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Classes TP 2017/2018

The classes

Our classes have the following schedule:

Wednesday from 9h to 11h at 4.35 (maths building).
Thursday from 11h to 13h at P1 (maths building).

My office is in the maths building, 4th floor, the office number is 4.06.

My email is patricia.goncalves@math.tecnico.ulisboa.pt.

Office hours are on Wednesdays 11h-12h: please send me an email up
the day before saying that you will show up.
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The bibliography of the course

Principal bibliography:
Kai Lai Chung ”A course in probability theory”.

Barry James: ”Probabilidade: um curso em ńıvel intermediário”.
Richard Durrett: ”Probability: Theory and Examples”.
Patrick Billingsley: ”Probability and measure”.
Sheldon Ross: ”Probability”.
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The program of the course

Set theory: framework and basic results;
Probability measures and distribution functions;
Random variables and random vectors;
Expectation;
Stochastic independence;
Types of convergence: almost surely, in Lp, in probability, in
distribution;
Weak and strong law of large numbers;
Characteristic functions: framework and basic results;
Central limit theorem: the convergence to the Gaussian/Poisson;
Conditional expectation;
Discrete time martingales: examples and main results;
Applications.
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Evaluation
The final mark is computed according to the rule

1
3Texam+ 1

3Texercises+ 1
3Tpresentation, (1)

where Texam is the mark obtained in the exam, Texercises is the mark
obtained in the exercise lists and Tpresentation is the mark obtained on
the oral presentation (the date will be discussed).

• T1 - 30th november at the class.

• The minimum mark on the exam has to be greater or equal to 8,
otherwise the student can only approve by doing the final exam on the
3rd february from 11:30h to 14:30h.

• If the final mark obtained from (1) (or in the final exam) is greater or
equal to 17, the student has to do an oral exam, otherwise the student
gets the score 17.
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1st Lecture: Set theory
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Classes of sets

Let Ω be an abstract space and we shall denote its elements by ω.

Definition (Algebra)
An non-empty collection F of subsets of Ω is an algebra if and only if:

E ∈ F ⇒ Ec ∈ F
E1,E2 ∈ F ⇒ E1∪E2 ∈ F

Definition (Monotone class)
An non-empty collection F of subsets of Ω is a monotone class if and
only if:

Ej ∈ F , Ej ⊂ Ej+1 , ∀j⇒∪j≥1Ej ∈ F
Ej ∈ F , Ej ⊃ Ej+1 , ∀j⇒∩j≥1Ej ∈ F
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Definition (σ-algebra)
An non-empty collection F of subsets of Ω is a σ-algebra if and only if:

E ∈ F ⇒ Ec ∈ F
Ej ∈ F , ∀j⇒∪j≥1Ej ∈ F

Theorem
An algebra is a σ-algebra if and only if it is a monotone class.

Exercise: do the proof of the theorem.

Example
The collection S of all subsets of Ω is a σ-algebra and it is called the
total σ-algebra. The collection {∅,Ω} is a σ-algebra and is it called the
trivial σ-algebra.
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Remark
1 If A is an index set and if for α ∈A, Fα is a σ-algebra (or a

monotone class), then ∩α∈AFα is a σ-algebra (or a monotone
class).

2 Given a non empty collection of sets C, there exists a minimal
σ-algebra (or algebra or monotone class) containing C, which
consists in the intersection of all σ-algebras (or algebras or
monotone classes) containing C. There is at least one, namely the
total σ-algebra S. This σ-algebra (or algebra or monotone class) is
called the σ-algebra generated by C.

Theorem
Let F0 be an algebra, C the minimal monotone class containing F0 and
F the minimal σ-algebra containing F0. Then F = C.

Exercise: do the proof of the theorem.
Patŕıcia Gonçalves (IST Lisbon) Probability theory Academic year: 17/18 9 / 173



Probability measure TP 2017/2018

Probability measures
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Probability measure TP 2017/2018

Probability measure

Definition
Let Ω be an abstract space and F a σ-algebra of subsets of Ω. A
probability measure P(·) in F is a function P : F −→ [0,1] which
satisfies the following properties:

1 ∀E ∈ F ,P(E)≥ 0.
2 If {Ej}j≥1 is a countable collection of disjoint sets of F , then

P(∪j≥1Ej) =
∑
j≥1

P(Ej) (countable additivity).

3 P(Ω) = 1.

The triple (Ω,F ,P) is called a probability space, Ω is called the sample
space and its elements ω are called the sample points.
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Exercise: Prove that, as a consequence of the previous definition,
we have

1 ∀E ∈ F ,P(E)≤ 1.
2 P(∅) = 0.
3 P(Ec) = 1−P(E).
4 P(E∪F ) +P(E∩F ) = P(E) +P(F ).
5 E ⊂ F ⇒ P(E) = P(F )−P(F\E)≤ P(F ).
6 Monotone property: If Ej ↑ E or Ej ↓ E, then

P(Ej)→ P(E).
7 Boole’s inequality P(∪j≥1Ej)≤

∑
j≥1P(Ej).
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Recall that
1 If {Ej}j≥1 is a countable collection of disjoint sets of F , then

P(∪j≥1Ej) =
∑
j≥1

P(Ej) (countable additivity).

2 When above we have a finite collection we say it is the finite
additivity property.

3 If Ej ↓∅, then P(Ej)→ 0 (continuity).

Theorem
The finite additivity and the continuity together are equivalent to
countable additivity.

Exercise: do the proof of the theorem.
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Trace

Let Λ ∈ Ω. The trace of the σ-algebra F in Λ is the collection of all the
sets of the form Λ∩F, where F ∈ F . It is easy to see that this is a
σ-algebra that we denote by Λ∩F .
Suppose now that Λ ∈ F and P(Λ)> 0. Then we can define PΛ in
Λ∩F in the following way: for any E ∈ Λ∩F :

PΛ(E) = P(E)
P(Λ) .

PΛ is a probability measure in Λ∩F .

The triple (Λ,Λ∩F ,PΛ) is called the trace of (Ω,F ,P) in Λ.
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Examples:

Example (1. Discrete sample space)

Let Ω = {wj , j ∈ N} and let F be the total σ-algebra in F . Choose a
sequence of numbers {pj , j ∈ N} such that for all j ∈ N, pj ≥ 0 and∑
j∈N pj = 1 and let P : F → [0,1] defined on E ∈ F by

P(E) =
∑
wj∈E

pj .

Show that P is a probability measure and that all the probability
measures on (Ω,F) are of the form above.
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Examples:

Example (2. Continuous sample spaces)

Let U = (0,1] and let C := {(a,b] : 0< a < b≤ 1}, B the minimal
σ-algebra containing C, m the Lebesgue measure on B. Then (U ,B,m)
is a probability space.

Analogously, consider in R the collection C of the intervals of the form
(a,b], −∞< a < b <+∞. The algebra B0 generated by C consists of
finite unions of disjoint sets of the form (a,b], (−∞,a] or (b,+∞). The
Borel σ-algebra is the σ-algebra, denoted hereafter by B, generated by
B0 or by C. Not that the Lebesgue measure m in R is NOT a
probability measure.
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2nd Lecture: Distribution functions
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Distribution function

Definition
A distribution function F : R−→ R is increasing, right continuous and
satisfies limx→−∞F (x) = 0 and limx→∞F (x) = 1 .

Example
F1(x) =1[0,+∞)(x).

F2(x) = 1
21[0, 12 )(x)+1[ 1

2 ,+∞).

F3(x) = x1[0,1)(x)+1[1,+∞).

F4(x) = x1[0, 12 )(x)+1[ 1
2 ,+∞).

Pay attention to the graph of the functions.
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Distribution function and probability measure

Lemma
Each probability measure µ in B defines a distribution function F
through the following correspondence: ∀x ∈ R,µ((−∞,x]) = F (x).(∗)

Exercise: do the proof of the lemma.

Remark
As a consequence we have for −∞< a < b <∞ that

µ((a,b]) = F (b)−F (a); µ([a,b)) = F (b−)−F (a−);
µ((a,b)) = F (b−)−F (a); µ([a,b]) = F (b)−F (a−);

For a dense subset D of R the correspondence above in (∗) is
determined for x ∈D or if in the previous equalities we take a,b ∈D.
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Theorem
Each distribution function F determines a probability measure µ in B
through one of the correspondences given above.

The question now is: Is this probability measure µ unique?

Theorem
Let µ and ν be two probability measures defined in the same σ-algebra F
generated by the algebra F0. If µ(E) = ν(E) for any E ∈ F0 then µ= ν.

Exercise: do the proof of the two theorems above.
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Theorem
Given a probability measure µ in B there exists a unique distribution
function F which satisfies µ((−∞,x]) = F (x) ∀x ∈ R. Conversely,
given a distribution function F , there exists a unique probability
measure µ in B satisfying µ((−∞,x]) = F (x) ∀x ∈ R.

We shall call µ the probability measure of F and F the distribution
function of µ.
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Example
Instead of (R,B) we can consider a restriction to a fixed interval [a,b].
As example take U = [0,1]. Let us see how to define F .

Let F be a distribution function such that F (x) = 0, if x < 0 and
F (x) = 1, if x≥ 1.

The probability measure µ will have support [0,1] since
µ(−∞,0) = 0 = µ(1,+∞).

The trace of (R,B,µ) in U can be denoted by (U ,BU ,m), where BU is
the trace of B in U and any probability measure in BU can be seen as
that trace.

As example, we have the uniform distribution given for F3(·) above.
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Atoms

Definition
An atom of a measure µ defined in B is a singleton {x} such that
µ({x})> 0.

Definition
A measure is said to be atomic if and only if µ is zero on any set not
containing any atom.

Prove that if F is the distribution function of µ then

µ({x}) = F (x)−F (x−).

Prove that µ is atomless (that is µ does not have atoms) if and
only if F is continuous.
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Monotone functions
Let f be an increasing function defined on R. This means that for all
x≤ y it holds f(x)≤ f(y). Let us see some properties of these kind of
functions.

1 Both lateral limits exist and are finite for any x ∈ R:

lim
y↓x

f(y) = f(x+) and lim
y↑x

f(y) = f(x−).

2 When x=±∞ the limits above exist but can be equal to ±∞.
3 The function is continuous (resp. right-continuous) at x if and

only if the limits above are both (resp. f(x+) is) equal to f(x).
4 We say that the function has a jump at x if the limits above exist

but are different. The value f(x) has to satisfy

f(x−)≤ f(x)≤ f(x+.)
5 When there is a jump at x, we say that x is a point of jump of f

and f(x+)−f(x−) is the size of the jump.
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The set of jumps of f is countable (can be finite.)

To prove this, first associate to each point of jump x, the interval
Ix = (f(x−),f(x+)). Then, if x′ is another point of jump of f and
x < x′, then there exists x̃ such that x < x̃ < x′ and

f(x+)≤ f(x̃)≤ f(x′−).

As a consequence the intervals Ix and Ix′ are disjoint and can be
consecutive if f(x+) = f(x′−). Therefore we associate to the set of
points of jump of f a collection of disjoint intervals in the range of f .
Now, this collection is, at most, countable since each interval contains a
rational number, so that the collection of intervals is in one-to-one
correspondence with a certain subset of the rational numbers, being
the latter countable.
Since the set of points of jump of f is in one-to-one correspondence
with the set of intervals associated with it, then the proof ends.
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Example
Let {an}n≥1 be any given enumeration of the rational numbers and let
{bn}n≥1 be a sequence of non-negative real numbers such that∑
n≥1 bn <+∞. Consider f(x) =

∑
n≥1 bnδan(x) where for each n≥ 1

we have δan(x) = 1[an,+∞)(x) - the Heaviside function at an.
Since 0≤ δan(x)≤ 1, the series above is absolutely and uniformly
convergent.
Since δan(x) is increasing, then if x1 ≤ x2 we have that
f(x2)−f(x1) =

∑
n≥1 bn(δan(x2)− δan(x1))≥ 0, so that f is increasing.

Then f(x+)−f(x−) =
∑
n≥1 bn(δan(x+)− δan(x−)). But for each n≥ 1,

δan(x+)− δan(x−) is zero or one if x 6= an or x= an.
From this we conclude that f is discontinuous (jumps) in the rational
numbers and nowhere else.

The previous example shows that the set of points of jump of an
increasing function may be dense.
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3rd Lecture: Random variables
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Random variable
Let (Ω,F ,P) be a probability space.

Definition
A function X with domain Λ ∈ F taking values in R∗ := [−∞,∞] is a
random variable if: ∀B ∈ B∗ we have that

X−1(B) ∈ Λ∩F , (2)

where Λ∩F is the trace of F in Λ, X−1(B) := {ω ∈ Ω :X(ω) ∈ B} and
B∗ is the extended Borel σ-algebra, that is, its elements are sets in B
with one or both +∞, −∞.

Remark
A random variable that takes values in the complex numbers is a
function from Λ ∈ F to the complex plane whose real and imaginary
parts are random variables taking finite values.
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Random variable

From now on we assume that Λ = Ω and that X is real and takes finite
values with probability one. The general case can be reduced to this
one, considering the trace of (Ω,F ,P) in the set

Λ0 := {ω ∈ Ω : |X(ω)|<∞}

and taking the real and imaginary parts of X.

Consider now the inverse application X−1 : R−→ Ω defined on A⊂ R,
by X−1(A) = {ω ∈ Ω :X(ω) ∈A}. The condition (2) tells us that X−1

takes elements of B into elements of F : X−1(B) ∈ F . A function which
satisfies this property is said to be measurable wrt F . Therefore a
random variable is a measurable function from Ω to R (or R∗).
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Theorem
For each function X : Ω−→ R (or R∗), the inverse application X−1

satisfies the following properties:
X−1(Ac) = (X−1(A))c,
X−1(∪αAα) = ∪αX−1(Aα),
X−1(∩αAα) = ∩αX−1(Aα)

where α belongs to an index set not necessarily countable.

Theorem
X is a random variable if and only if ∀x ∈ R (or x in a dense subset of
R) we have {ω ∈ Ω :X(ω)≤ x} ∈ F .

In this case since P is defined in F we denote the probability wrt P of
the set {ω ∈ Ω :X(ω) ∈B} simply by P(X ∈B), for B ∈ B.
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Theorem
Each random variable X defined on a probability space (Ω,F ,P)
induces a probability space (R,B,µ) through the following
correspondence ∀B ∈ B µ(B) = P(X−1(B)) = P(X ∈B).

Remark
1. The collection of sets {X−1(S) ; S ∈ R} is a σ-algebra for any
function X.

2. In case X is a random variable, the collection {X−1(B) ;B ∈ B} is
the σ-algebra generated by X, which consists in the smallest sub
σ-algebra of F which contains all the sets of the form
{ω ∈ Ω :X(ω)≤ x} with x ∈ R.

3. The measure µ is going to be denoted by µ := PoX−1 and it is called
the probability distribution measure of X and its associated F is the
distribution function of X: F (x) = µ((−∞,x]) = P(X ≤ x).
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Identically distributed random variables
Note that X determines µ and µ determines F , the converse is false.
Two random variables which have the same distribution are said to be
identically distributed.
Example
Consider the probability space (U ,B,m), U = [0,1], B is the Borel
σ-algebra in U and m is the Lebesgue measure; and the random
variables Xi : U −→ U given by X1(ω) = ω and X2(ω) = 1−ω.
We observe that X1 6=X2 but they are identically distributed:
m(ω ∈ U :X1(ω)≤ x) =m(ω ∈ U : ω ≤ x) =m([0,x]) = x and
m(ω ∈ U :X2(ω)≤ x) =m(ω ∈ U : 1−ω ≤ x) =m(ω ∈ U : 1−x≤ ω) =
1−m(ω < 1−x) = 1−m([0,1−x]) = 1− (1−x) = x.

Theorem (Constructing random variables)
If X is a random variable and f : R−→ R is a Borel measurable
function (that is f−1(B) ∈ B), then f(X) is a random variable.

Patŕıcia Gonçalves (IST Lisbon) Probability theory Academic year: 17/18 32 / 173



Distribution functions TP 2017/2018

4th Lecture: Distribution functions
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Distribution functions
Recall the definition of a distribution function. Let {aj}j≥1 be the
countable set of points of jump of F and let bj be the size of the jump
at aj : F (a+

j )−F (a−j ) = F (aj)−F (a−j ) = bj . Let

Fd(x) =
∑
j≥1

bjδaj (x),

where δaj (x) is the Heaviside function at aj . The function Fd
represents all the jumps of F in (−∞,x]. Note that Fd is increasing,
right-continuous, Fd(−∞) = 0 and Fd(+∞) =

∑
j≥1 bj ≤ 1. The

function Fd is the jumping part of F .
Theorem

The function Fc(x) = F (x)−Fd(x) is positive, increasing, continuous.

Exercise: do the proof of the theorem.
Patŕıcia Gonçalves (IST Lisbon) Probability theory Academic year: 17/18 34 / 173



Distribution functions TP 2017/2018

Theorem
Let F be a distribution function. Suppose that there exists a continuous
function Gc and a function Gd of the form Gd(x) =

∑
j≥1 b

′
jδa′j (x),

where {a′j}j≥1 is a countable set of real numbers and
∑
j≥1 b

′
j <∞,

such that F =Gc+Gd. Then Gc = Fc and Gd = Fd where Fc and Fd
were defined above.

Exercise: do the proof of the theorem.

Definition
A distribution function that can be represented in the form
F =

∑
j≥1 bjδaj , where {aj}j≥1 is a countable (or finite) set of real

numbers bj > 0 for every j and
∑
j≥1 bj = 1 is called a discrete

distribution function. A distribution function that is continuous
everywhere is called a continuous distribution function.

Patŕıcia Gonçalves (IST Lisbon) Probability theory Academic year: 17/18 35 / 173



Distribution functions TP 2017/2018

Suppose that for a distribution function F we have that Fc 6= 0 and
Fd 6= 0. Let α= Fd(+∞) such that 0< α < 1 and let

F1 = 1
α
Fd and F2 = 1

1−αFc.

Then
F = Fd+Fc = αF1 + (1−α)F2(∗)

and F1 is a discrete distribution function and F2 is a continuous
distribution function and F is a convex combination of F1 and F2.
Remark
If Fc = 0 then F is discrete and we take α= 1, so that F1 = F and
F2 = 0; and if Fd = 0, then F is continuous and we take α= 0 and
F1 = 0 and F2 = F and in both cases (∗) holds.

Theorem (Convex combination of distribution functions)
Every distribution function can be written as the convex combination of
a discrete and a continuous distribution function. Such decomposition
is unique.
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Continuous distributions: absolutely continuous and
singular distributions

Definition
A function F is said to be absolutely continuous (in R wrt the
Lebesgue measure) iff there exists a function f ∈ L1 such that ∀x < x′

we have that
F (x′)−F (x) =

∫ x′

x
f(y)dy.

***(A function f is in L1 iff
∫
R |f(y)|dy <∞.)

There is a result in measure theory that says that such a function F
has a derivative equal to f almost everywhere (on a set of full Lebesgue
measure). In particular if F is a distribution function then

f ≥ 0 a.e. and
∫
R
f(y)dy = 1(∗∗).

Patŕıcia Gonçalves (IST Lisbon) Probability theory Academic year: 17/18 37 / 173



Distribution functions TP 2017/2018

Conversely, given any f ∈ L1 satisfying the previous conditions in (∗∗),
the function F defined for all x ∈ R as

F (x) =
∫ x

−∞
f(y)dy

is a distribution function that is absolutely continuous.

Definition
A function F is called singular if and only if it is not identically zero
and F ′ exists and is equal to zero a.e.
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Theorem
Let F be bounded increasing with F (−∞) = 0 and let F ′ denote its
derivative whenever it exists. Then:

1 If S is the set of points x for which F ′(x) exists with
0≤ F ′(x)<+∞, then m(Sc) = 0.

2 The F ′ belongs to L1 and we have for every x < x′ that∫ x′

x
F ′(y)dy ≤ F (x′)−F (x).

3 If for all x ∈ R

Fac(x) =
∫ x

−∞
F ′(y)dy and Fs(x) = F (x)−Fac(x),

then F ′ac = F ′ a.e., so that F ′s = F ′−F ′ac = 0 a.e. and consequently
Fs is singular if it is not identically zero.
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Definition
Any positive function f that is equal to F ′ a.e. is called a density of F .
Fac is the absolutely continuous part of F and Fs is its singular part.

Remark
Note that:
1. the discrete part Fd defined above is part of the singular part Fs
defined above;
2. Fac is increasing and that Fac ≤ F . (Check it!)
Moreover, if x < x′ then Fs(x′)−Fs(x) = F (x′)−F (x)−

∫ x′
x f(y)dy ≥ 0,

(from (2) of the previous theorem) therefore Fs is also increasing and
Fs ≤ F . (Check it!)

Theorem
Every distribution function F can be written as the convex combination
of a discrete, a singular and an absolutely continuous distributions
function and such decomposition is unique.
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Continuous distribution function: the singular case

Let us construct the Cantor set. From the closed interval [0,1] remove
the central interval (1

3 ,
2
3). Then in the two remaining intervals remove

the central intervals (1
9 ,

2
9) and (7

9 ,
8
9). After the 1st step we remain

with two intervals of size 1
3 . In the 2nd step we remain with four

intervals of size 1
32 and so on. After n steps we have removed

1+2+4+8+ · · ·+2n−1 = 2n−1 disjoint intervals and remain 2n closed
intervals of size 1

3n . Let us order these intervals, by order from left to
right and denote them by Jn,k, where 1≤ k ≤ 2n−1 and denote their
union by Un. Note that

m(Un) = 1−
(2

3
)n
.

As n increases the set Un increases to an open set U and let C := U c

(the complementary wrt [0,1]) be the Cantor set. Then
m(C) = 1−m(U) = 1− limn→∞m(Un) = 1−1 = 0.
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The Cantor distribution function

Now we define the Cantor distribution function. For each n,k, with
n≥ 1 and k = 1, · · · ,2n−1 let cn,k = k

2n and let us define F in U in the
following way:

if x ∈ Jn,k then F (x) = cn,k.

In each Jn,k the function F is constant and it is strictly greater on any
Jn,k′ at the right of Jn,k. Therefore, F is increasing and F (0+) = 0 and
F (1−) = 1.
Now we complete the definition by setting F (x) = 0 for x≤ 0 and
F (x) = 1 for x≥ 1.

⇒ Up to here the function F is defined on the domain
D = (−∞,0]∪U ∪ [1,+∞) and is increasing.
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Now, since each Jn,k is at a distance which is greater or equal than
1/3n from any other Jn,k′ and since the total variation of F over each
of the 2n disjoint intervals that remain after removing Jn,k is 1

2n , it
follows that

0≤ x′−x≤ 1
3n ⇒ 0≤ F (x′)−F (x)≤ 1

2n
Then, the function F is uniformly continuous on D. (D is dense in R).
By a result (*) there exists a continuous and increasing function F̃
defined on R that coincides with F on D.
This function F̃ is a continuous distribution function that is constant
on each Jn,k so that F̃ ′ = 0 on U and also on R\C, which means that F̃
is singular.

(*) Let f be increasing on a dense subset D of R. If for any x ∈ R
f̃(x) = infx<t∈D f(t), then f̃ is increasing and right continuous
everywhere. If f uniformly continuous, then f̃ is uniformly continuous.
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A singular distribution function: the Cantor
distribution function
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Random variables

Definition
A random variable X is said to be discrete if it takes values in a finite
or countable set, that is, if there exists a finite or countable set B ∈ R
such that P(X ∈B) = 1.

Definition
A random variable X whose distribution function F has a density f is
said to be absolutely continuous.

Note that,
1 If X is discrete, then P(X ∈B) =

∑
i:xi∈B P(X = xi);

2 If X is absolutely continuous with density f , then
P(X ∈A) =

∫
A f(y)dy, for any A ∈ B.
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Example
1 Let X be uniformly distributed in (0,1). Find the distribution of
Y =Xn, for n ∈ N.

2 Let X be a continuous r.v. with density fX . Find the distribution
of Y =X2 and of Y = |X|.

3 Let X be a r.v. with density given by

f(x) = 1
(1 +x)2 1(0,+∞)(x).

Let Y =max(X,c), where c is a strictly positive constant.
a) Find the distribution of X and Y and do the graphical

representation.
b) Decompose the distribution function of Y in its discrete,

absolutely continuous and singular parts.
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5th Lecture: Random vectors

Patŕıcia Gonçalves (IST Lisbon) Probability theory Academic year: 17/18 47 / 173



Random vectors TP 2017/2018

Random vectors
A random vector is just a vector whose components are random
variables. We focus on the case d= 2.

• The Borel σ-algebra in R2 is the σ-algebra generated by rectangles of
the form

{(x,y) : a < x≤ b ; c < y ≤ d}

and it is also generated by products sets of the form

B1×B2 = {(x,y) : x ∈B1 ; y ∈B2},

where B1,B2 ∈ B.

A function f : R2 −→ R is Borel measurable iff f−1(B) ∈ B2.
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Definition
Let X and Y be two random variables defined on the same probability
space (Ω,F ,P). The random vector (X,Y ) induces a probability
measure ν ∈ B2 such that for A ∈ B2

ν(A) = P((X,Y ) ∈A) = P(ω ∈ Ω : (X(ω),Y (ω)) ∈A)

The measure ν is called the distribution measure of (X,Y ).

We also define the inverse application (X,Y )−1 in the following way:

∀A ∈ B2 : (X,Y )−1(A) = {ω ∈ Ω : (X(ω),Y (ω)) ∈A}.
We note that the results that we have seen above for X−1 are also true
for (X,Y )−1.

Theorem
If X and Y are random variables and if f : R2 −→ R is Borel
measurable, then f(X,Y ) is a random variable.
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Example
1 If X is a random variable and if f : R−→ R is continuous, then
f(X) is a random variable. Therefore:
• Xr; |X|r for positive real r; e−λX , for real λ, eitX , for real t are
random variables;

2 If X and Y are random variables then all these are random
variables:
• X±Y ; X.Y ; X/Y ; X ∧Y :=min(X,Y );X ∨Y :=max(X,Y );

Theorem
If {Xj}j≥1 is a sequence of random variables, then

inf
j
Xj ; sup

j
Xj ; liminf

j
Xj ; limsup

j
Xj ;

are random variables not necessarily finite but a.e. defined and
limj→+∞Xj is a random variable on the set where there is convergence
or divergence to ±∞.
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The distribution function of a random vector

Definition
The distribution function of a random vector (X,Y ) is defined on
(x,y) ∈ R2 by

F (x,y) = P(X ≤ x,Y ≤ y).

F is also called the joint distribution function of the r.v. X and Y .

The distribution function just defined satisfies the following properties:
1 F is increasing in each variable.
2 F is right-continuous in each variable.
3 limx→−∞F (x,y) = 0 and limy→−∞F (x,y) = 0.
4 limx→+∞,y→+∞F (x,y) = 1

Note that the distribution function of X (resp. Y ) is obtained from
limy→∞F (x,y) = F (x) (resp. limx→∞F (x,y) = F (y)).
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The distribution function of a random vector

The properties above are not sufficient to guarantee that a function
F : R2→ R2 is the distribution function of a random vector. Let us see
an example.

Example ( Let F (x,y) = 1{x≥0,y≥0,x+y≥1}. )
It is easy to see that F satisfies the properties above, nevertheless it is
not the distribution function of a random vector. Suppose it is. Then
we would have, for example, that: P(X ∈ (0,1],Y ∈ (0,1]) =−1, which
cannot happen since P is a probability.

We need to introduce some extra condition, in order to avoid the
previous example, which is the following:
• For any a1 < b1 and a2 < b2 we have P(X ∈ (a1, b1],Y ∈ (a2, b2])≥ 0.
A function F satisfying the properties above is the distribution
function of a random vector.
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Exercises

1. Show that the function F : R2→ R given by

F (x,y) = (1−e−x)(1−e−y)1{x≥0,y≥0}

is the distribution function of some random vector (X,Y ).

2. Is the function F : R2→ R given by

F (x,y) = (1−e−x−y)1{x≥0,y≥0}

the distribution function of some random vector (X,Y )?
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Definition
A random vector (X,Y ) is discrete iff it takes a finite or countable
number of values.

Definition
Let (X,Y ) be a random vector and let F be its distribution function.
If there exists a function f : R2→ R such that f(x,y)≥ 0 ands
R2 f(x,y)dxdy = 1 and if for any (x,y) ∈ R2

F (x,y) =
∫ x

−∞

∫ y

−∞
f(u,v)dudv,

then f is called the density function of the random vector (X,Y ) or the
joint density of the r.v. X and Y . In this case, we say that the random
vector is absolutely continuous.
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6th Lecture: Stochastic Independence
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Independence

Definition
The collection of random variables {Xj}j=1,··· ,n are said to be
independent iff for any {Bj}j=1,··· ,n with Bj ∈ B, for any j = 1, · · · ,n,
we have that

P
(
∩nj=1 (Xj ∈Bj)

)
= Πn

j=1P(Xj ∈Bj). (3)

Remark
1. The r.v. of an infinite family are said to be independent iff the r.v.
in any finite subfamily are independent.
2. The r.v. are said to be pairwise independent iff every two of them
are independent.
3. Note that (3) implies that any of its subfamilies is independent, since
P
(
∩kj=1(Xj ∈Bj)

)
=P
(
∩nj=1(Xj ∈Bj)

)
=Πn

j=1P(Xj ∈Bj)=Πk
j=1P(Xj ∈Bj)
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Remark

We note that (3) is equivalent to P
(
∩nj=1 (Xj ≤ xj)

)
= Πn

j=1P(Xj ≤ xj),
for every set of real numbers {xj}nj=1. (Show this!)

We can rewrite (3) in terms of the probability measure µ(X1,··· ,Xn)
induced by the random vector (X1, · · · ,Xn) on (Rn,Bn) as

µ(X1,··· ,Xn)(B1×·· ·×Bn) = Πn
j=1µj(Bj) = µ1(B1)×·· ·×µn(Bn),

where µj := µXj is the probability measure induced by each random
variable Xj in (R,B). The induced measure is the product measure!

Remark
We can define the n-dimensional distribution function F(X1,··· ,Xn) as

F(X1,··· ,Xn)(x1, · · · ,xn) =P(X1 ≤ x1, · · · ,Xn ≤ xn)
=µ(X1,··· ,Xn)((−∞,x1]×·· ·× (−∞,xn]).

and the condition above is rewritten as F (x1, · · · ,xn) = Πn
j=1Fj(xj).
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Example
Let X1 and X2 be independent r.v. given by

X1 =
{

1, 1/2
−1, 1/2

and X2 =
{

1, 1/2
−1, 1/2.

Then, the three r.v. {X1,X2,X1X2} are pairwise independent but they
are not totally independent.
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Independent events
Whenever a probability space (Ω,F ,P) is fixed, the sets in F will be
called events. We have seen above the notion of independent r.v. but
what about independent events?
Definition
We say that the events {Ej}nj=1 are independent iff their indicators are
independent, that is, for any subset {j1, · · · , j`} of {1, · · · ,n} we have
that P

(
∩`k=1Ejk

)
= Π`

k=1P(Ejk).

Theorem
If {Xj}nj=1 are independent r.v. and {fj}nj=1 are Borel measurable
functions, then {fj(Xj)}nj=1 are independent r.v.

Do the proof of the theorem.
Patŕıcia Gonçalves (IST Lisbon) Probability theory Academic year: 17/18 59 / 173



Stochastic Independence TP 2017/2018

We have seen above that if X1, · · · ,Xn are independent r.v. then
F(X1,··· ,Xn)(x1, · · · ,xn) = Πn

j=1FXj (xj). Now let us see the reciprocal.

Proposition
If there exist functions F1, · · · ,Fn such that

lim
xj→∞

Fj(xj) = 1

for all j = 1, · · · ,n and if for all (x1, · · · ,xn) ∈ Rn

F(X1,··· ,Xn)(x1, · · · ,xn) = Πn
j=1Fj(xj),

then {Xj}nj=1 are independent and Fj := FXj for all j = 1, · · · ,n.

Do the proof of the proposition.
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Criterion for independence

Proposition
If {Xj}nj=1 are independent r.v. with densities fX1 , · · · ,fXn, then
the function

f(x1, · · · ,xn) = Πn
j=1fXj (xj)

is the joint density of {Xj}nj=1 or the density of the random vector
(X1, · · · ,Xn) .
On the other hand, if X1, · · · ,Xn has a joint density f which
satisfies

f(x1, · · · ,xn) = Πn
j=1fj(xj)

for all (x1, · · · ,xn) ∈ Rn with fj(x)≥ 0 and
∫
R fj(x)dx= 1, then

X1, · · · ,Xn are independent and fj is the density of Xj.

Do the proof of the theorem.
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Constructing two independent random variables I

Let (Ω1,F1,P1) and (Ω2,F2,P2) where (Fj is the total σ-algebra) be
discrete probability spaces.
We define the product space Ω2 := Ω1×Ω2 as the space of points
ω = (ω1,ω2) with ω1 ∈ Ω1 and ω2 ∈ Ω2. The product σ-algebra F2 is
the collection of all the subsets of Ω2. We know from the beginning of
the course that the probability measures P1 and P2 are determined by
their values in ω1, ω2 respectively. Since Ω2 is also countable we can
define a probability measure P2 in F2 as

P2({(ω1,ω2)}) = P1({ω1})P2({ω2})

which is the product measure of P1 and P2. Check that it is a
probability measure. It has the property that if S1 ∈ F1 and S2 ∈ F2,
then

P2(S1×S2) = P1(S1)P2(S2).
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Now, let X1 be a r.v. on Ω1 and X2 a r.v. on Ω2; B1 and B2 Borel sets
and S1 =X−1

1 (B1) := {ω1 ∈ Ω1 :X1 ∈B1} and S2 =X−1
2 (B2). Note

that S1 ∈ F1 and S2 ∈ F2. Then

P2(X1 ∈B1×X2 ∈B2)
=P2(S1×S2) = P1(S1)P2(S2) = P1(X1 ∈B1)P2(X2 ∈B2).

To X1 on Ω1 and X2 in Ω2, we associate the function X̃1 and X̃2
defined on ω ∈ Ω2 as X̃1(ω) =X1(ω1) and X̃2(ω) =X2(ω2). Now we
have
∩2
j=1{ω ∈ Ω2 : X̃j(ω) ∈Bj}

= Ω1×{ω2 ∈ Ω2 :X2(ω2) ∈B2}∩{ω1 ∈ Ω1 :X1(ω1) ∈B1}×Ω2

= {ω1 ∈ Ω1 :X1(ω1) ∈B1}×{ω2 ∈ Ω2 :X2(ω2) ∈B2}.

From where we conclude that

P2(∩2
j=1{X̃j ∈Bj}) = P2(X̃1 ∈B1)P2(X̃2 ∈B2),

so that the random variables X̃1 and X̃2 are independent!
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Constructing n independent random variables I

Let n≥ 2 and (Ωj ,Fj ,Pj) (Fj is the total σ-algebra) be n discrete
probability spaces. We define the product space
Ωn := Ω1×Ω2×·· ·×Ωn as the space of points ω = (ω1, · · · ,ωn) with
ωj ∈ Ωj . The product σ-algebra Fn is the collection of all the subsets
of Ωn. We know from the beginning of the course that for each j, the
probability measure Pj is determined by its value in ωj . Since Ωn is
also countable we can define a probability measure Pn in Fn as

Pn({(ω1, · · · ,ωn)}) = Πn
j=1Pj({ωj})

which is the product measure of the {Pj}nj=1. Check that it is a
probability measure.
It has the property that if Sj ∈ Fj , then

Pn(S1×·· ·×Sn) = Πn
j=1Pj(Sj).
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Now, let Xj be a r.v. on Ωj , Bj a Borel set and
Sj =X−1

j (Bj) := {ωj ∈ Ωj :Xj ∈Bj} . Note that Sj ∈ Fj . Then

Pn(X1 ∈B1×·· ·×Xn ∈Bn)
=Pn(S1×·· ·×Sn) = Πn

j=1Pj(Sj) = Πn
j=1Pj(Xj ∈Bj).

To each function Xj on Ωj we associate the function X̃j on Ωn defined
on ω ∈ Ω as X̃j(ω) =Xj(ωj). Now we have

∩nj=1{ω ∈ Ωn : X̃j(ω) ∈Bj}
= ∩nj=1Ω1×·· ·×Ωj−1×{ωj ∈ Ωj :Xj(ωj) ∈Bj}×Ωj+1×·· ·×Ωn

= Πn
j=1{ωj ∈ Ωj :Xj(ωj) ∈Bj}

From where we conclude that

Pn(∩nj=1{X̃j ∈Bj}) = Πn
j=1Pn(X̃j ∈Bj),

so that the random variables {X̃j}nj=1 are independent!
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Constructing independent random variables II

Let Un = {(x1, · · · ,xn) : 0≤ xj ≤ 1,1≤ j ≤ n}. The trace on Un of
(Rn,Bn,mn) is a probability space. For j = 1, · · · ,n, let fj : R→ R be a
Borel measurable function and let Xj(x1, · · · ,xn) = fj(xj).
Then, the r.v. {Xj}nj=1 are independent.
If fj(xj) = xj then we get the n-coordinate variables in the cube.

Theorem (Existence of product measures)
Let {µj}j be a finite or infinite sequence of probability measures on
(R,B) or equivalently, let their distribution functions be given. There
exists a probability space (Ω,F ,P) and a sequence of independent r.v.
{Xj}j defined on it such that for each j, the measure µj is the
probability measure of Xj .
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Example
Let X1, · · · ,Xn be independent r.v. with Rayleight density with
parameter θ given by

f(x) =

x2/θe−
x2
2θ2 , x > 0

0, x≤ 0.

(a) Find the joint density of Y1, · · · ,Yn where Yi =X2
i .

(b) Find the distribution of U = min1≤i≤n{Xi}.

Example
Let X1, · · · ,Xn be independent r.v. with exponential distribution of
parameters α1, · · · ,αn. (to simplify take n= 3.)
(a) Find the joint density of Y = min1≤i≤n{Xi} by showing that it is
exponential. Find the parameter.
(b) Prove that for k = 1, · · · ,n it holds that P(Xk = Y ) = αk

α1+···+αn .
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Mathematical expectation is integration on a probability space
(Ω,F ,P) with respect to the probability measure P. To avoid
complications we assume that the r.v. are finite everywhere.

Definition
A countable partition of Ω is a countable family of disjoint sets Aj with
Aj ∈ F and such that Ω = ∪j≥Aj . In this case we have that
1 = 1Ω =

∑
j 1Aj .

Definition
A r.v. X is said to belong to the weighted partition {Aj , bj} is for all
ω ∈ Ω we have that X(ω) =

∑
j bj1Aj (ω). Note that X is a discrete r.v.

Remark
Every discrete r.v. belongs to a weighted partition: take {bj}j as the
countable set of the possible values of X and Aj = {ω ∈ Ω;X(ω) = bj}.
If j ranges over a finite set the r.v. is said to be simple.
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Mathematical expectation: positive r.v.
• If X is a positive discrete r.v. belonging to the weighted partition
{Aj , bj}, then its expectation is defined as

E[X] =
∑
j

bjP(Aj).

Note that E[X] is a number, in this case, since bj ≥ 0, positive or +∞.

• Suppose now that X is a positive random variable and for each
positive integers m,n, let

Amn =
{
ω : n

2m ≤X(ω)≤ n+ 1
2m

}
=X−1

([ n
2m ,

n+ 1
2m

])
,

so that Amn ∈ F . For each m, let Xm be the random variable that
takes the value n

2m in Amn, that is

Xm(ω) = n

2m iff n

2m ≤X(ω)≤ n+ 1
2m .
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It is easy to see that for each m we have that for all ω ∈ Ω,
Xm(ω)≤Xm+1(ω).
Now let ω ∈ Ω and note that if n

2m ≤X(ω)≤ n+1
2m , then Xm(ω) = n

2m , so
that

0≤X(ω)−Xm(ω)< 1
2m ,

from where we get that limm→∞Xm(ω) =X(ω). So the sequence of
r.v. {Xm}m is increasing and converges pointwisely to X.
Note that

E[Xm] =
∞∑
n=0

n

2mP
( n

2m ≤X <
n+ 1
2m

)
.

If E[Xm] = +∞ then we define E[X] = +∞, otherwise, we define
E[X] = limn→∞E[Xm].
Note that the limit can be infinite.
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For a general X we take X =X+−X−, where X+ =X ∨0 and
X− = (−X)∨0. Both X+,X− are positive, so their expectation is
defined and unless both expectations are +∞ we define
E[X] = E[X+]−E[X−]. We sat that X has finite or infinite expectation
according to E[X] is finite or infinite.

When the expectation of X exists we use the notation

E[X] =
∫

Ω
X(ω)P(dω) =

∫
Ω
X(ω)dP.

For Λ ∈ F we have

E[X1Λ] =
∫

Λ
X(ω)P(dω) =

∫
Ω

1Λ(ω)X(ω)dP

and it is called the integral of X wrt P over the set Λ.
• When the integral above exists and is finite we say that X is
integrable in Λ wrt P.
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Example (Lebesgue-Stietjes integral)
For (R,B,µ) and X = f and ω = x we have∫

Λ
X(ω)P(dω) =

∫
Λ
f(x)µ(dx) =

∫
Λ
f(x)dµ.

When F is the distribution function of µ we also write (for Λ = (a,b])∫
(a,b]

f(x)dF (x).

To distinguish the intervals (a,b], [a,b],(a,b) and [a,b) we use the
notation ∫ b+0

a+0
,

∫ b+0

a−0
,

∫ b−0

a+0
,

∫ b−0

a−0
.

For (U ,B,m) the integral is
∫ b
a f(x)m(dx) =

∫ b
a f(x)dx.

Since µ is atomless we do not need to distinguish the intervals.
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Properties of the mathematical expectation

In what follows X and Y are r.v. and a,b ∈ R and Λ ∈ F .

(1) Absolute integrability:
∫

ΛXdP is finite iff
∫

Λ |X|dP is finite.

(2) Linearity:
∫

Λ(aX+ bY )dP = a
∫

ΛXdP+ b
∫

ΛY dP.

(3) Set additivity: If {Λn}n≥1 are disjoint, then∫
∪n≥1Λn

XdP =
∑
n≥1

∫
Λn
XdP.

(4) Positivity: If X ≥ 0 a.e. on Λ (this means there is a subset of Λ
with weight one wrt P where X is positive), then∫

Λ
XdP≥ 0.
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Properties of the mathematical expectation
(5) Monotonicity: If X1 ≤X ≤X2 a.e. in Λ, then∫

Λ
X1dP≤

∫
Λ
XdP≤

∫
Λ
X2dP.

(6) Mean value Theorem: If a≤X ≤ b a.e. in Λ, then

aP(Λ)≤
∫

Λ
XdP≤ bP(Λ).

(7) Modulus inequality:
∣∣∣ ∫ΛXdP∣∣∣≤ ∫Λ |X|dP.

(8) Dominated convergence Theorem: If limn→∞Xn =X a.e. on Λ and
if for n≥ 1 |Xn| ≤ Y a.e. on Λ and

∫
ΛY dP<∞, then

lim
n→∞

∫
Λ
XndP =

∫
Λ
XdP =

∫
Λ

lim
n→∞

XndP.
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Properties of the mathematical expectation
(9) Bounded convergence Theorem: If limn→∞Xn =X a.e. on Λ and
there exists a constant M such that n≥ 1 |Xn| ≤M a.e. on Λ, then the
previous equality is true.

(10) Monotone convergence Theorem: If Xn ≥ 0 and Xn ↑X a.e. on Λ,
then the previous equality is true if we allow +∞ as a value.

(11) Integration term by term: If
∑
n≥1

∫
Λ |Xn|dP<∞, then∑

n≥1 |Xn|<∞ a.e. on Λ, so that
∑
n≥1Xn converges a.e. on Λ and∫

Λ

∑
n≥1

XndP =
∑
n≥1

∫
Λ
XndP.

(12) Fatou’s Lemma: If Xn ≥ 0 a.e. on Λ, then∫
Λ

(liminf
n→∞

Xn)dP≤ liminf
n→∞

∫
Λ
XndP.

Patŕıcia Gonçalves (IST Lisbon) Probability theory Academic year: 17/18 76 / 173



Mathematical Expectation TP 2017/2018

The Lebesgue-Stieltjes integral
Let f be a continuous function defined on [a,b] and let F be a
distribution function. The Riemann-Stieltjes integral of f on [a,b] wrt
F is defined as the limit of the Riemann sums of the form

n∑
i=1

f(x̃i)(F (xi+1)−F (xi)),

where x1 = a,xn = b, xi < xi+1 and x̃i is an arbitrary point in [xi,xi+1].
The limit is taken by making the norm of the partition {xi}i tending to
0, that is maxi=1,··· ,n(xi+1−xi)→ 0. The limit exists, when f is
continuous, and it is denoted by

∫ b
a f(x)dF (x). Note that∫

R
f(x)dF (x) = lim

a→−∞,b→+∞

∫ b

a
f(x)dF (x).

Example
Compute

∫
RF0(x)dF0(x), for F0(x) = δ0(x), the Heaviside function at 0.
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The Lebesgue-Stieltjes integral

To extend the definition to discontinuous functions we do it like this.
Let f be a Borel measurable function f : R→ R. We want to define∫
R f(x)dF (x) for a distribution function F . First we define it for
f(x) = 1[a,b](x) as

∫
R f(x)dF (x) = F (b)−F (a). Then we extend the

definition as we did before.
Remark
• When F is the distribution function of a discrete random variable X
taking values {xi}i≥1 then

∫
R f(x)dF (x) =

∑
i f(xi)P(X = xi) and∫

(a,b] f(x)dF (x) =
∑
i:a<xi≤b f(xi)P(X = xi).

• When F is the distribution function of an absolutely continuous
random variable X with density fX , then∫
R f(x)dF (x) =

∫
R f(x)fX(x)dx and

∫ b
a f(x)dF (x) =

∫ b
a f(x)fX(x)dx.

• When F = αFd+βFac+γFs, then∫
R f(x)dF (x) = α

∫
R f(x)dFd+β

∫
R f(x)dFac+γ

∫
R f(x)dFs.
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8th Lecture: Integrability criterion and
Classical Inequalities
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Proposition
For a r.v. X with distribution function F we have that

E[X] =
∫ +∞

0
(1−F (x))dx−

∫ 0

−∞
F (x)dx.

Corollary
For a non-negative r.v. X, we have that E[X] =

∫+∞
0 P(X > x)dx.

Theorem
Let k ∈ N, then
E[Xk] = k

[∫+∞
0 (1−FX(x))xk−1dx−

∫ 0
−∞FX(x)xk−1dx

]
.

Do the proof of the previous results.
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Integrability

Theorem (Integrability criterion)
For a r.v. X we have that∑

n≥1
P(|X| ≥ n)≤ E[|X|]≤ 1 +

∑
n≥1

P(|X| ≥ n),

so that E[|X|]<∞ iff the series above converges.

Lemma
If X is a non-negative r.v. then E[X] =

∑
n≥1P(X ≥ n).

Do the proof of the previous results.
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Relation between integrals:

There is a basic relation between an integral wrt P over sets of F and
the Lebesgue-Stieltjes integral wrt to µ over sets of B.

Theorem
Let X be a r.v. defined on a probability space (Ω,F ,P) which induces
the probability space (R,B,µ) and let f : R→ R be a Borel measurable
function. Then,

∫
Ω f(X(ω))P(dω) =

∫
R f(x)µ(dx).

Do the proof of the previous result.
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In higher dimensions the result is the same. We state it for d= 2 as
Theorem
Let (X,Y ) be a random vector defined on a probability space (Ω,F ,P)
which induces the probability space (R2,B2,ν) and let f : R2→ R be a
Borel measurable function. Then,∫

Ω f(X(ω),Y (ω))P(dω) =
s

R2 f(x,y)ν(dx,dy).

From the previous theorem, for a r.v. X with distribution function FX
and distribution measure µX , it holds that

E[X] =
∫
R
xµX(dx) =

∫
R
xdFX(x)

and more generally E[f(X)] =
∫
R f(x)µX(dx) =

∫
R f(x)dFX(x).

Remark
An important consequence of the previous theorem is that for
f(x,y) = x+y we obtain that (linearity of the integral)

E[X+Y ] = E[X] +E[Y ]. Show this!
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Moments of a r.v.

Definition
Let a ∈R and r ≥ 0. The absolute moment of a r.v. X of order r about
a is defined as E[|X−a|r].

Remark
If µX and FX are the distribution measure and the distribution
function of X, then

E[|X−a|r] =
∫
R
|x−a|rµ(dx) =

∫
R
|x−a|rdFX(x),

E[(X−a)r] =
∫
R(x−a)rµ(dx) =

∫
R(x−a)rdFX(x). When r = 1 and

a= 0, the previous moment is E[X]. The moments about a= E[X] are
called central moments and the one of order 2 is called the variance:

V ar(X) = E[(X−E[X])2] = E[X2]− (E[X])2.
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Definition (The space Lp = Lp(Ω,F ,P))
For a positive number p, we say that X ∈ Lp iff E[|X|p]<∞.

Theorem
Let X and Y be random variables and p,q such that 1< p <∞ and
1
p + 1

q = 1 (p and q are said to be conjugate). Then
1 (Holder’s Inequality)

|E[XY ]| ≤ E[|XY |]≤ (E[|X|p])1/pE[|Y |q])1/q (1)
2 (Minkowski’s inequality)

(E[|X+Y |p])1/p ≤ (E[|X|p])1/p+ (E[|Y |p])1/p

Remark
When p= 2, (1) is called the Cauchy-Schwarz’s inequality.
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9th Lecture: Classical Inequalities
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Jensen’s inequality

Theorem
If ϕ : R→ R is a convex function and X and ϕ(X) are integrable r.v.
then

ϕ(E[X])≤ E[ϕ(X)].

Do the proof of the previous result.

Example
1 ϕ(x) = |x|;
2 ϕ(x) = x2;
3 ϕ(x) = |x|p, p≥ 1.
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Tchebychev inequalities:

Theorem (Basic inequality)

Let X be a non-negative r.v. For any λ > 0, P(X ≥ λ)≤ E[X]
λ .

Theorem (Classic inequality)
Let X be a r.v. with finite variance. For any λ > 0,

P(|X−E[X]| ≥ λ)≤ V ar(X)
λ2 .

Theorem (Markov’s inequality)
Let X be a r.v. with E[|X|]t <∞. For any λ > 0,

P(|X| ≥ λ)≤ E[|X|t])
λt

.

Show the previous results!
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Again independence:

Theorem
If X and Y are two independent r.v. with finite expectation, then

E[XY ] = E[X]E[Y ].

Do the proof of the previous result.

Definition
Let X and Y be r.v. with finite expectation. The covariance between
X and Y is defined as

Cov(X,Y ) = E[(X−E[X])(Y −E[Y ])].

When Cov(X,Y ) = 0, we say that X and Y are uncorrelated.
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Remark
Be careful: uncorrelation does NOT imply independence.

Example
Analyze the case when (X,Y ) has density given by

f(x,y) = 1
2πσ1σ2

√
1−ρ2 e

− 1
2(1−ρ2)

((
x−µ1
σ1

)2
−2ρx−µ1

σ1
y−µ2
σ2

+
(
y−µ2
σ2

)2)

and take ρ= 0.

Example
Show that if X and Y are r.v. taking only the values 0 and 1 and if
E[XY ] = E[X]E[Y ], then X and Y are independent.
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Proposition
Let X1, · · · ,Xn be integrable r.v. such that Cov(Xi,Xj) = 0 for i 6= j.
Then

V ar(X1 + · · ·+Xn) =
n∑
i=1

V ar(Xi).

Example
Let X and Y be r.v. with finite variance: show that if
V ar(X) 6= V ar(Y ), then X+Y and X−Y are not independent r.v.

Example
Let X and Y be r.v. with finite variance: show that if X and Y are
independent, then

V ar(XY ) = V ar(X)V ar(Y ) + (E[X])2V ar(Y ) + (E[Y ])2V ar(X).
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10th Lecture: Convergence of sequences of r.v.

Patŕıcia Gonçalves (IST Lisbon) Probability theory Academic year: 17/18 92 / 173



Convergence of sequences of r.v. TP 2017/2018

Notion of convergence: almost everywhere

Recall that we have seen that if {Xn}n≥1 is a sequence of r.v. then
limn→∞Xn is a r.v.
The notion of convergence is of convergence to a finite limit: if we say
{Xn}n∈N converges in Λ ∈ F , this means that for all ω ∈ Λ we have
that the sequence {Xn(ω)}n∈N converges. When Λ = Ω we say the
convergence holds everywhere.

Definition (Almost everywhere convergence)
The sequence {Xn}n∈N is said to converge almost everywhere to X iff
there exists a null set N such that

∀ω ∈ Ω\N : lim
n→∞

Xn(ω) =X(ω) finite.
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Convergence in probability

Theorem
A sequence of r.v. {Xn}n∈N converges a.e. to X iff for every ε > 0 we
have that

lim
m→∞

P(|Xn−X| ≤ ε for all n≥m) = 1

or equivalently

lim
m→∞

P(|Xn−X|> ε for some n≥m) = 0 (4)

Exercise: do the proof of the theorem.

Definition (Convergence in probability)
The sequence {Xn}n∈N is said to converge in probability to X, iff for
every ε > 0 it holds that limn→∞P(|Xn−X|> ε) = 0.
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Convergence a.e implies convergence in probability

Theorem
Convergence a.e. to X implies convergence in probability to X.

Definition (Convergence in Lp, 0< p <∞)
The sequence {Xn}n∈N is said to converge in Lp to X, iff Xn ∈ Lp,
X ∈ Lp and

lim
n→∞

E[(|Xn−X|)p] = 0. (5)

Definition
We say that X is dominated by Y if |X| ≤ Y a.e. and that the sequence
is dominated by Y , if this is true for any n with the same Y . Moreover,
if above Y is constant we say that X or Xn is uniformly bounded.

Above we can suppose X = 0 since the definitions hold for Xn−X.
Patŕıcia Gonçalves (IST Lisbon) Probability theory Academic year: 17/18 95 / 173



Convergence of sequences of r.v. TP 2017/2018

Convergence in Lp implies convergence in probability

Theorem
Convergence in Lp implies convergence in probability. The converse is
true if the sequence is dominated by some Y ∈ Lp.

Convergence in probability does not imply convergence in Lp and
convergence in Lp does not imply convergence a.e.
Convergence a.e. does not imply convergence in Lp.

Theorem (Scheffé’s Theorem)
Let {Xn}n∈N be a sequence of r.v. with densities f1,f2, · · · and let X be
a r.v. with density f . If limn fn = f, holds a.e. then
limn→∞

∫
R |fn−f |dx= 0.

Exercise: do the proof of the results above.
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The lim infnEn and the limsupnEn
Definition
Let {En}n∈N be a sequence of subsets of Ω. The limsupnEn and the
liminfnEn are defined by

limsup
n
En = ∩∞m=1∪∞n=mEn and liminf

n
En = ∪∞m=1∩∞n=mEn (6)

Remark
Note that a point belongs to limsupnEn iff it belongs to infinitely
many terms of the sequence {En}n∈N and belongs to liminfnEn iff
it belongs to all the terms of the sequence from a certain point on.
(Show this!)
Also note that (limsupnEcn)c = liminfnEn.
The event limsupnEn occurs iff the events En occur i.o.
If each En ∈ F , then P(limsupnEn) = limm→∞P(∪∞n=mEn).
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11th Lecture: Borel-Cantelli’s lemmas and weak
convergence
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Borel-Cantelli’s Lemma

Lemma (Borel-Cantelli - the convergent part)
For {En}n∈N arbitrary events, if

∑∞
n=1P(En)<∞, then P(En i.o.) = 0.

We can rephrase the first theorem above:
Theorem
A sequence of r.v. {Xn}n≥1 converges a.e. to 0 iff ∀ε > 0
P({|Xn|> ε} i.o.) = 0.

Theorem
If {Xn}n≥1 converges in probability to X, then there exists a sequence
{nk} of integers growing to ∞ such that Xn→X a.e. This means that
convergence in probability implies converges a.e. along a subsequence.

Exercise: do the proof of the results.
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If we add independence then we have

Lemma (Borel-Cantelli - the divergent part)
For independent events {En}n∈N, if

∑∞
n=1P(En) =∞, then

P(En i.o.) = 1.
* The previous result also holds with pairwise independence. (We will
not see the proof in this case!)

Remark
Removing the independence assumption, the result is false. Take
En =A with 0< P(A)< 1.

Corollary
For independent events {En}n∈N, then P(En i.o.) = 0 or 1 if∑∞
n=1P(En)<∞ or

∑∞
n=1P(En) =∞

Exercise: do the proof of the results above.
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The weak convergence

If a sequence of r.v. {Xn}n≥1 converges to some limit, does the
sequence of probability distribution measures {µn}n∈N converges in
some sense? Is is true that limnµn(A) exists for any A ∈ B? NO!!!
And if {µn}n∈N converges in some sense, is the limit necessarily a
probability measure? NO!!!

Definition
A p.m. µ in (R,B) with µ(R)≤ 1 is a called a subprobability measure.

Definition (Weak convergence)
A sequence of subprobability measures µ in (R,B) is said to converge
weakly to a subprobability measure µ iff there exists a dense subset D
of R such that ∀a,b ∈D,a < b, limn→∞µn((a,b]) = µ((a,b]). We will use
the notation µn→v µ and µ is the weak limit (UNIQUE) of {µn}n∈N.
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Definition
An interval (a,b) is said to be a continuity interval of µ is a,b are not
atoms of µ (that is µ((a,b)) = µ([a,b])).

Lemma
Let {µn}n∈N and µ be subprobability measures. The following
propositions are equivalent:

1 For every finite interval (a,b) and ε > 0, there exists an n0(a,b,ε)
such that if n≥ n0, then
µ((a+ ε,b− ε))− ε≤ µn((a,b))≤ µ((a− ε,b+ ε)) + ε.

2 for every continuity interval (a,b] of µ we have that
limn→∞µn((a,b]) = µ((a,b]).

3 µn→v µ.

Exercise: do the proof of the lemma.
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12th Lecture: Helly’s extraction theorem
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Helly’s extraction theorem

Recall that given any sequence of real numbers in a subset of [0,1],
there is a subsequence which converges and the limit is an element of
that set. (This means that [0,1] is sequentially compact). The set of
subprobability measures is sequentially compact wrt the weak
convergence.

Theorem (Helly’s extraction theorem)
Given any sequence of subprobability measures, there exists a
subsequence that converges weakly to a subprobability measure.

Exercise: do the proof of the theorem.
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Uniqueness of the limit

Definition
Given Fn and F subdistribution functions, we say that Fn converges
weakly to F and we write Fn→v F if µn→v µ, where µn and µ are the
subprobability measures of Fn and F , respectively.

Theorem
If every weakly converging subsequence of a sequence {µn}n∈N of
subprobability measures converges to the same µ, then µn→v µ.

Theorem
Let µn and µ be subprobability measures. Then µn→v µ iff for all
f ∈ Ck (or C0) we have that

∫
R f(x)µn(dx)→n→∞

∫
R f(x)µ(dx).

Exercise: do the proof of the results above.
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13th Lecture: Convergence in distribution
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Convergence in distribution

Definition (Convergence in distribution)
A sequence of r.v. {Xn}n∈N is said to converge in distribution to F iff
the corresponding sequence of distribution functions {Fn}n∈N
converges weakly to the distribution function F .

If X is a r.v. with distribution function F , we will say that {Xn}n∈N
converges in distribution to X.

Theorem
Let Fn and F be the distribution functions of the r.v. Xn and X. If
{Xn}n∈N converges to X in probability, then Fn→n F . (Convergence
in probability implies convergence in distribution).

Exercise: do the proof of the results above.
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Lemma
Let c ∈ R. Then {Xn}n∈N converges to c in probability iff {Xn}n∈N
converges to c in distribution.

When the limit is a constant, the convergence in probability is
equivalent to the convergence in distribution.
Note that it is not true that if {Xn}n∈N converges in distribution to X
and {Yn}n∈N converges in distribution to Y , the sum {Xn+Yn}n∈N
converges in distribution to X+Y . But see the special case Y = 0!
Theorem
If {Xn}n∈N converges in distribution to X and {Yn}n∈N converges in
distribution to 0, then:

{Xn+Yn}n∈N converges in distribution to X
{XnYn}n∈N converges in distribution to 0

Exercise: do the proof of the results above.
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Limit Theorems

The law of large numbers has to do with partial sums of a sequence of
r.v. {Xn}n≥1.

Sn :=X1 + · · ·+Xn

Weak/strong Law
Depends on whether Sn−E[Sn]

n →n→∞ 0, in probability or a.e. (needs
E[Sn] finite!)

Remark
We have seen above that if a sequence converges to 0 in L2 then it
converges to 0 in probability and then it converges a.e. to 0 along a
subsequence.
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Weak Law of Large Numbers (bounded second
moments)

Theorem (Chebychev)
If {Xn}n∈N is a sequence of uncorrelated r.v. whose second moments
have a common bound, then Sn−E[Sn]

n →n→∞ 0 in L2 and therefore also
in probability.

Theorem (Rajchman)
If {Xn}n∈N is a sequence of uncorrelated r.v. whose second moments
have a common bound, then Sn−E[Sn]

n →n→∞ 0 a.e.

Exercise: do the proof of the results above.
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14th Lecture: Law of Large Numbers
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Equivalent sequences (Kintchine)

Definition
Two sequences of r.v. {Xn}n≥1 and {Yn}n∈N are said to be equivalent
iff
∑
n≥1P(Xn 6= Yn)<∞.

Theorem
If {Xn}n≥1 and {Yn}n∈N are equivalent then

∑
n≥1(Xn−Yn) converges

a.e. Moreover, if an→+∞, then 1
an

∑n
j=1(Xj−Yj) converges a.e. to 0.

Theorem (Weak Law of Large Numbers of Kintchine)
If {Xn}n≥1 is a sequence of pairwise independent and identically
distributed r.v. with finite mean m, then Sn

n →m in probability.

Exercise: do the proof of the results.
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Strong Law of Large Numbers

Theorem (Kolmogorov’s Inequality)
Let {Xn}n≥1 be independent r.v. with E[Xn] = 0 for every n and
E[X2

n] = σ2(Xn)<∞. Then, for every ε > 0 it holds that

P
(

max
1≤j≤n

|Sj |> ε
)
≤ σ2(Sn)

ε2 .

Theorem
Let {Xn}n≥1 be independent r.v. with E[Xn]<∞ and suppose that
∃A> 0 s.t. |Xn−E[Xn]| ≤A<∞, ∀n ∈ N. Then, ∀ε > 0:
P
(

max1≤j≤n |Sj | ≤ ε
)
≤ (2A+4ε)2

σ2(Sn) .

Exercise: do the proof of the results.
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Strong Law of Large Numbers

Lemma (Kronecker’s Lemma)
Let {xk}k≥1 a sequence of real numbers, {ak}k≥1 a sequence of strictly
positive real numbers ↑∞. If

∑
n≥1

xn
an
<∞, then 1

an

∑n
j=1xj → 0.

Theorem
Let ϕ : R→ R be a positive, even and continuous function, such that as
|x| increases: ϕ(x)

|x| ↑ and ϕ(x)
x2 ↓ . Let {Xn}n≥1 be a sequence of

independent r.v. with E[Xn] = 0 for every n and let 0< an ↑+∞. If∑
n≥1

E[ϕ(Xn)]
ϕ(an) <∞, then

∑
n≥1

Xn
an

converges a.e.

Exercise: do the proof of the theorem.
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Strong Law of Large Numbers (Kolmogorov)

Theorem
Let {Xn}n≥1 be a sequence of independent and identically distributed
r.v., then

E[|X1|]<∞⇒
Sn
n
→ E[X1] a.e.

E[|X1|] =∞⇒ limsup
n

|Sn|
n

= +∞ a.e.

Exercise: do the proof of the theorem.
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15th Lecture: Characteristic functions
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Characteristic functions

Definition
For any r.v. X with probability measure µ and distribution function F ,
the characteristic function of X is defined as the function ϕ : R→ C
given by

ϕ(t) = E[eitX ] =
∫

Ω
eitXdP =

∫
R
eitxµ(dx) =

∫
R
eitxdF (x).

Note that the real and imaginary parts of ϕX are given, respectively by

Reϕ(t) =
∫
R

cos(tx)µ(dx) and Imϕ(t) =
∫
R

sin(tx)µ(dx).
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Properties of the characteristic function

∀t ∈ R: |ϕ(t)| ≤ 1 = ϕ(0).
∀t ∈ R: ϕ(t) = ϕ(−t).
ϕ is uniformly continuous.
If ϕX is the c.f. for a r.v. X, then

ϕaX+b(t) = ϕX(at)eitb and ϕ−X(t) = ϕX(t).

If {ϕn}n≥1 is a sequence of characteristic functions, λn ≥ 0 with∑
n≥1λn = 1, then

∑
n≥1λnϕn is a characteristic function.

If {ϕn}n≥1 is a sequence of characteristic functions, then
∏n
j=1ϕj

is a characteristic function.

Exercise: do the proof of the properties.
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The sum of random variables

Let Sn =X1 + · · ·+Xn. Then ϕSn(t) =
∏n
j=1ϕXj (t).

What can we say about the distribution of Sn?

Definition
The convolution of two distribution functions F1 and F2 is the
distribution function F defined on x ∈ R as F (x) =

∫
RF1(x−y)dF2(y).

In this case we use the notation F = F1 ∗F2.

Theorem
Let X and Y be two independent r.v. with distribution functions FX
and FY respectively. Then X+Y has distribution function FX ∗FY .

Exercise: do the proof of the theorem.
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The convolution

Definition
The convolution of two probability density functions f1 and f2 is the
probability density function f defined on x ∈ R as
f(x) =

∫
R f1(x−y)f2(y)dy. In this case we also use the notation

f = f1 ∗f2.

Theorem
The convolution of two absolutely continuous distribution functions F1
and F2 with densities f1 and f2, is absolutely continuous with density
f = f1 ∗f2.

Exercise: do the proof of the theorem.
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And what is the probability measure corresponding to F1 ∗F2?
We shall denote this measure by µ1 ∗µ2.

Theorem
For each B ∈ B we have that

(µ1 ∗µ2)(B) =
∫
R
µ1(B−y)µ2(dy),

where the set B−y = {x−y : x ∈B}. Moreover, for each B-
measurable funtion g integrable wrt µ1 ∗µ2, we have that∫

R
g(u)µ1 ∗µ2(du) =

x

R2

g(x+y)µ1(dx)µ2(dy).

Exercise: do the proof of the theorem.
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Theorem
The sum of a finite number of independent r.v. corresponds to the
convolution of their distribution functions and to the product of their
characteristic functions.

Lemma
If ϕ is a characteristic function, then |ϕ|2 is a characteristic function.

Example
For X ∼ Ber(p) we have that ϕX(t) = eitp+ (1−p).
For X ∼ Poisson(λ) we have that ϕX(t) = eλ(eit−1).
For X ∼ U [−a,a] we have that ϕX(t) = sin(at)

at , if t 6= 0 and ϕX(0) = 1.
For X ∼N(µ,σ2), we have that ϕX(t) = eitµe−

σ2t2
2 .

Exercise: do the proof of the results above.
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Applications with the convolution

Example
Exercises:

1) Show that for X and Y independent r.v. with X ∼N(0,1) and
Y ∼N(0,1) we have that X+Y ∼N(0,2).

2) Show that for X and Y independent r.v. with X ∼ Poisson(λ1) and
Y ∼ Poisson(λ2) we have that X+Y ∼ Poisson(λ1 +λ2).

3) Show that for X and Y independent r.v. with X ∼B(n,p) and
Y ∼B(m,p) we have that X+Y ∼B(n+m,p).
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16th Lecture: Inversion formula and uniqueness
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Inversion formula

The question now is: Given a characteristic function how can we find
the correspondent distribution function or the distribution measure?

Theorem (The characteristic function determines the distribution)
If x1 < x2, then:
µ((x1,x2)) + 1

2µ({x1}) + 1
2µ({x2}) = limT→∞

1
2π
∫ T
−T

e−itx1−eitx2
it ϕ(t)dt.

*Note that the integrand function is defined by continuity at t= 0.

Remark
Note that if (x1,x2) is a continuity interval for µ, then the previous
theorem says that F (x2)−F (x1) = limT→∞

1
2π
∫ T
−T

e−itx1−eitx2
it ϕ(t)dt.

Exercise: do the proof of the theorem.
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Uniqueness of distribution

Theorem
If two probability measures (or two distribution functions) have the
same characteristic function, then the probability measures (or the
distribution functions) are the same.

Theorem
If ϕ ∈ L1(R), then F ∈ C1 and F ′(x) = 1

2π
∫+∞
−∞ e−ixtϕ(t)dt, that is ϕ is

the characteristic function of an absolutely continuous r.v.

Corollary
If ϕ ∈ L1(R), then p(x) ∈ L1(R) where p(x) = 1

2π
∫+∞
−∞ e−ixtϕ(t)dt and

ϕ(t) =
∫∞
−∞ e

itxp(x)dx.

Exercise: do the proof of the results.
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17th Lecture: Converging Theorems and
Applications
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The atoms of µ

Theorem
• For each x0 we have that

lim
T→∞

1
2T

∫ T

−T
e−itx0ϕ(t)dt= µ({x0}).

• It holds that limT→∞
1

2T
∫ T
−T |ϕ(t)|2 dt=

∑
x∈R(µ({x}))2.

Theorem
µ is atomless (F is continuous) iff limT→∞

1
2T
∫ T
−T |ϕ(t)|2 dt= 0.

Exercise: do the proof of the results above.
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Symmetric random variables

Definition
A r.v. X is sym. around 0 iff X and −X have the same distribution.

Remark
For a symmetric r.v. its distribution µ has the following property
µ(B) = µ(−B) for any B ∈ B. Such probability measure is said to be
symmetric around 0. Equivalently, for the distribution function, we
have that for any x ∈ R, F (x) = 1−F (−x−).

Theorem
A r.v. X or a p.m. µ is symmetric iff its characteristic function is
real-valued (for all t.)

Exercise: do the proof of the theorem.
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Convergence theorems

Theorem (Lévy’s converging Theorem)
Let {µn}n≥1 be probability measures on R with characteristic function
{ϕn}n≥1.

If µ∞ is a probability measure on R and µn→v µ∞, then
ϕn(t)→n→∞ ϕ∞(t), where ϕ∞ is the characteristic function of µ∞.
If ϕn(t)→n→∞ ϕ∞(t) for all t ∈ R, and ϕ∞(t) is continuous at
t= 0, then

µn→v µ∞ where µ∞ is a probability measure,
ϕ∞ is the characteristic function of µ∞.

Exercise: do the proof of the theorem.
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Corollary
If {µn}n≥1 and µ are probability measures with characteristic functions
{ϕn}n≥1 and ϕ, then µn→v µ∞ iff ϕn(t)→n→∞ ϕ(t), for all t ∈ R.

Exercise: do the proof of the corollary.

Example
Exercises:
1) Take µn which gives mass 1/2 to 0 and to n and analyze it.
2) Take µn as Uniform in [−n,n] and analyze it.
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Applications

Theorem
If F has finite absolute moment of order k, with k ≥ 1, then ϕ has the
following expansion around a neighbourhood of t= 0:

ϕ(t) =
k∑
j=0

ij

j!m
jtj +o(|t|k)

ϕ(t) =
k−1∑
j=0

ij

j!m
jtj + θk

k!µ
k|t|k,

where mj is the moment of order j, µk is the absolute moment of order
k and θk ≤ 1.
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Applications: limiting laws

Below {Xn}n≥1 are i.i.d. r.v. with distribution function F and
Sn =

∑n
j=1Xj .

Theorem (The weak law of large numbers)

If F has finite mean m<∞, then Sn
n →m in probability.

Theorem (The central limit theorem)
If F has finite mean m<∞ and variance σ2 such that 0< σ2 <+∞,
then Sn−mn

σ
√
n
→ Φ in distribution, where Φ is the distribution function of

N(0,1).

Exercise: do the proof of the results above.

Patŕıcia Gonçalves (IST Lisbon) Probability theory
Academic year: 17/18 133 /

173



Conditional expectation TP 2017/2018

18th Lecture: Conditional expectation
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Definition (Conditional probability)
Given a set A ∈ F with P(A)> 0 we define PA(·) in the following way:

PA(E) = P(A∩E)
P(A) .

PA is a probability measure and it is called the conditional probability
with respect to A. The expectation with respect to this probability is
called the conditional expectation wrt A:

EA[X] =
∫

Ω
X(ω)PA(dω) = 1

P(A)

∫
A
X(ω)P(dω).

Definition
If we take now a partition of Ω that is (An)n≥1 with Ω = ∪n≥1An,
An ∈ F and An∩Am = ∅ if m 6= n, then given a set E ∈ F we have that

P(E) =
∑
n≥1

P(E∩An) =
∑
n≥1

PAn(E)P(An).
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Definition
As above we have that (if E[X] is finite)

E[X] =
∫

Ω
X(ω)P(dω) =

∫
∪n≥1AnX(ω)P(dω)

=
∑
n≥1

∫
An
X(ω)P(dω) =

∑
n≥1

P(An)EAn [X].

Example
Suppose that we have a card deck with 52 cards and that we take one
out and it is spades. What is the probability of taking another card of
the deck and that it is also spades?
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Wald’s equation

Theorem
Let {Xn}n∈N be a sequence of i.i.d.r.v. with finite mean. For k ≥ 1 let
Fk be the σ-algebra generated by Xj with j = 1, · · · ,k. Suppose that N is
a random variable taking positive integer values such that for all k ≥ 1
we have that {N ≤ k} ∈ Fk and E[N ]<∞. Then E[SN ] = E[X1]E[N ].

To prove it note that

E[SN ] =
∫

Ω
SNP(dω) =

∫
{N≥1}

SNP(dω) =
∑
k≥1

∫
{N=k}

SNP(dω)

=
∑
k≥1

k∑
j=1

∫
{N=k}

XjP(dω) =
∑
j≥1

∑
k≥j

∫
{N=k}

XjP(dω)

=
∑
j≥1

∫
{N≥j}

XjP(dω) =
∑
j≥1

(
E[Xj ]−

∫
{N≤j−1}

XjP(dω)
)
.
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Now we note that the set {N ≤ j−1} and the r.v. Xj are independent
(remember that {N ≤ j−1} ∈ Fj−1 and note the definition of Fj−1),
therefore we get

E[SN ] =
∑
j≥1

E[Xj ]P(N ≥ j) = E[X1]
∑
j≥1

P(N ≥ j) = E[X1]E[N ].

To justify that we can interchange summations we have to repeat the
computations taking |Xj | and we will see that we get the result
E[|X1|]E[N ] which is finite by hypothesis.
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Now, let X be a discrete r.v. and let An = {X = an}. Given an
integrable r.v. Y we define the function E[Y |G] in Ω as

E[Y |G] =
∑
n≥1

1An(·)E[Y |An],

this means that E[Y |G] is a discrete r.v. that takes the value E[Y |An]
on the set An.
We can rewrite the expression above as

E[Y ] =
∑
n≥1

∫
An

E[Y |G]P(dω) =
∫

Ω
E[Y |G]P(dω)

Analogously for any A ∈ G, A is a union of subcolletion of the An’s, so
that, for every A ∈ G we have that∫

A
Y P(dω) =

∫
A
E[Y |G]P(dω)

Attention to the measurability of the functions involved.
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Now, we suppose that we have two functions ϕ1 and ϕ2 both G
measurable and such that∫

A
Y P(dω) =

∫
A
ϕ1P(dω) =

∫
A
ϕ2P(dω).

If we take the set A= {ω ∈ Ω : ϕ1(ω)> ϕ2(ω)}, then A ∈ G and we
conclude that P(A) = 0. Repeating the argument exchanging ϕ1 with
ϕ2 we conclude that ϕ1 = ϕ2 a.e.

This means that E[Y |G] is unique up to a equivalence and we are going
to denote EG [Y ] or E[Y |G] to denote that class. The results holds for
any σ-algebra.

Theorem
If E[|Y |]<∞ and G is a σ-algebra contained in F , then, there exists a
unique equivalence class of integrable r.v. E[Y |G] belonging to G such
that for any A ∈ G it holds that

∫
AY P(dω) =

∫
AE[Y |G]P(dω).
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Conditional expectation

Definition (Conditional expectation)
Given an integrable r.v. Y and a σ-algebra G, the conditional
expectation EG [Y ] of Y with respect to G is any one of the equivalence
class of r.v. on Ω such that:

1 it belongs to G;
2 it has the same integral as Y over any set in G.

Note that for Y = 1Λ with Λ ∈ F we write P(Λ|G) = E[1Λ|G] and this is
the conditional probability of Λ relatively to G. This is any one of the
equivalence class of r.v. belonging to G and satisfying

∀B ∈ G : P(B∩Λ) =
∫
B
P(Λ|G)P(dω).
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Conditional expectation

Theorem
Let Y and ZY be integrable r.v. and let Z ∈ G. Then

E[Y Z|G] = ZE[Y |G], a.e.

Exercise: do the proof of the theorem.

Let us note that E[X|T ] = E[X], where T is the trivial σ-algebra, that
is T := {∅,Ω}.
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Properties of the conditional expectation

Let X and Xn be integrable r.v.
1 If X ∈ G, then E[X|G] =X a.e., this is true also if X = a a.e.,
2 E[X1 +X2|G] = E[X1|G] +E[X2|G],
3 If X1 ≤X2 then E[X1|G]≤ E[X2|G],
4 |E[X|G]| ≤ E[|X||G],
5 If Xn ↑X, then E[Xn|G] ↑ E[X|G],
6 If Xn ↓X, then E[Xn|G] ↓ E[X|G],
7 If |Xn| ≤ Y , Y is integrable and Xn→X, then E[Xn|G]→ E[X|G],
8 E[|XY ||G]2 ≤ E[X2|G]E[Y 2|G]. (Cauchy-Schwarz inequality)

Exercise: do the proof.
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19th Lecture: Fundamental Theorems
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Jensen’s inequality

Theorem (Jensen’s inequality)
If ϕ is a convex function on R and X and ϕ(X) are integrable r.v.,
then for each G:

ϕ(E[X|G])≤ E[ϕ(X)|G].

Exercise: do the proof.

Note that when Λ = Ω, the defining relation for the conditional
expectation says that

E[E[Y |G]|T ] = E[Y |T ] = E[E[Y |T ]|G]

This can be generalized and it is called the tower law.
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Tower Law

Theorem (Tower law)
If Y is integrable and F1 ⊂F2, then:

E[Y |F1] = E[Y |F2] iff E[Y |F2] ∈ F1.
E[E[Y |F2]|F1] = E[Y |F1] = E[E[Y |F1]|F2]

As a particular case we note that

E[E[Y |X1,X2]|X1] = E[Y |X1] = E[E[Y |X1]|X1,X2].
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Tower Law: proof of the theorem
Let us prove the theorem now.

We start with the first assertion. Let start by assuming that
E[Y |F1] = E[Y |F2], then by 1) in page 128 we have that E[Y |F2] ∈ F1.
Now let us assume that E[Y |F2] ∈ F1. Then, for A ∈ F1, 2) in page 128
holds, from where the result follows.

Now let us prove the second assertion. Note that E[Y |F1] ∈ F2, and
from the first assertion applied to E[Y |F1] we conclude the second
equality. Let us prove the first equality now. For that purpose note
that if Λ ∈ F1 then Λ ∈ F2, so that∫

Λ
E[E[Y |F2]|F1]P(dω) =

∫
Λ
E[Y |F2]P(dω) =

∫
Λ
Y P(dω).

Moreover, E[E[Y |F2]|F1] ∈ F1 so that, both properties defining the
conditional expectation are verified and we are done.

Patŕıcia Gonçalves (IST Lisbon) Probability theory
Academic year: 17/18 147 /

173



Conditional expectation TP 2017/2018

Conditional independence

Let F be a σ-algebra and let {Fα}α∈A, where A is a index set, be
contained in F .
Definition
The collection {Fα}α∈A is said to be conditionally independent to a
σ-algebra G iff for any finite collection of sets A1, · · · ,An with Aj ∈ Fj
and with α′js distinct indices of A we have

P
(
∩nj=1Aj |G

)
=

n∏
j=1

P(Aj |G).

Note that if G = T then the previous condition is just the usual
independence.
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Theorem
For each α ∈A, let F (α) be the smallest σ-algebra containing all Fβ
with β ∈A\{α}. Then, the Fα’s are conditionally independent
relatively to a σ-algebra G iff for each α and Aα ∈ Fα we have

P
(
Aα|F (α)∨G

)
= P(Aα|G),

where F (α)∨G denotes the smallest σ-algebra containing F (α) and G.

Note that if in the previous theorem G = T and Fα is generated by a
r.v. say Xα then we have

Corollary
Let (Xα)α∈A be a collection of r.v. and for each α let F (α) be the
σ-algebra generated by all the r.v. except by Xα. Then, the r.v. Xα’s
are independent iff for each α and B ∈ B we have

P(Xα ∈B|F (α)) = P(Xα ∈B) a.e.
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Now, let X1 and X2 be two independent r.v. What happens if we
condition X1 +X2 by X1?

Theorem
Let X1 and X2 be two independent r.v. with probability measures µ1
and µ2, respectively. Then, for each B ∈ B:

P(X1 +X2 ∈B|X1) = P(X1 +X2 ∈B|F1) = µ2(B−X1) a.e.

where F1 is the σ−algebra generated by X1.
More generally, let (Xn)n∈N be a sequence of independent r.v. with
probability measures (µn)n∈N and let Sn =X1 + · · ·+Xn. Then, for
each B ∈ B:

P(Sn ∈B|S1, · · · ,Sn−1) = µn(B−Sn1) = P(Sn ∈B|Sn−1) a.e.

Exercise: Prove all the results above.
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Let us look quickly at the proof of the previous theorem.
Remember that P(X1 +X2 ∈B|X1) = E[1{X1+X2∈B}|X1]. Now using
the Theorem of page 76 we have that, for Λ ∈ F1 (note that this set is
such that Λ =X−1

1 (A), where A ∈ B, to prove this use the trick with
monotone classes, see the Theorem in page 4)

∫
Λ
µ2(B−X1)P(dω) =

∫
A
µ2(B−x1)µ1(dx1)

=
∫
A
µ1(dx1)

∫
Ω

1{x1+x2∈B}µ2(dx2) =
∫ ∫
{x1∈A,x1+x2∈B}

µ1×µ2(dx1,dx2)

=
∫ ∫
{X1∈A,X1+X2∈B}

P(dω) = P(X1 ∈A,X1 +X2 ∈B)

=
∫

Λ
1{X1+X2∈B}P(dω).

Since µ2(B−X1) ∈ F1 and since the previous relation is true for any
Λ ∈ F1, the result follows. As an exercise, prove the second assertion of
the theorem.
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Conditional distribution of X given a set A.
Given a r.v. X in a probability space (Ω,F ,P) and for an event A with
P(A)> 0 we define the conditional distribution of X given A as:

P(X ∈B|A) = P((X ∈B)∩A)
P(A) .

Exercise: Check that this gives a probability measure on the Borel
σ-algebra.

Now, we can define the conditional distribution function of X given the
set A on x ∈ R as

FX(x|A) = P(X ≤ x|A) = P((X ≤ x)∩A)
P(A)
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The conditional expectation of X given the set A is the expectation of
the conditional distribution given by

E[X|A] =
∫
xdFX(x|A)

if it exists. As above, if we take now a partition of Ω that is (An)n≥1
with Ω = ∪n≥1An, An ∈ F and An∩Am = ∅ if m 6= n, then

P(X ∈B) =
∑
n≥1

P(X ∈B|An)P(An).

Also for any x,
FX(x) = P(X ≤ x) =

∑
n≥1P(X ≤ x|An)P(An) =

∑
n≥1FX(x|An)P(An)

and analogously

E[X] =
∫
xdFX(x) =

∑
n≥1

P(An)E[X|An].

1) Let X ∼ U [−1,1] and let A= {X ≥ 0}. What is the conditional
distribution of X given A?
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Conditional distribution of X given a discrete
r.v. Y
Let us suppose now that the partition is generated by a discrete r.v.
Let Y be a discrete r.v. defined on a probability space (Ω,F ,P) taking
the values (an)n∈N. Then the events {Y = an} form a partition of Ω. In
this case P(X ∈B|Y = an) is called the conditional distribution of X
given Y = an and we have that

P(X ∈B|Y = an) =
∑
n≥1

P(X ∈B|Y = an)P(Y = an).

Also for any x,

FX(x) = P(X ≤ x) =
∑
n≥1

P(X ≤ x|Y = an)P(Y = an)

=
∑
n≥1

FX(x|Y = an)P(X = an)

and analogously E[X] =
∫
xdFX(x) =

∑
n≥1P(Y = an)E[X|Y = an].
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Note that for B fixed we have that P(X ∈B|Y = an) is a function of an
let us say g(an). Defining g(y) = P(X ∈B|Y = y) we have that
P(X ∈B) =

∫
P(X ∈B|Y = y)dFY (y) =

∫
g(y)dFY (y). Moreover,

FX(x) =
∫
FX(x|Y = y)dFY (y) E[X] =

∫
E[X|Y = y]dFY (y).

When X is integrable the function ϕ(y) = E[X|Y = y] is finite. In this
case, the r.v. ϕ(Y ) is called the conditional expectation of X given Y :
ϕ(Y ) = E[X|Y ]. We note that E[X|Y = y] is the value of the random
variable E[X|Y ] when Y = y. The last formula can be interpreted as

E[X] = E[ϕ(Y )] = E[E[X|Y ]].

2) Consider the following experience: a player tosses a fair coin n times
obtaining k heads with 0≤ k ≤ n. After that a second player tosses the
same coin k times. Let X be the number of heads obtained by the
second player. What is the expectation of X supposing that all the
events are independent?
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Conditional distribution: general case

Let us define now the conditional expectation for general r.v. X and
Y . Before we defined the conditional distribution of X when Y was
discrete, so that P(Y = y) = 0 for all y 6= an. But now we want to
extend this to the continuous case in which the probability above is
null for all y ∈ R. How to do it? We define by approximation. Take I
an interval containing y with size ∆y and define

P(X ∈B|Y = y)∼ P(X ∈B|Y ∈ I) = P(X ∈B,Y ∈ I)
P(Y ∈ I) .

If P(X ∈B|Y ∈ I) has a limit when ∆y→ 0 we call to the limit
P(X ∈B|Y = y):

lim
∆y→0

P(X ∈B|Y ∈ I) = P(X ∈B|Y = y).
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Let us go back to the case in which X is discrete.
Then we have

F(X,Y )(x,y) = P(X ≤ x,Y ≤ y) =
∑

n:an≤y
P(X ≤ x,Y = an)

=
∑

n:an≤y
P(X ≤ x|Y = an)P(Y = an)

=
∑

n:an≤y
FX(x|Y = an)P(Y = an)

=
∫ y

−∞
FX(x|Y = a)dFY (a).

Note that in the discrete case, the joint distribution is like a
composition of the marginal distribution of Y with the conditional
distribution of X given Y . Let use then the last equality!

Patŕıcia Gonçalves (IST Lisbon) Probability theory
Academic year: 17/18 157 /

173



Conditional expectation TP 2017/2018

Formal definitions

Definition
Let X and Y be two r.v. defined on the same probability space. A
function P(X ∈B|Y = y) defined for each borelian B and y ∈ R is a
(regular) conditional distribution for X given Y if:

1 for each y fixed, P(X ∈B|Y = y) defines a probability measure in
B,

2 for any B ∈ B fixed, P(X ∈B|Y = y) is a measurable function of y,
3 for any (x,y) ∈ R2 it holds that

P(X ≤ x,Y ≤ y) =
∫ y

−∞
FX(x|Y = a)dFY (a).

P(X ∈B|Y = y) is called the conditional probability of X belonging to
B given that Y = y and FX(·|Y = y) = P(X ≤ ·|Y = y) is the
conditional distribution of X given Y = y.

Patŕıcia Gonçalves (IST Lisbon) Probability theory
Academic year: 17/18 158 /

173



Conditional expectation TP 2017/2018

Formal definitions

Theorem
Let X and Y be two r.v. defined on the same probability space. There
exists a (regular) conditional distribution for X given Y . In fact there
exists only one in the sense that they are equal a.e.: that is, if
P1(X ∈B|Y = y) and P2(X ∈B|Y = y) are conditional distributions
for X given Y , then there exists a borelian B0 such that P(Y ∈B0) = 1
and P1(X ∈B|Y = y) = P2(X ∈B|Y = y) for all B ∈ B and y ∈B0.

Theorem
For each B ∈ B fixed, the limit

lim
∆a→0

P(X ∈B|Y ∈ I) = P(X ∈B|Y = a)

exists a.e. Moreover, for each B ∈ B fixed, the limit is equal to
P(X ∈B|X = y) as given in the definition above, a.e.
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1) What is the conditional distribution of Y given Y ? Let us guess it.
If it is given that Y = y, then Y = y! So the candidate is
P(Y = y|Y = y) = 1 the distribution which gives weight 1 to the point
y. Check that for B = (q1, q2) with qi ∈Q it holds that

P(Y ∈B|Y = y) = lim
∆a→0

P(Y ∈B|Y ∈ I),

which proves the result.
Note however that if we take B = {y0} then

P(Y = y0|Y = y) = lim
∆a→0

P(Y = y0|Y ∈ I) = 0!

This does not contradict our result but contradicts our intuition!
2) Given Y = y what is the conditional distribution of Z = g(Y )? Recall
that above we have seen that if Y = y, then P(Y = y|Y = y) = 1. Here
it is analogous. In this case we have that P(g(Y ) = g(y)|Y = y) = 1.
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3) Let X be a symmetric r.v. around 0. What is the conditional
distribution of X given the r.v. |X|? Given that |X|= y > 0, then
X = y or −y, there are no other possibilities and from symmetry we
have that:

P(X = y||X|= y) = 1
2 = P(X =−y||X|= y), y > 0,

and P(X = 0||X|= 0) = 1.
Let us do it now in a different way. Suppose y > 0. Take B = (q1,a2)
with qi ∈Q and take I ⊂B. Then

P(X ∈B||X| ∈ I) =P(X ∈ I) = 1
2
(
P(X ∈ I)+P(X ∈−I)

)
= 1

2P(|X| ∈ I).

And

P(X ∈ −B||X| ∈ I) = P(X ∈ −I) = 1
2P(|X| ∈ I).
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Since I ⊂B we have that

P(X ∈B||X| ∈ I) = 1
2 = P(X ∈ −B||X| ∈ I).

Therefore,

P(X ∈B||X|= y) = lim
∆y→0

P(X ∈B||X| ∈ I) = 1
2 ,

P(X ∈ −B||X|= y) = lim
∆y→0

P(X ∈ −B||X| ∈ I) = 1
2 .

Taking B decreasing to {y} we see that the conditional probability
gives weight 1/2 to each one of the points y and −y. The proof that
P(X = 0||X|= 0) = 1 can be reached by taking B = (q1, q2) as above
with q1 < 0< q2.
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4) Let X and Y be independent r.v. each one with law N(0,σ2) with
σ2 > 0. What is the conditional distribution of (X,Y ) given

√
X2 +Y 2?

For z > 0,
√
X2 +Y 2 = z iff (X,Y ) is in the circle centered at (0,0)

with radius z. Therefore the conditional distribution is concentrated in
that circle, that is, in the set of points of R2 given by
C := {(x,y) : x2 +y2 = z}.
Note that the joint density function of (X,Y ) is given by

f(x,y) = 1
2πσ2 e

− (x2+y2)2

2σ2 .

Note that the density is constant on the circle C. Therefore, before the
experience all the points in the circle C had the same ”chance” and our
guess for the distribution is the uniform distribution on the circle, that
is, for B ∈ B2 and z > 0:

P((X,Y ) ∈B|
√
X2 +Y 2 = z) = ”size of”(B∩C)

2πz .

Prove it!
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20th Lecture: Discrete time martingales
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Martingales

Let (Xn)n∈N be independent r.v. with mean zero and let
Sn =

∑n
j=1Xj . Then

E[Sn+1|X1, · · · ,Xn] = E[X1 + · · ·+Xn+Xn+1|X1, · · · ,Xn]
= Sn+E[Xn+1|X1, · · · ,Xn] = Sn+E[Xn+1]
= Sn.

Historically, the equation above gave rise to consider dependent r.v.
which satisfy E[Xn+1|X1, · · · ,Xn] = 0 and this opened a way to define a
class of stochastic processes which are extremely useful - the
martingales.
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Martingales

Definition (smartingale: martingale, submartingale, supermartingale)
The sequence of r.v. and σ−algebras (Xn,Fn)n∈N is said to be a
martingale iff for each n ∈ N we have that

1 Fn ⊂Fn+1 and Xn ∈ Fn, (this means that Xn is adapted to Fn)
2 E[|Xn|]<∞ for each n ∈ N, (this means that Xn is integrable)
3 for each n ∈ N, we have that

Xn = E[Xn+1|Fn] a.e. (martingale)
Xn ≤ E[Xn+1|Fn] a.e. (submartingale)
Xn ≥ E[Xn+1|Fn] a.e. (supermartingale)
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Examples

Example
Check that (Yn,Fn)n∈N is a (sub)martingale in each case below:

1 let (Xn)n be a sequence of independent r.v. with mean zero,
Fn = σ(X1, · · · ,Xn) and Yn = Sn,

2 let (Xn)n be a sequence of independent r.v. with mean one,
Fn = σ(X1, · · · ,Xn) and Yn =

∏n
k=1Xk,

3 let X be an integrable r.v. and let F0 ⊂F1 ⊂ ·· · ⊂ F ,
Yn = E[X|Fn], (GOOD FOR CREATING MARTINGALES!)

4 let (Xn)n be a sequence of non-negative integrable r.v.,
Fn = σ(X1, · · · ,Xn) and Yn = Sn, (sub)

Note that the condition for martingale implies that for n <m we have
that

Xn = E[Xm|Fn] a.e.
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Jensen’s inequality

Theorem (Jensen’s inequality)
Let (Xn,Fn)n∈N be a submartingal and let ϕ be an increasing convex
function defined on R. If ϕ(Xn) is integrable for any n, then
(ϕ(Xn),Fn)n∈N is also a submartingal.

Corollary
If (Xn,Fn)n∈N is a submartingal then (X+

n ,Fn)n∈N is a submartingal.
If (Xn,Fn)n∈N is a martingal, then (|Xn|,Fn)n∈N and (|Xn|p,Fn)n∈N
for 1< p <∞ (if Xn ∈ Lp) are also submartingales.

Exercise: Prove the theorem.
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Martingales in Game theory

Let (Xn)n∈N be a sequence of i.i.d.r.v. taking the value 1 with
probability p and −1 with probability 1−p. The interpretation is that
Xn = 1 represents a success while Xn =−1 represents a failure of a
player at the n-th time he is playing a game. Let us suppose that the
player can win or lose a certain amount Vn at the n-th time he plays
the game, that is, Vn is the amount of the bet at time n. Then, at time
n the player possesses

Yn =
n∑
i=1

ViXi = Yn−1 +VnXn.

It is quite natural to assume that the amount Vn may depend on the
previous amounts, that is, of V1, · · · ,Vn−1 and also of X1, · · · ,Xn−1. In
other words, let F0 = {∅,Ω} and Fn = σ(X1, · · · ,Xn). Then, Vn is a
function Fn−1 measurable, that is, the sequence that determines the
player’s strategy is said to be predictable.
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Martingales in Game theory (cont.)

Let Sn =X1 + · · ·+Xn. Then

Yn =
n∑
i=1

Vi∆Si,

where ∆Si = Si−Si−1. Then, the sequence (Yn,Fn)n∈N is said to be
the transform of S by V .
From the player’s point of view, the game is said to be fair (favorable
or unfavorable) if at each step if E[Yn+1−Yn|Fn] = 0 (≥ 0 or ≤ 0)
We want to analyze in which conditions the game is fair? A simple
computation shows that :

1 The game is fair if p= 1−p= 1/2. (Yn,Fn)n∈N is a martingale.
2 The game is favorable if p > 1−p. (Yn,Fn)n∈N is a submartingale.
3 The game is fair if p < 1−p. (Yn,Fn)n∈N is a supermartingale.
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Martingales in Game theory (cont.)

Let us now consider another strategy. Take (Vn,Fn−1)n≥1 with V1 = 1
and for n≥ 1 we have that Vn = 2n−1 if X1 =−1, · · · ,Xn−1 =−1 and 0
otherwise.
Under this strategy, a player starts to bet 1 euro and doubles the bet
in the next play if he had lost or leaves immediately the game in case
he had won.
If X1 =−1, · · ·Xn =−1, then the total loss after n plays is∑n
i=1 2i−1 = 2n−1.

Therefore, if Xn+1 = 1 then
Yn+1 = Yn+Xn+1Vn+1 =−(2n−1) + 2n = 1.
Let τ := inf{n≥ 1 : Yn = 1}, that is the first time that Yn = 1. If p= 1

2 ,
then the game is fair and

P(τ = n) = P(Yn = 1,Yk 6= 1,∀k = 1, · · · ,n−1) =
(1

2
)n
.
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Martingales in Game theory (cont.)

From where we conclude that

P(τ <∞) = P(∪n≥1τ = n) =
∑
n≥1

(1
2
)n

= 1.

Moreover, P(Yτ = 1) = 1 and E[Yτ ] = 1.
Therefore, even in a fair game, applying the strategy described above,
a player can, in finite time, complete the game with success, that is,
increase his capital in one unity: E[Yτ ] = 1> Y0 = 0. In game theory
this type of system - double the bet after a loss and leave the game
immediately after a win - is called a martingale.
We note however that p= 1/2, so that (Yn,Fn)n∈N is a martingale and
E[Yn] = E[Y0] = 0 for all n≥ 1. Above the same is not true for a
random time (above we took the random time τ .)
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Markov time

Definition
A r.v. τ which takes values in the set {0,1, · · · ,∞} is said to be a
Markov time wrt a σ-algebra Fn if for each n≥ 0 we have that
{τ = n} ∈ Fn. When P(τ <∞) = 1, the Markov time is said to be a
stopping time.

If (Xn,Fn)n∈N is a sequence of r.v. and σ-algebras with Fn ∈ Fn+1,
and if τ is a Markov time wrt Fn, then we write Xτ =

∑∞
n=0Xn1{τ=n}.

Note that since P(τ <∞) = 1 we have that Xτ = 0 in the set τ =∞.
Prove that Xτ is a r.v.

Example (Prove it!)
Let (Xn,Fn)n∈N be a martingale (or submartingale) and τ a Markov
time wrt Fn. Then the stopping process Xτ = (Xn∧τ ,Fn) is also a
martingale (or submartingale).
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