting

∑y−1
z=x f(ηz,z+1) we have:

|〈ϕ(η)(η(x)− η(y)), f〉νNγ | ≤
1

2

y−1∑
z=x

∣∣∣∣∫ ϕ(η)(η(z)− η(z + 1))[f(η)− f(ηz,z+1)] dνNγ

∣∣∣∣
+

1

2

y−1∑
z=x

∣∣∣∣∫ ϕ(η)(η(z)− η(z + 1))[f(η) + f(ηz,z+1)] dνNγ

∣∣∣∣ .
(A.0.12)

Note that since ϕ satisfies ϕ(η) = ϕ(ηz,z+1) for any z = x, · · · , y − 1, by a change of variables, we conclude that

the last term in the previous display is equal to zero:

∫
ϕ(η)(η(z)− η(z + 1))f(η)dνNγ =

∑
η∈ΩN

ϕ(η)(η(z)− η(z + 1))f(η)νNγ (η) (A.0.13)

=
∑
ξ∈ΩN

ϕ(ξ)(ξ(z + 1)− ξ(z))f(ξz,z+1)
νNγ (ξz,z+1)

νNγ (ξ)
νNγ (ξ), (A.0.14)

since νNγ has constant marginals we have that νNγ (ξz,z+1)/νNγ (ξ) = 1 and the last expression on the previous

display simplifies to

−
∑
ξ∈ΩN

ϕ(ξ)(ξ(z)− ξ(z + 1))f(ξz,z+1)νNγ (ξ). (A.0.15)

Now, we treat the remaining term. Using the equality (a−b) = (
√
a−
√
b)(
√
a+
√
b) and then Young’s inequality,
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the first term at the right side of (A.0.12) is bounded from above by

A

y−1∑
z=x

∣∣∣∣∫ (ϕ(η)(η(z)− η(z + 1)))2
(√

f(ηz,z+1) +
√
f(η)

)2

dνNγ

∣∣∣∣+
1

A

y−1∑
z=x

∣∣∣∣∫ (√f(η)−
√
f(ηz,z+1)

)2

dνNγ

∣∣∣∣.
(A.0.16)

Recalling the definition of DN,0(
√
f, νNγ ), clearly we have DN,0(

√
f, νNγ ) ≤ DN (

√
f, νNγ ). From the fact that ϕ

is bounded, |η(x)|≤ 1 and f is a density, the term on the left-hand side of last expression is bounded from above

by a constant times A. This ends the proof.

Lemma A.0.5 (Replacement Lemma 1). Let ϕ : Ω → Ω be a positive and bounded function which satisfies

ϕ(η) = ϕ(ηz,z+1) for any z = x, · · · , y − 1. For any t ∈ [0, T ] we have that

lim sup
N→+∞

EµN
[ ∣∣∣∣∫ t

0

ϕ(ηsN2)(ηsN2(x)− ηsN2(y))ds

∣∣∣∣ ] = 0. (A.0.17)

Proof. The expectation above can be written as

∫
Eη
[ ∣∣∣∣∫ t

0

ϕ(ηsn2)(ηsN2(x)− ηsN2(y))ds

∣∣∣∣ ] dµN . (A.0.18)

From entropy inequality (C.3.2), for any B > 0, last display is bounded from above by

H(µN |νNγ )

BN
+

1

BN
log

∫
e
BEη

 ∣∣∣∣∣∣
∫ t

0

ϕ(ηsN2)(ηsN2(x)− ηsN2(y))ds

∣∣∣∣∣∣

dνNγ . (A.0.19)

Now we use Jensen’s inequality and bound the previous expression by

H(µN |νNγ )

BN
+

1

BN
log

∫
Eη

[
e
BN

∣∣∣∣ ∫ t0 ϕ(ηsN2 )(ηsN2 (x)−ηsN2 (y))ds

∣∣∣∣ ]
dνNγ , (A.0.20)

which is equal to
H(µN |νNγ )

BN
+

1

BN
logEνNγ

[
e
BN

∣∣∣∣ ∫ t0 ϕ(ηsN2 )(ηsN2 (x)−ηsN2 (y))ds

∣∣∣∣]
. (A.0.21)

Now we apply the inequality e|x| ≤ ex + e−x to be free of the absolute value inside the exponential. Noticing that

lim sup
N→+∞

N−1 log(aN + bN ) = max{lim sup
N→+∞

N−1 log(aN ), lim sup
N→+∞

N−1 log(bN )},

we only need to work with the exponential with positive expoent. It is easy to see that H(µN |νNγ ) ≤ NCγ , since

by (C.3.1)

H(µN |νNγ ) =
∑
η∈ΩN

µ(η) log
µ(η)

νNγ (η)
≤
∑
η∈ΩN

µ(η) log
1

νNγ (η)
. (A.0.22)

Recalling that νNγ (η) =
∏
x∈ΛN

γη(x)(1 − γ)1−η(x), let γ∧ := γ ∧ (1 − γ). Then 1
νNγ (η)

≥ γ−N∧ . Since the
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logarithm is an increasing function, we have

∑
η∈ΩN

µ(η) log
1

νNγ (η)
≤ N

∑
η∈ΩN

µ(η) log
1

γ∧
≤ NCγ , (A.0.23)

where we only needed to impose that γ 6= 0, 1. By Feynman-Kac’s inequality (C.4.1), expression (A.0.21) is

bounded from above by

Cγ
B + t sup

f

{
〈ϕ(η)(η(x)− η(y)), f〉νNγ + N

B 〈LN
√
f,
√
f〉νNγ

}
. (A.0.24)

The supremum above is over densities f with respect to να. By Lemma A.0.4, with the choice A = B
N we have

that

∣∣∣〈ϕ(η)(η(x)− η(y)), f〉νNγ
∣∣∣ . N

BDN (
√
f, νNγ ) + B

N . (A.0.25)

From (A.0.7) and the inequality above, the term on the right-hand side of (A.0.24), is bounded from above by
B
N + 1

N . Taking N →∞ and then B → +∞ we finish the proof.

Lemma A.0.6 (Replacement Lemma 2). Let ψ : Ω→ Ω be a positive and bounded function which satisfies ψ(η) =

ψ(ηz,z+1) for any z = x+ 1, · · · , x+ εN −1. For any t ∈ [0, T ] and x ∈ ΛN such that x ∈ {1, · · · , N − εN −2}

we have that

lim sup
N→+∞

EµN
[ ∣∣∣∣∫ t

0

ψ(ηsN2)(ηsN2(x)−−→η εNsN2(x))ds

∣∣∣∣ ] = 0. (A.0.26)

Note that for x ∈ ΛN such that x ∈ {N − εN − 1, N − 1} the previous result is also true, but we replace in the

previous expectation −→η εNsN2(x) by←−η εNsN2(x).

Proof. We present the proof for the case when x ∈ {1, · · · , N − εN − 2} since the other case is analogous. By

applying the same arguments as in the proof of the previous theorem, we can bound the previous expectation by

Cα
B + t sup

f

{
〈ψ(η)(η(x)−−→η εN (x)), f〉νNγ + N

B 〈LN
√
f,
√
f〉νNγ

}
. (A.0.27)

where B is a positive constant. The supremum above is over densities f with respect to νNγ . From the definition

of −→η εN (x) in (3.3.38), first term in the supremum above can be written as

1

εN

x+εN∑
y=x+1

〈ψ(η)(η(x)− η(y)), f〉νNγ

By Lemma A.0.4 with the choice A = B
N and from (A.0.7), the term on the right-hand side of (A.0.27), is again

bounded from above by B
N + 1

N . Taking N →∞ and then B → +∞ we are done.
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Appendix B

Energy Estimate

In this section we will show that the density ρ lives in a Sobolev space, almost surely in t ∈ [0, T ]. The

procedure is standard, and we will follow mostly [3] and [10]. We start by presenting some notation for this

section.

• 〈·, ·〉µ : inner product in L2([0, 1]) with respect to measure µ defined in [0, 1] and ‖·‖L2 the corresponding

norm;

• Cm,n([0, T ]× [0, 1]) : set of functions m times differentiable on first variable and n times differentiable on

the second variable with continuous derivatives;

• Cm,nc ([0, T ]× [0, 1]) : subset of H ∈ Cm,n([0, T ]× [0, 1]) such that Hs has compact support in (0, 1);

• Cmc (0, 1) : set ofm continuously differentiable real-valued functions defined on (0, 1) with compact support.

Definition B.0.1. The semi inner-product 〈·, ·〉1 on C∞([0, 1]) is defined as:

〈G,H〉1 =

∫ 1

0

(∂vG)(v)(∂vH)(v)dv, (B.0.1)

for G,H ∈ C∞([0, 1]), and the corresponding semi-norm is denoted by ‖·‖1.

Definition B.0.2. The Sobolev space on (0, 1),H1(0, 1) is the Hilbert space defined as the completion ofC∞(0, 1)

for the norm ‖·‖2H1 := ‖·‖2L2 +‖·‖21, and its elements coincide a.e. with continuous functions. Moreover, we define

L2(0, T ;H1(0, 1)) = {f : [0, T ] −→ H1 |
∫ T

0
‖fs‖2H1(0,1)ds <∞}.

Now we show that the density ρ lives in the space L2(0, T ;H1(0, 1)). This result can be summarized in the

following proposition.

Proposition B.0.3. Let Q be concentrated on paths πt(dv) = ρt(v)dv. There, exists a function in L2([0, T ] ×

(0, 1)) denoted by ∂vρ such that

∫ T

0

∫ 1

0

(∂vG)(s, v)ρ(s, v)dvds = −
∫ T

0

∫ 1

0

G(s, v)(∂vρ)(s, v)dvds (B.0.2)

for all G ∈ C0,1([0, T ]× (0, 1)).
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To see this, for simplicity we consider the linear functional `ρ defined in C0,1
c ([0, T ]× (0, 1)) by

`ρ(G) =

∫ T

0

∫ 1

0

∂vGs(v)ρ(s, v) dvds =

∫ T

0

∫ 1

0

∂vGs(v) dπ(s, v)ds. (B.0.3)

By Proposition B.0.4, the proof of Proposition B.0.3 is simple.

Proof of Proposition B.0.3. Since the set of functions H ∈ C0,1([0, T ] × (0, 1)) is dense in L2([0, T ] × (0, 1)),

and by Propposition B.0.4 ` is Q− a.s. bounded functional in C0,1([0, T ]× (0, 1)), one can extend this functional

to L2([0, T ] × (0, 1)). As a consequence of the Riesz’s Representation Theorem, there exists a function H ∈

L2([0, T ]× (0, 1)) such that for all G ∈ C0,1
c ([0, T ]× (0, 1))

`ρ(G) = −
∫ T

0

∫ 1

0

Gs(v)Hs(v)dvds. (B.0.4)

From this we conclude that ρ ∈ L2(0, T ;H1(0, 1)).

Proposition B.0.4. There exist positive constants C and c such that

E
[

sup
G∈C0,1

c ([0,T ]×(0,1))

{
`ρ(G)− c‖G‖22

}]
≤ C <∞, (B.0.5)

where ‖G‖2 is the L2 norm of a function G ∈ L2([0, T ]× (0, 1)).

Proof. By density and by the Monotone Convergence Theorem we only need to show that for a countable dense

subset {Gm}m∈N on C0,2
c ([0, T ]× (0, 1)) holds

E
[
max
k≤m
{`ρ(Gk)− c‖Gk‖22}

]
≤ C0 (B.0.6)

for any m and for C0 independent of m. The upperscript in G corresponds to the index. From [10] we know

that the map π· ∈ DM[0, T ] 7→ maxk≤m
{
`ρ(G

k)− c‖Gk‖22
}
, is continuous and bounded with respect to the

Skorohod topology. Thus, the expectation in the previous display is equal to

lim
N→∞

EµN

[
max
k≤m

{∫ T

0

1

N − 1

N−1∑
x=1

∂uG
k
s( xN )ηs(x)ds− c‖Gk‖22

}]
. (B.0.7)

By entropy and Jensen’s inequalities, and changing to the measure νNγ plus noticing that emaxk≤m ak ≤
∑m
k=1 e

ak ,

the previous display is bounded from above by

Cα + 1
N−1 logEνNγ

[
m∑
k=1

e
∫ T
0

∑
x∈ΛN

∂uG
k
s (
x
N )ηs(x)ds−cN‖Gk‖22ds

]
. (B.0.8)

By linearity of the expectation, to treat the second term in the previous display it is enough to bound the term

lim sup
N→∞

1
N−1 logEνNγ

[
e
∫ T
0

∑
x∈ΛN

∂uGs(
x
N )ηs(x)ds−cN‖G‖22ds

]
,

for a fixed function G ∈ C0,2
c ([0, T ] × (0, 1)), by a constant independent of G. By the Feynman-Kac’s formula
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C.4.1, the expression inside the limsup is bounded by

∫ T

0

sup
f

{ 1

N − 1

∫
ΩN

∑
x∈ΛN

∂uGs(
x
N )ηs(x)f(η)dνNγ − c‖G‖22+N〈LN

√
f,
√
f〉νNγ

}
ds (B.0.9)

where f is a density with respect to νNγ . Note that by a Taylor expansion on G, we can replace ∂u by ∇+
NGs(

x
N ),

with an error of order O(N−1). Then, summing by parts (recall C.1.1), we get

∫
ΩN

N−2∑
x=1

Gs(
x
N )(η(x)− η(x+ 1))f(η)dνNγ . (B.0.10)

By the same trick as most of the proofs in the previous section, we write the previous term as one half of it plus one

half of it, and in one of the parts we exchange η 7→ ηx,x+1 (recall that νNγ is invariant for this change of variables).

Thus, the last display is equal to

1

2

∫
ΩN

N−2∑
x=1

Gs(
x
N )(η(x)− η(x+ 1))(f(η)− f(ηx,x+1))dνNγ . (B.0.11)

By analogous arguments to those used to show Lemma A.0.4, last term is bounded from above by

1

4N

∫
ΩN

N−2∑
x=1

(Gs(
x
N ))2(

√
f(η) +

√
f(ηx,x+1))2dνNγ +

1

4N

∫
ΩN

N−2∑
x=1

(
√
f(η)−

√
f(ηx,x+1))2dνNγ

≤ C

N

∑
x∈ΛN

(Gs(
x
N ))2 +

1

4N
D0,N (

√
f, νNγ )

(B.0.12)

for some C > 0. From (A.0.7) we get that (B.0.9) is bounded from above by

C ′
∫ T

0

[
1 +

1

N

∑
x∈ΛN

(Gs(
x
N ))2

]
ds − c‖G‖22 (B.0.13)

plus an error of order O(N−1). Above C ′ is a positive constant independent of G.

Since we have that 1
N

∑
x∈ΛN

(Gs(
x
N ))2 N→∞−−−−→ ‖G‖22,then it is enough to choose c > C ′ to conclude that

lim sup
N→∞

{
C ′
∫ T

0

[
1 +

1

N

∑
x∈ΛN

(Gs(
x
N ))2

]
ds − c‖G‖22

}
. 1 (B.0.14)

and we are done.
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Appendix C

Auxiliary results

C.1 Discrete calculus

For any function A dependent of x, define the backward difference operator in x, ∇x, as ∇xA := A(x) −

A(x− 1). Then, for any A,B functions dependent of x it is easy to derive a discrete product rule.

∇x[A(x)B(x)] = A(x)B(x)−A(x− 1)B(x− 1)

= (A(x)−A(x− 1))B(x) +A(x− 1)B(x)−A(x− 1)B(x− 1)

= B(x)∇xA(x) +A(x− 1)∇xB(x).

(C.1.1)

By the product rule above, and considering A(x) ≡ Ax, B(x) ≡ Bx one can derive the following summation by

parts (also known as Abel’s lemma, or Abel’s transformation).

Lemma C.1.1. Suppose {Ax}, {Bx} are two sequences. Then,

n∑
x=m

Ax(Bx+1 −Bx) = AnBn−1 −AmBm −
n∑

x=m+1

Bx(Ax −Ax−1) (C.1.2)

C.2 Dirichlet forms

The following two results can be found in [3] (Lemma 5.1 and Lemma 5.2, respectively). On the following

lemma we only changed the notation to the one used through this thesis.

Lemma C.2.1. Let γ : [0, 1] → (0, 1) be a function. Let f : ΩN → R+ be a density with respect to the measure

νNγ(·). Then, if γ is a constant function

〈LN,0
√
f,
√
f〉νN

γ(·)
= −DN,0(

√
f, νNγ(·)). (C.2.1)

The original lemma above also has a simillar extension for γ smooth, which we will not need to use here. The

following lemma is originally stated for α1 = α and γ1 = 1 − α. Following the proof in [3], one can easily see

that the statement below holds.
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Lemma C.2.2. Let γ : [0, 1]→ (0, 1) be a function. For any g density with respect to νNγ we have

〈LLN,−
√
g,
√
g〉νN

γ(·)
= −DL

N,−(
√
g, νNγ(·)) + EN (γ, g), (C.2.2)

with |EN (γ, g)| . C(γ)
∣∣∣γ( 1

N )− α1

α1+γ1

∣∣∣κN−θ‖g‖2νN
γ(·)

. A similar equality holds forLLN,b by replacing
∣∣∣γ( 1

N )− α1

α1+γ1

∣∣∣
by
∣∣∣γ(N−1

N )− β1

β1+δ1

∣∣∣.
C.3 Entropy

Theorem C.3.1 (Entropy formula, [17]). If µ and ν are measures in countable space E , and µ is absolutely

continuous with respect to ν, the entropy H(µ | ν) of µ with respect to ν is given by

H(µ | ν) =
∑
x∈E

µ(x) log
µ(x)

ν(x)
, (C.3.1)

and is equal to∞ otherwise.

Proposition C.3.2 (Entropy inequality). For two measures µ, ν in E and for γ > 0:

∫
f(η)µ(dη) ≤ 1

γ
H(µ | ν) +

1

γ

∫
eγf(η)ν(dη) (C.3.2)

C.4 General inequalities

Theorem C.4.1 (Feynman-Kac inequality[3]). Let {Xt}t≥0 be a Markov process in the countable space E, with

infinitesimal generator L. Let ν be a probability measure in E and V : [0,∞) × E → R be a bounded function.

Denote Lt = L+ V (t) where Vt = V (t, ·). Define

Γt = sup
‖f‖2=1

{
〈Vt, f2〉ν + 〈Lf, f〉ν

}
, (C.4.1)

where 〈·, ·〉 denotes the inner product in L2(E, ν) and ‖·‖2 = 〈·, ·〉
1
2
ν . Then

Eν
[
e
∫ t
0
Vr(Xr)dr

]
≤ e

∫ t
0

Γsds. (C.4.2)

Theorem C.4.2 (Doob’s maximal inequalities). Let {Ft}t≥0 be a filtration on a probability space (Ω,F , P ), and

let {Mt}t≥0 be a continuous martingale with respect to the filtration {Ft}t≥0.

• Let p ≥ 1 and T > 0. If E [|MT |p] < +∞ then ∀t > 0,

P( sup
0≤t≤T

|Mt| ≥ λ) ≤ λ−pE [|MT |p] . (C.4.3)

• Let p > 1 and T > 0. If E [|MT |p] < +∞ then

E[( sup
0≤t≤T

|Mt|)p] ≤
(

p

p− 1

)p
E [|MT |p] . (C.4.4)
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Doob’s inequality is a classical result in Stochastic Calculus and both the proof and statement can be found in

most books on the subject.

Theorem C.4.3 (Markov’s inequality). Let X be a r.v. such that E [|X|p] <∞. Then ∀λ > 0,

P(|X| ≥ λ) ≤ λ−pE [|X|p] . (C.4.5)

C.5 Topology

The following results can be found in [17], chapter 4

C.5.1 Tightness

Definition C.5.1. A collection of probability measuresM defined in a metric space (S,F) is tight if ∀ε > 0 exist

K compact such that ∀µ ∈M we have µ(K) > 1− ε.

Definition C.5.2 (Relatively compact). A collection of probability measures M is relatively compact if each

sequence has a subsequence that converges (weakly).

Theorem C.5.3 (Prokhorov’s theorem). LetM be a collection of probability measures on (S,F). IfM is tight,

thenM is relatively compact. Moreover, if S is complete and separable, the reciprocal is also true.

C.5.2 Skorohod topology

Let DS [0, T ] be the space of càdlàg functions with values in S, where S is a separable space endowed with a

distance δ.

In order to avoid big oscilations in the measure as a result of the jumps of the process, we use a more

"smooth" distance than the uniform − the Skorohod measure. First, let us define Λ = {λ | [0, T ] → [0, T ] :

λ is a continuous and increasing function}. If λ ∈ Λ we let

‖λ‖ := sup
t6=s

∣∣∣∣log

(
λ(t)− λ(s)

t− s

)∣∣∣∣. (C.5.1)

Finally, if µ, ν ∈ S we define the Skorohod distance as

d(µ, ν) = inf
λ∈Λ

max{‖λ‖, sup
0≤t≤T

δ(µt, νλ(t))}. (C.5.2)

Proposition C.5.4. The space DS [0, T ] endowed with the metric d above is a metric complete separable space.

The module of uniform continuity of a trajectory µ is defined as

ωµ(γ) = sup
|s−t|≤γ

δ(µs, µt). (C.5.3)
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We can modify the definition above to a more useful one:

ω′µ(γ) := inf
{ti}0≤i<r

max
0≤i<r

sup
ti≤s<t<ti+1

δ(µs, µt), (C.5.4)

where the infimum on {ti}0≤i<r is taken over all the partitions of [0, T ] such that 0 =: t0 < · · · < tr := T , and

ti − ti−1 > γ, ∀1 ≤ i ≤ r.

Theorem C.5.5 (Aldous’ conditions). Let {PN}N≥1 be a sequence of probability measures inDS [0, T ]. Then the

sequence is relatively compact if and only if

1. For all t ∈ [0, T ], ε > 0 there exists Kt(ε) ⊂ S compact such that

sup
N≥1

PN (µ ∈ DS [0, T ] : µt /∈ Kt(ε)) < ε. (C.5.5)

2. ∀ε > 0

lim
γ→0

lim sup
N→∞

PN
(
µ ∈ DS [0, T ] : ω′µ(γ) > ε

)
= 0. (C.5.6)

Condition 2. of the previous theorem can be replaced by a more simple to check:

lim
γ→0

lim sup
N→∞

PN (µ ∈ DS [0, T ] : ωµ(γ) > ε) = 0. (C.5.7)

The result that we will apply is the following which guarantees the requirement of (C.5.7)

Proposition C.5.6. A sequence of probability measures {PN}N≥1 in DS [0, T ] satisfies (C.5.7) if ∀ε > 0,

lim
γ→0

lim sup
N→∞

sup
τ∈TT ,θ≤γ

PN (µ ∈ DS [0, T ] : δ(µτ+θ,µτ ) > ε) = 0, (C.5.8)

where TT is the set of all stopping times bounded (a.s.) by T .

Proposition C.5.7. Let {gk}k≥1 be a dense family in C2
0 [0, 1]. A sequence of probability measures {QN}N≥1 ∈

DM[0, T ] is relatively compact if ∀k ≥ 0 {QN,gk}N≥1 is, where QN,gk is induced by the map

φ :
(
DM[0, T ],QN

)
−→

(
DR[0, T ],QN,gk

)
(C.5.9)

{πNt }t≥0 7→ {〈πNt , gk〉}t≥0. (C.5.10)

The result above is consequence of the duality 〈πNt , gk〉. Now we state Portmanteau’s theorem, which is a

classical result in probability theory and we refer the reader to [16] for more details.

Theorem C.5.8 (Portmanteau’s theorem). For any random elements X,X1, X2, . . . in a metric space S, the

following conditions are equivalent

1. Xn
d−→ X .

2. lim infN P (XN ∈ G) ≥ P (X ∈ G) for any open set G ⊂ S.
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3. lim supN P (XN ∈ F ) ≤ P (X ∈ F ) for any closed set F ⊂ S.

4. P (XN ∈ B)→ P (X ∈ B) for any B ∈ B(S) with X /∈ ∂B a.s.,

where B(S) denotes the Borel σ−algebra in S, and ∂B the boundary of B.

C.6 Weak solutions

In this section we will define our notion of weak solution of the heat equation with both Robin and Neumann

boundary conditions. In this way, consider the heat equation


∂tρt(u) = 4ρt(u), (t, u) ∈ [0, T ]× (0, 1)

∂uρt(0) = u0, t ∈ [0, T ]

∂uρt(1) = u1, t ∈ [0, T ].

(C.6.1)

First we will (informally) derive a weak solution to the equation above, then we will define the boundary conditions.

Multiplying a test function H ∈ C1,2([0, T ]× [0, 1]) in ∂tρ = 4ρ we get:

∂tρt(u)Ht(u) = 4ρt(u)Ht(u). (C.6.2)

Integrating on [0, T ]× (0, 1):

I1 :=

∫ 1

0

∫ T

0

∂tρt(u)Ht(u)dtdu =

∫ 1

0

∫ T

0

4ρt(u)Ht(u)dtdu =: I2. (C.6.3)

Integrating by parts I1:

I1 =

∫ 1

0

(ρT (u)HT (u)− ρ0(u)H0(u)) du−
∫ 1

0

∫ T

0

ρt(u)∂tHt(u)dtdu. (C.6.4)

Integrating I2 by parts twice:

I2 =

∫ T

0

∂uρt(1)Ht(1)− ∂uρt(0)Ht(0)dt−
∫ T

0

∫ 1

0

∂uρt(u)∂uHt(u)dudt

=

∫ T

0

∂uρt(1)Ht(1)− ∂uρt(0)Ht(0)dt−
∫ T

0

ρt(1)∂uHt(1)− ρt(0)∂uHt(0)dt

+

∫ T

0

∫ 1

0

ρt(u)4Ht(u)dudt.

(C.6.5)

Equating I1 and I2 and using Fubini’s theorem:

∫ 1

0

(ρT (u)HT (u)− ρ0(u)H0(u)) du−
∫ 1

0

∫ T

0

ρt(u)∂tHt(u)dtdu

=

∫ T

0

∂uρt(1)Ht(1)− ∂uρt(0)Ht(0)dt−
∫ T

0

ρt(1)∂uHt(1)− ρt(0)∂uHt(0)dt

+

∫ T

0

∫ 1

0

ρt(u)4Ht(u)dudt,

(C.6.6)
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that is:

0 =

∫ 1

0

(ρT (u)HT (u)− ρ0(u)H0(u)) du−
∫ T

0

∫ 1

0

ρt(u)(∂t +4)Ht(u)dudt−

−
∫ T

0

∂uρt(1)Ht(1)− ∂uρt(0)Ht(0)dt+

∫ T

0

ρt(1)∂uHt(1)− ρt(0)∂uHt(0)dt

(C.6.7)

Definition C.6.1. A function ρ : [0, T ] × [0, 1] −→ [0, 1] is a weak solution of the heat equation (C.6.1) with

Robin boundary conditions if ρ satisfies the weak formulation (C.6.7) with

u0 = −κ(α1 − (α1 + γ1)ρt(1) + (γ2 − α2)(ρ2
s(1)− ρt(1)))

u1 = κ(β1 − (β1 + δ1)ρt(1) + (δ2 − β2)(ρ2
s(1)− ρt(1)))

(C.6.8)

for any function H ∈ C2([0, T ]× [0, 1]), and ρ ∈ L2(0, T ;H1(0, 1)).

If, instead, we have ρ satisfies the weak formulation (C.6.7) for any function H ∈ C2([0, T ] × [0, 1]), and

ρ ∈ L2(0, T ;H1(0, 1)) but

u0 = u1 = 0, (C.6.9)

we say that ρ is a weak solution to the heat equation with Neumann boundary conditions.

Explicitly, these formulations take the form:

FR : =

∫ 1

0

(ρT (u)HT (u)− ρ0(u)H0(u)) du−
∫ T

0

∫ 1

0

ρt(u)(∂t +4)Ht(u)dudt−

−
∫ T

0

Ht(1)(κ(β1 − (β1 + δ1)ρt(1) + (δ2 − β2)(ρ2
s(1)− ρt(1))))dt−

−
∫ T

0

Ht(0)(κ(α1 − (α1 + γ1)ρt(1) + (γ2 − α2)(ρ2
s(1)− ρt(1))))dt+

+

∫ T

0

ρt(1)∂uHt(1)− ρt(0)∂uHt(0)dt = 0,

(C.6.10)

and

FN : =

∫ 1

0

(ρT (u)HT (u)− ρ0(u)H0(u)) du−
∫ T

0

∫ 1

0

ρt(u)(∂t +4)Ht(u)dudt+

+

∫ T

0

ρt(1)∂uHt(1)− ρt(0)∂uHt(0)dt = 0.

(C.6.11)
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Appendix D

Matrix Product Ansatz

D.1 Coefficients’ roots

Let

z = (α1 + γ1)(α1(α2 + γ3) + (α3 + γ2)(α2 + γ1 + γ3))+

+Nθ((α1 + α2)(α1 + α3) + (γ1 + γ3)(γ1 + γ2) + 2(γ1 + γ3)(α1 + α3))

then

dL1 z = Nθ(α1 + α3)(α1 + α2 + γ1 + γ3)+

+ α1(α1(α2 + γ3) + (α3 + γ2)(α2 + γ1 + γ3))

dL2 z = N2θ(α2 − α3 − γ2 + γ3)

dL3 z = −N2θ(α1 + α2 + γ1 + γ3)

tL1 z = α1γ1(γ2 − α2) + α1γ3(α3 + γ2)− α3γ1(α2 + γ3) + α2
1γ3 − α3γ

2
1

tL2 z = −Nθ(α1 + γ1)(α2 − α3 − γ2 + γ3)

tL3 z = Nθ(α1 + γ1)(α1 + α2 + γ1 + γ3)

fL1 z = Nθ(α1 + α2)(α1 + α3) + α1(α1α2 + α3γ1 + α2(α3 + γ2))

fL2 z = −Nθ((α1 + γ1)(α3 + γ2) +Nθ(α1 − α2 + 2α3 + γ1 + γ2)

fL3 z = −Nθ(α1(α1 + γ1) +Nθ(α1 + α2))

and for the right

dR1 z = Nθ(β1 + β3)(β1 + β2 + δ1 + δ3)+

+ β1(β1(β2 + δ3) + (β3 + δ2)(β2 + δ1 + δ3))

dR2 z = −N2θ(β2 − β3 − δ2 + δ3)

dR3 z = N2θ(β1 + β2 + δ1 + δ3)
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tR1 z = −(β1δ1(δ2 − β2) + β1δ3(β3 + δ2)− β3δ1(β2 + δ3) + β2
1δ3 − β3δ

2
1)

tR2 z = −Nθ(β1 + δ1)(β2 − β3 − δ2 + δ3)

tR3 z = Nθ(β1 + δ1)(β1 + β2 + δ1 + δ3)

fR1 z = Nθ(β1 + β2)(β1 + β3) + β1(β1β2 + β3δ1 + β2(β3 + δ2))

fR2 z = Nθ((β1 + δ1)(β3 + δ2) +Nθ(β1 − β2 + 2β3 + δ1 + δ2)

fR3 z = Nθ(β1(β1 + δ1) +Nθ(β1 + β2))

We can relate the left and right coefficients more elegantly as:

dL1 (α, γ) = dR1 (α, γ) dL2 (α, γ) = −dR2 (α, γ) dL3 (α, γ) = −dR3 (α, γ)

tL1 (α, γ) = −tR1 (α, γ) tL2 (α, γ) = tR2 (α, γ) tL3 (α, γ) = −tR3 (α, γ)

fL1 (α, γ) = fR1 (α, γ) fL2 (α, γ) = −fR2 (α, γ) fL3 (α, γ) = −fR3 (α, γ)

D.2 Rates matrices

b∗L =


0

α1

α3

−(α1 + α3)

α1 + α2

−(2α1 + α2 + γ1)

−(α1 + 2α3 + γ2)

2α1 + 2α3 + γ1 + γ2

−(α1 + a2 + γ1 + γ3)

α1 + α2 + γ1 + γ3

α1 + α3 + γ1 + γ2

−(α1 + α3 + γ1 + γ2)

−α1

α1

α1 + α3 + γ2

−(α1 + α3 + γ2)
 (D.2.1)

b∗R =


0

β3

β1

−(β1 + β3)

β1 + β2

−(β1 + 2β3 + δ2)

−(2β1 + β2 + δ1)

2β1 + 2β3 + δ1 + δ2

−(β1 + β2 + δ1 + δ3)

β1 + β3 + δ1 + δ2

β1 + β2 + δ1 + δ3

−(β1 + β3 + δ1 + δ2)

β1

−(β1 + β3 + δ2)

−β1

β1 + β3 + δ2

 (D.2.2)

m∗L =


0

0

0

0

0

0

0

0

0

0

0

0

0

−1

1

0
 (D.2.3)
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Appendix E

Auxiliary results for the propagation of

chaos

E.1 Bounds for a single random walk with reflections

As in [24], we state some properties of a single random walk in ΛN with reflections at the boundaries. For the

proof of the following results we refer the reader to [25]. Although in [24], the jump rates of the SSEP are 1/2,

instead of 1, as through this thesis, the 2 in the denominator can be incorporated by the constants in the bounds.

Let P (ε)
t (x, y) be the transition probability of a simple random walk in ΛN which jumps with intensity ε−2/2

to its nearest neighbor sites. As in Section 4.1, jumps to outside of ΛN are supressed. Define the quantity

Gt(x, y) =
e−

x−y
2t

√
2πt

, (E.1.1)

also known as Gauss kernel. Then one can show that we have

P
(ε)
t (x, y) ≤ cGε−2t(x, y), ∀ε > 0, t ∈ [0, T ], x, y ∈ ΛN (E.1.2)

and

∣∣∣P (ε)
t (x, y)− P (ε)

t (x+ 1, y)
∣∣∣ ≤ c√

ε−2t
Gε−2t(x, y),∀ε > 0, t ∈ [0, T ], 1 ≤ x ≤ N − 1. (E.1.3)

In Proposition 5.1 of [25] it is shown some bounds for the gradients |ρε(x, t)− ρε(x+ 1, t)|. Using the bounds

shown there, one can get the following bound ∀ξ > 0 and τ > 0

sup
x,y∈ΛN :|x−y|≤1

|ρε(x, t)− ρε(y, t)| ≤
c

(ε−2t)1/2−ξ + 1
, ∀t ≤ τ log ε−1. (E.1.4)

E.2 Inequalities

The proof for the following inequality can be found in [1]
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Theorem E.2.1 (Andjel). If A and B are disjoint subsets of S, then for all η ∈ {0, 1}ΛN and t ≥ 0,

P (
∏

x∈A∪B
η(t, x) = 1) ≤ P (

∏
x∈A

η(t, x) = 1)P (
∏
x∈B

η(t, x) = 1) (E.2.1)
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