Exercise list number 1- σ-algebras and probability measures

Exercise 1:

Show that, if \mathscr{A} and \mathscr{B} are two σ-algebras, then $\mathscr{A} \bigcap \mathscr{B}$ is also a σ-algebra.

Exercise 2:

Let $\Omega:=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ be a sample space.

1. Exhibit all the σ-algebras of Ω.
2. Compute $\sigma\left(\left\{\omega_{1}\right\}\right)$. Check that it is a σ-algebra.

Exercise 3:

Recall that, for a topological space S the Borel σ-algebra $\mathscr{B}(S)$ is generated by the family of open subsets of S. Prove that the Borel σ-algebra of \mathbb{R} is generated by $\pi(\mathbb{R})=\{(-\infty, x]: x \in \mathbb{R}\}$.

Exercise 4:

Let X be a random variable defined on a sample space Ω. Compute $\sigma(X)$, that is the σ-algebra generated by X, when

1. $\Omega:=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ and $X\left(\omega_{1}\right)=X\left(\omega_{2}\right)=X\left(\omega_{3}\right)=1$.
2. $\Omega:=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ and $X\left(\omega_{1}\right)=0, X\left(\omega_{2}\right)=1$ and $X\left(\omega_{3}\right)=2$.
3. $\Omega:=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ and $X\left(\omega_{1}\right)=0, X\left(\omega_{2}\right)=0$ and $X\left(\omega_{3}\right)=1$.
4. $\Omega:=\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}$ and $X\left(\omega_{1}\right)=0, X\left(\omega_{2}\right)=0, X\left(\omega_{3}\right)=1$ and $X\left(\omega_{4}\right)=2$.

Exercise 5:

Let Ω be a sample space, \mathscr{F} be a σ-algebra of subsets of Ω.
Assume that $\mu(\cdot)$ is a set map defined on Ω satisfying the following conditions:

1. $\forall E \in \mathscr{F}, \mu(E) \geq 0$;
2. If $\left\{E_{j}\right\}_{j \geq 1}$ is a countable collection of disjoint sets in \mathscr{F}, then

$$
\mu\left(\bigcup_{j \geq 1} E_{j}\right)=\sum_{j \geq 1} \mu\left(E_{j}\right) ;
$$

3. $\mu(\Omega)=1$.

Prove that

1. $\forall E \in \mathscr{F}, \mu(E) \leq 1$;
2. $\forall E \in \mathscr{F}, \mu(\emptyset)=0$;
3. $\forall E \in \mathscr{F}, \mu(E)=1-\mu\left(E^{c}\right)$;
4. $\forall E, F \in \mathscr{F}, \mu(E \bigcup F)+\mu(E \bigcap F)=\mu(E)+\mu(F)$;
5. $\forall E, F \in \mathscr{F}$ such that $E \subseteq F, \mu(E)=\mu(F)-\mu(F \backslash E) \leq \mu(F)$;
6. Let $\left\{E_{j}\right\}_{j \geq 1}$ be an increasing (decreasing) sequence of sets in \mathscr{F} that is $E_{j} \subseteq E_{j+1}\left(E_{j} \supseteq E_{j+1}\right)$ for all $j \geq 1$. Prove that, if $\left\{E_{j}\right\}_{j \geq 1}$ is an increasing (decreasing) sequence of sets in \mathscr{F} such that $E_{j} \uparrow E\left(E_{j} \downarrow E\right)$, that is $E=\bigcup_{j \geq 1} E_{j}\left(E=\bigcap_{j \geq 1} E_{j}\right)$, then $\lim _{j \rightarrow+\infty} \mu\left(E_{j}\right)=\mu(E)$;
7. (Boole's inequality): $\mu\left(\bigcup_{j \geq 1} E_{j}\right) \leq \sum_{j \geq 1} \mu\left(E_{j}\right)$.

Exercise 6:

Let $\left\{E_{j}\right\}_{j \geq 1}$ be random events belonging to \mathscr{F}, a σ-field of events of a sample space Ω.
Let $\mu(\cdot)$ be a probability measure defined on \mathscr{F}. Show that for all $n \geq 1$

1. $\mu\left(\bigcap_{j=1}^{n} E_{j}\right) \geq 1-\sum_{j=1}^{n} \mu\left(E_{j}^{c}\right)$;
2. If $\mu\left(E_{j}\right) \geq 1-\varepsilon$, for $j \in\{1, \cdots, n\}$, then $\mu\left(\bigcap_{j=1}^{n} E_{j}\right) \geq 1-n \varepsilon$;
3. $\mu\left(\bigcap_{j \geq 1} E_{j}\right) \geq 1-\sum_{j \geq 1} \mu\left(E_{j}^{c}\right)$;

Exercise 7:

Prove the following properties:

1. If $\mu\left(E_{j}\right)=0$ for all $j \geq 1$, then $\mu\left(\bigcup_{j \geq 1} E_{j}\right)=0$;
2. If $\mu\left(E_{j}\right)=1$ for all $j \geq 1$, then $\mu\left(\bigcap_{j \geq 1} E_{j}\right)=1$;

Exercise 8:

Take $\left\{E_{j}\right\}_{j \geq 1}$ and $\left\{F_{j}\right\}_{j \geq 1}$ belonging to the same probability space $(\Omega, \mathscr{F}, \mu)$.
Suppose that $\lim _{j \rightarrow+\infty} \mu\left(E_{j}\right)=1$ and $\lim _{j \rightarrow+\infty} \mu\left(F_{j}\right)=p$, with $p \in[0,1]$.
Show that $\lim _{j \rightarrow+\infty} \mu\left(E_{j} \bigcap F_{j}\right)=p$.

Exercise 9:

Let

$$
\begin{align*}
\limsup & E_{n} \tag{1}
\end{align*}=\bigcap_{n \geq 1} \bigcup_{k \geq n} E_{k}, ~ 子{ }_{n \geq 1}, E_{k \geq n} .
$$

If (2) and (1) are equal we write

$$
\lim _{n} E_{n}=\liminf _{n} E_{n}=\limsup _{n} E_{n} .
$$

Let $\left\{E_{n}\right\}_{n \geq 1}$ belong to a probability space $(\Omega, \mathscr{F}, \mu)$. Show that
1.

$$
\mu\left(\liminf E_{n}\right) \leq \liminf E_{n} \mu\left(E_{n}\right) \leq \lim \sup _{n} \mu\left(E_{n}\right) \leq \mu\left(\lim \sup _{n} E_{n}\right) .
$$

2. If $\lim _{n \rightarrow+\infty} E_{n}=E$, then $\lim _{n \rightarrow+\infty} \mu\left(E_{n}\right)=\mu(E)$.

Exercise list number 2 - Random variables and distribution functions

Exercise 1:

Specify the distribution function and the distribution measure of the random variable X.
(a) If X has probability function defined on $k \in\{0,1\}$ and given by

$$
\mathbb{P}(X=k)=p^{k}(1-p)^{1-k} .
$$

That is X has Bernoulli distribution of parameter p.
(b) If X has probability function defined in $k \in\{0, \cdots, n\}$ and given by

$$
\mathbb{P}(X=k)=C_{k}^{n} p^{k}(1-p)^{n-k} .
$$

That is X has Binomial distribution of parameter n and p.
(c) If X has probability function defined in $k \in\{0,1, \cdots\}$ and given by

$$
\mathbb{P}(X=k)=\frac{e^{-\alpha} \alpha^{k}}{k!}
$$

$\alpha>0$. That is X has Poisson distribution of parameter α.
(d) If X has probability function defined in $k \in\{0,1, \cdots\}$ and given by

$$
\mathbb{P}(X=k)=p(1-p)^{k} .
$$

That is X has Geometric distribution of parameter p.
(e) If X has probability density function given by

$$
f(x)=\alpha e^{-\alpha x} \mathbf{1}_{[0,+\infty)}(x),
$$

with $\alpha>0$. That is X has Exponential distribution with parameter α.
(f) If X has probability density function given by

$$
f(x)=\frac{1}{b-a} \mathbf{1}_{[a, b]}(x)
$$

for $a, b \in \mathbb{R}$ with $a<b$. That is X has Uniform distribution in $[a, b]$.
(g) If X has probability density function given by

$$
f(x)=\frac{1}{\pi\left(1+x^{2}\right)},
$$

$x \in \mathbb{R}$. That is X has Cauchy distribution.
(h) If X has probability density function given by

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
$$

$x \in \mathbb{R}$. That is X has Gaussian distribution.

Teoria da probabilidade - 2017/2018

Exercise 2:

Let $\sigma>0$. Let X be a r.v. with probability density function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{x^{2}}{2 \sigma^{2}}}$.
(a) Prove that $f(\cdot)$ is indeed a probability density function. How does the graph of f look like when σ is very small?
(b) Compute $\mathbb{E}[X]$ and $\mathbb{E}\left[X^{2}\right]$.

Exercise 3:

Let X be a random variable with probability density function given by $f(x)=c x^{2} \mathbf{1}_{[-1,1]}(x)$.
(a) Determine the value of the constant c.
(b) Exhibit the distribution function $F_{X}(\cdot)$ and find x_{1} such that $F_{X}\left(x_{1}\right)=1 / 4$.

Exercise 4:

Let X be a random variable with distribution function given by $F_{X}(x)=x^{3} \mathbf{1}_{[0,1]}(x)+\mathbf{1}_{(1, \infty]}(x)$.
(a) Find the probability density function of X.
(b) Prove that it is indeed a probability density function.

Exercise 5:

A random variable X is said to be symmetric around μ if $\mathbb{P}(X \geq \mu+x)=\mathbb{P}(X \leq \mu-x)$ for all $x \in \mathbb{R}$. If $\mu=0$ we simply say that X is symmetric.

Let X be a random variable symmetric around the point $b \in \mathbb{R}$ and suppose that X takes the values a, b and $2 b-a$, with $a<0$ and $b>0$.
(a) Show that $\mathbb{E}[X]=b$.
(b) Suppose that $\mathbb{E}[X]=1, a=-1, \operatorname{Var}(X)=3$ and determine the distribution function of X and its induced measure μ_{X}.
(c) Compute $\mu_{X}((-\infty,-1]), \mu_{X}((-\infty, 3 / 2])$ and $\mu_{X}(\{1\})$.

Exercise 6:

Let X be a symmetric random variable that takes the values $a \neq b \neq c$.
Suppose that $\mathbb{P}(X=0)=1 / 5$.
Give the results in terms of $a \neq 0$.
(a) Exhibit the distribution function and the distribution measure of X.
(b) Compute $\mathbb{E}[X]$ and $\operatorname{Var}(X)$.

Exercise 7:

Let X be a random variable with probability density function $f_{X}(\cdot)$ and for $b>0$ and $c \in \mathbb{R}$ let $Y=b X+c$.
(a) Prove that the probability density function of Y is given by $f_{Y}(y)=\frac{1}{b} f_{X}\left(\frac{y-c}{b}\right)$.
(b) Let X be a random variable with Cauchy distribution.

Compute the probability density function of $Y=b X+M$, where $b>0$ and $M \in \mathbb{R}$.
(c) Let X be a random variable with standard Normal distribution.

Compute the probability density function of $Y=\sigma X+\mu$, where $\sigma>0$ and $\mu \in \mathbb{R}$.
(d) Let X be a random variable with Gamma distribution with parameter α and 1 .

Compute the probability density function of $Y=\frac{X}{\beta}$. What is the distribution of Y when $\alpha=1$?

Exercise 8:

Let X be a random variable with density function given by $f(x)=(1+x)^{-2} \mathbf{1}_{(0,+\infty)}(x)$.
Let $Y=\max (X, c)$, where c is a positive constant $c>0$.
(a) Show that $f(\cdot)$ is a probability density function.
(b) Exhibit the distribution function of X and Y. Justify that F_{X} is in fact a distribution function.
(c) Decompose $F_{Y}(\cdot)$ in its discrete, absolutely continuous and singular parts.
(d) Compute $\mathbb{E}[X]$ and $\mathbb{E}[Y]$.

Exercise 9:

Let X be a random variable uniformly distributed on the interval [0,1].
Let Y be the random variable defined as $Y=\min (1 / 2, X)$.
(a) Determine the distribution function of X and Y and represent their graph.
(b) Decompose $F_{Y}(\cdot)$ in its discrete, absolutely continuous and singular parts.
(c) Compute $\mathbb{E}[X]$ and $\mathbb{E}[Y]$.

Exercise 10:

Let X be a random variable with exponential distribution with parameter $\lambda>0$. Let $Y=\max (X, \lambda)$.
(a) Determine the distribution function of X and Y and represent their graph.
(b) Decompose $F_{Y}(\cdot)$ in its discrete, absolutely continuous and singular parts.

Exercise 11:

Let X be a random variable uniformly distributed on $[0,2]$.
Let Y be the random variable defined by $Y=\min (1, X)$.
(a) Determine the distribution functions of X and Y and represent their graph.
(b) Decompose $F_{Y}(\cdot)$ in its discrete, absolutely continuous and singular parts.

Exercise 12:

Let X be a random variable with Cantor distribution:

(a) Describe the construction of its distribution function $F_{X}(\cdot)$.
(b) Justify that X is a singular random variable.
(c) Compute $\mathbb{P}\left(X=\frac{1}{3}\right)$. Justify.
(d) Compute $\mathbb{P}\left(\frac{1}{3}<X<\frac{2}{3}\right), \mathbb{P}\left(X \leq \frac{2}{3}\right)$ and $\mathbb{P}\left(\frac{1}{9}<X \leq \frac{8}{9}\right)$.
(e) Compute $\mathbb{E}[X]$. Justify.

Exercise 13: Let U be a random variable uniformly distributed in [0, 1].
(a) Find a function $f:[0,1] \rightarrow \mathbb{R}$ such that $f(U)$ is a random variable uniform in $[0,2]$.
(b) Find a function $f:[0,1] \rightarrow \mathbb{R}$ such that $f(U)$ is a random variable with Bernoulli distribution of parameter p, where $p \in(0,1)$.
(c) Find a function $f:[0,1] \rightarrow \mathbb{R}$ such that $f(U)$ is a random variable with exponential distribution of parameter $\lambda>0$.
(d) Let $0<p<q<1$. Construct a random vector (X, Y) such that X has distribution Bernoulli with parameter p, Y has distribution Bernoulli with parameter q and $X \leq Y$ almost surely.
(e) Let $0<\lambda_{1}<\lambda_{2}$. Construct a random vector (X, Y) such that X has exponential distribution with parameter λ_{1}, Y has exponential distribution with parameter λ_{2} and $X \geq Y$ almost surely.

Exercise list number 3 - Random vectores. Stochastic Independence.

Exercise 1:

Select a point uniformly in the unitary circle $\mathscr{C}=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. Let X and Y be the coordinates of the selected point.
(a) Determine the joint density of X and Y.
(b) Determine $\mathbb{P}(X<Y), \mathbb{P}(X>Y)$ and $\mathbb{P}(X=Y)$.
(c) What is probability of finding the point in the first quadrant? Justify.

Exercise 2:

Suppose that X and Y are random variables identically distributed with symmetric distribution around zero and with joint distribution given by

$X \backslash Y$	-1	0	\ldots
-1	\ldots	0	\ldots
0	0	\ldots	0
\ldots	θ	0	θ

(a) If $\mathbb{P}(X=-1)=2 / 5$, complete the table.
(b) Compute $\mathbb{E}[X], \mathbb{E}[Y]$ and $\operatorname{Var}(X)$.
(c) Are the random variables X and Y independent? Justify.
(d) Find the probability functions of the random variables $X+Y$ and $X Y$.

Justify if $X+Y$ and $X Y$ are symmetric random variables around zero.
(e) Represent the graph of the distribution function of the random variable $X+Y$.
(f) Explicit the measure μ_{X+Y}.
(g) Compute $\mu_{X+Y}(\{0\})$ and $\mu_{X+Y}((-\infty, 0])$.

Exercise 3:

Suppose that X and Y are random variables with joint distribution given by:

$X \backslash Y$	1	2	3
1	0	$1 / 5$	0
2	$1 / 5$	$1 / 5$	$1 / 5$
3	0	$1 / 5$	0

(a) Compute the marginal probability functions of X and Y.
(b) Compute $\mathbb{E}[X], \mathbb{E}[Y]$ and $\operatorname{Var}(X)$.
(c) Are the random variables X and Y independent? Justify.
(d) If Z and W are independent random variables, then $\mathbb{E}[Z W]=\mathbb{E}[Z] \mathbb{E}[W]$.

Is the opposite true? Prove or exhibit a counter example.
(e) Find the distribution function of X and represent its graph.
(f) Exhibit the distribution measure μ_{X} of X.
(g) Compute the distribution function of $X+Y$.
(h) Compute the distribution function of $X-Y$.

Exercise 4:

Suppose that X and Y are random variables with joint distribution given by:

$X \backslash Y$	1	0	-1
1	0	a	0
0	b	c	b
-1	0	a	0

where $a, b, c>0$.
(a) Compute the marginal probability functions of X and Y.

Justify that $2 a+2 b+c=1$.
(b) Compute $\mathbb{E}[X], \mathbb{E}[Y]$ and $\operatorname{Var}(X)$.
(c) Verify that the random variable $X Y$ is such that $X Y=0$ almost surely.
(d) Are the random variables X and Y independent? Justify.
(e) If Z and W are independent random variables, then $\mathbb{E}[Z W]=\mathbb{E}[Z] \mathbb{E}[W]$.

Is the opposite true? Prove or exhibit a counter example.
(f) Take $c=1 / 4$ and a, b such that $a=2 b$.
$\left(f_{1}\right)$ Find the distribution function of X and represent its graph.
$\left(f_{2}\right) \quad$ Exhibit the distribution measure μ_{X} of X.

Exercise 5:

Let X be a random variable such that $X \sim \mathscr{U}[0,1]$. Compute the distribution of $Y=-\log (X)$.

Exercise 6:

Let X and Y be i.i.d. random variables with $X \sim \mathscr{U}[0,1]$. Compute the distribution of $Z=X / Y$.

Exercise 7:

Let X and Y have joint density given by $f(x, y)$. Show that

$$
f_{X+Y}(u)=\int_{\mathbb{R}} f(u-t, t) d t
$$

Moreover, if X and Y are independent with densities f_{X} and f_{Y}, respectively, then

$$
f_{X+Y}(u)=\int_{\mathbb{R}} f_{X}(t) f_{Y}(u-t) d t .
$$

Exercise 8:

Let X be a r.v. with density $f(x)=\frac{1}{4} e^{-|x| / 2}$, for $x \in \mathbb{R}$. Compute the distribution of $Y=|X|$.

Exercise 9:

Show that the function

$$
F(x, y)=\left\{\begin{array}{rr}
1-e^{-(x+y)}, & x \geq 0 \\
0, & \text { and } y \geq 0 \\
\text { otherwise }
\end{array}\right.
$$

is not the distribution function of a random vector.

Exercise 10:

Show that the function

$$
F(x, y)=\left\{\begin{array}{rr}
\left(1-e^{-x}\right)\left(1-e^{-y}\right), & x \geq 0 \\
0, & \text { and } y \geq 0 \\
\text { otherwise }
\end{array}\right.
$$

is the distribution function of a random vector.

Exercise 11:

Let X and Y be i.i.d. random variables with uniform distribution on $[\theta-1 / 2, \theta+1 / 2]$, with $\theta \in \mathbb{R}$. Compute the distribution of $X-Y$.

Exercise 12:

Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. random variables with Rayleigh distribution with parameter θ, that is, the density of X_{1} is given by

$$
f(x)=\left\{\begin{array}{rr}
\frac{x}{\theta^{2}} e^{-\frac{x^{2}}{2 \theta^{2}},} & x>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

(a) Compute the joint density of Y_{1}, \ldots, Y_{n}, where for each $i=1, \ldots, n$ it holds that $Y_{i}=X_{i}^{2}$.
(b) Compute the distribution of $U=\min _{1 \leq i \leq n} X_{i}$.
(c) Compute the distribution of $Z=X_{1} / X_{2}$.

Exercise 13:
Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables with exponential distribution with parameter $\alpha_{1}, \ldots, \alpha_{n}$, respectively.
(a) Compute the distribution of $Y=\min _{1 \leq i \leq n} X_{i}$ and $Z=\max _{1 \leq i \leq n} X_{i}$.
(b) Show that for each $p=1, \ldots, n$ it holds that

$$
\mathbb{P}\left(X_{p}=\min _{1 \leq i \leq n} X_{i}\right)=\frac{\alpha_{p}}{\alpha_{1}+\cdots+\alpha_{n}} .
$$

(Hint: Consider the event $\left\{X_{p}<\min _{i \neq p} X_{i}\right\}$).

Exercise 14:

Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables with distribution functions $F_{1}, F_{2}, \cdots, F_{n}$ respectively. Find the distribution functions of the random variables $\min _{1 \leq i \leq n} X_{i}$ and $\max _{1 \leq i \leq n} X_{i}$.

Exercise 15:

Let X and Y be independent random variables each assuming the values 1 and -1 with probability $1 / 2$. Show that $\{X, Y, X Y\}$ are pairwise independent but not totally independent.

Exercise list number 4 - Mathematical Expectation.

Exercise 1:

In each case, compute $\mathbb{E}(X)$ and $\operatorname{Var}(X)$, if they exist:
(a) If X has probability function given on $k \in\{0,1\}$ by $\mathbb{P}(X=k)=p^{k}(1-p)^{1-k}$.

That is X has Bernoulli distribution of parameter p.
(b) If X has probability function given on $k \in\{0, \cdots, n\}$ by $\mathbb{P}(X=k)=C_{k}^{n} p^{k}(1-p)^{n-k}$.

That is X has Binomial distribution of parameter n and p.
(c) If X has probability function given on $k \in\{0,1, \cdots\}$ by $\mathbb{P}(X=k)=\frac{e^{-\alpha} \alpha^{k}}{k!}, \alpha>0$.

That is X has Poisson distribution of parameter α.
(d) If X has probability function given on $k \in\{0,1, \cdots\}$ by $\mathbb{P}(X=k)=p(1-p)^{k}$.

That is X has Geometric distribution of parameter p.
(e) If X has probability density function given by $f(x)=\alpha e^{-\alpha x} \mathbf{1}_{[0,+\infty)}(x)$, with $\alpha>0$.

That is X has Exponential distribution with parameter α.
(f) If X has probability density function given by $f(x)=\frac{1}{b-a} \mathbf{1}_{[a, b]}(x)$ for $a, b \in \mathbb{R}$ with $a<b$. That is X has Uniform distribution in $[a, b]$.
(g) If X has probability density function given by $f(x)=\frac{1}{\pi\left(1+x^{2}\right)}, x \in \mathbb{R}$.

That is X has Cauchy distribution.
(h) If X has probability density function given by $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}, x \in \mathbb{R}$.

That is X has Normal distribution.

Exercise 2:

Prove that:
(a) For any random variable X with distribution function F_{X}, it holds that

$$
\mathbb{E}[X]=\int_{0}^{+\infty} 1-F_{X}(x) d x-\int_{-\infty}^{0} F_{X}(x) d x
$$

(b) and for any $k \in \mathbb{N}$

$$
\mathbb{E}\left[X^{k}\right]=k \int_{0}^{+\infty}\left(1-F_{X}(x)\right) x^{k-1} d x-k \int_{-\infty}^{0} F_{X}(x) x^{k-1} d x .
$$

(c) If X is non-negative, then

$$
\mathbb{E}[X]=\int_{0}^{+\infty} 1-F_{X}(x) d x
$$

(d) If X is discrete and takes non-negative integer values, then

$$
\mathbb{E}[X]=\sum_{n=1}^{+\infty} \mathbb{P}(X \geq n)
$$

(e) If X has Exponential distribution with parameter $\lambda>0$, then $\mathbb{E}\left[X^{k}\right]=k!/ \lambda^{k}$, for any $k \in \mathbb{N}$.
(f) Let X and Y be random variables, such that Y is stochastically dominated by X, that is for all $x \in \mathbb{R}$ it holds that $F_{X}(x) \leq F_{Y}(x)$. Show that $\mathbb{E}[X] \geq \mathbb{E}[Y]$, if both expectations exist.

Exercise 3:

Show that:
(a) if X is a constant random variable, then $\operatorname{Var}(X)=0$.
(b) if $a \in \mathbb{R}$ then $\operatorname{Var}(X+a)=\operatorname{Var}(X)$.
(c) if $a, b \in \mathbb{R}$ then $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$.

Exercise 4:

Prove:
(a) Basic Tchebychev's inequality:

If X is a non-negative random variable (that is $X \geq 0$), then for all $\lambda>0$: $P(X \geq \lambda) \leq \frac{1}{\lambda} \mathbb{E}(X)$.
(b) Classical Tchebychev's inequality:

If X is an integrable random variable, then for all $\lambda>0: \mathbb{P}(|X-\mathbb{E}(X)| \geq \lambda) \leq \frac{1}{\lambda^{2}} \operatorname{Var}(X)$.
(b) Markov's inequality:

If X is a random variable, then for all $t>0$ and $\lambda>0: \mathbb{P}(|X| \geq \lambda) \leq \frac{1}{\lambda^{t}} \mathbb{E}\left(|X|^{t}\right)$.

Exercise 5:

(a) Let X be a non-negative random variable, that is $X \geq 0$, such that $\mathbb{E}(X)=0$.

Show that $\mathbb{P}(X=0)=1$, that is, $X=0$ almost surely.
(b) Let X be a random variable independent of itself.

Show that X is constant with probability 1 (that is, there exists a constant c such that $\mathbb{P}(X=c)=$ 1).

Exercise 6:

Let X_{1}, \cdots, X_{n} be integrable random variables, such that for $i \neq j$,

$$
\operatorname{Cov}\left(X_{i}, X_{j}\right):=\mathbb{E}\left[X_{i} X_{j}\right]-\mathbb{E}\left[X_{i}\right] \mathbb{E}\left[X_{j}\right]=0
$$

Show that

$$
\operatorname{Var}\left(X_{1}+\cdots+X_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{n}\right) .
$$

Exercise 7:

Let X_{1}, \cdots, X_{n} be independent random variables with distribution function $F_{X_{1}}, \cdots, F_{X_{n}}$, respectively.
(a) Find the distribution function of $\max _{1 \leq j \leq n} X_{j}$ and $\min _{1 \leq j \leq n} X_{j}$.
(b) Suppose that the random variables are identically distributed with finite mean. Show that

$$
\lim _{n \rightarrow+\infty} \frac{1}{n} \mathbb{E}\left[\max _{1 \leq j \leq n}\left|X_{j}\right|\right]=0
$$

Exercise 8:

Let X and Y be random variables defined on a probability space (Ω, \mathscr{F}, P), both with finite expectation. Show that
(a) $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$.
(b) if X and Y are independent, then $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$.

Exercise 9:

Let (X, Y) be a random vector with density function given by
$f_{X, Y}(x, y)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \exp \left\{\frac{-1}{2\left(1-\rho^{2}\right)}\left[\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)+\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}\right]\right\}$.
(a) Find the marginal distributions of X and Y.
(b) Assume that X and Y are independent. Compute the distribution of $X+Y$.
(c) Show that X and Y are independent if and only if $\rho=0$.

Exercise 10:

Let X and Y be random variables taking only the values 0 and 1 . Show that, if $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$ then X and Y are independent.

Exercise 11:

Let X and Y be random variables with finite variance. Show that, if $\operatorname{Var}(X) \neq \operatorname{Var}(Y)$ then $X+Y$ and $X-Y$ are not independent.

Exercise 12:

Let X and Y be i.i.d. random variables with Uniform distribution in [0,1]. Compute the expectation of $\min (X, Y)$ and $\max (X, Y)$.

Exercise 13:

Prove Wald's equation, that is, show that $\mathbb{E}\left[S_{t}\right]=E\left[\mathbb{N}_{t}\right] \mathbb{E}\left[X_{1}\right]$, where $S(t)$ is a compound stochastic process, or else, $S(t):=\sum_{i=1}^{N_{t}} X_{i}$, where N_{t} is a counting process (i.e. N_{t} takes values in \mathbb{N}) and $\left\{X_{i}\right\}_{i \geq 1}$ is a sequence of i.i.d. random variables and independent of N_{t} for all t.

Exercise 14:

Let X be a random variable and $F_{X}(\cdot)$ its distribution function. Prove that, for any $a \geq 0$, we have

$$
\int_{\mathbb{R}}\left(F_{X}(x+a)-F_{X}(x)\right) d x=a .
$$

Exercise 15:
Show that if $\operatorname{Cov}(X, Y)=\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}$, then there exist constants a and b such that

$$
\mathbb{P}(Y=a X+b)=1
$$

Exercise list number 5 - Convergence of sequences of random variables.

Exercise 1:

Let $\left(\mathscr{E}_{n}\right)_{n \geq 1}$ be random events on a probability space (Ω, \mathscr{F}, P). Show that

$$
\mathbb{P}\left(\mathscr{E}_{n}\right) \xrightarrow[n \rightarrow+\infty]{ } 0 \Leftrightarrow \mathbf{1}_{\mathcal{E}_{n}} \xrightarrow[n \rightarrow+\infty]{ } 0, \quad \text { in probability }
$$

Exercise 2:

Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of random variables.
Show that if $\mathbb{E}\left(X_{n}\right) \xrightarrow[n \rightarrow+\infty]{ } \alpha$ and $\operatorname{Var}\left(X_{n}\right) \xrightarrow[n \rightarrow+\infty]{ } 0$, then $X_{n} \xrightarrow[n \rightarrow+\infty]{ } \alpha$, in probability.

Exercise 3:

(a) Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of random variables such that for each $n \geq 1$ it holds that

$$
\mathbb{P}\left(X_{n}=1\right)=1 / n \quad \text { and } \quad \mathbb{P}\left(X_{n}=0\right)=1-1 / n .
$$

Show that

$$
X_{n} \xrightarrow[n \rightarrow+\infty]{ } 0, \quad \text { in probability }
$$

(b) Now suppose that for each $n \geq 1$ we have that $\mathbb{P}\left(X_{n}=1\right)=p_{n}$ and $\mathbb{P}\left(X_{n}=0\right)=1-p_{n}$, and suppose that $\left(X_{n}\right)_{n \geq 1}$ are independent. Show that:
(1) $X_{n} \xrightarrow[n \rightarrow+\infty]{ } 0$, in probability $\Leftrightarrow p_{n} \xrightarrow[n \rightarrow+\infty]{ } 0$.
(2) $X_{n} \xrightarrow[n \rightarrow+\infty]{ } 0$, in $\mathbb{L}^{p} \Leftrightarrow p_{n} \xrightarrow[n \rightarrow+\infty]{ } 0$.
(3) $\quad X_{n} \xrightarrow[n \rightarrow+\infty]{ } 0$, almost everywhere $\Leftrightarrow \sum_{n \geq 1} p_{n}<+\infty$.
(c) Justify if in (a) the sequence $\left(X_{n}\right)_{n \geq 1}$ converges almost everywhere to 0 .

Exercise 4:

Prove the Tchebychev's weak law:
Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of random variables pairwise independent, with finite variance and uniformly bounded, i.e. there exists a constant $c<+\infty$ such that $\operatorname{Var}\left(X_{n}\right) \leq c$ for all $n \geq 1$. Then,

$$
\frac{S_{n}-\mathbb{E}\left(S_{n}\right)}{n} \rightarrow_{n \rightarrow+\infty} 0, \quad \text { in probability }
$$

where $S_{n}=\sum_{j=1}^{n} X_{j}$ is the sequence of the partial sums of $\left(X_{n}\right)_{n \geq 1}$.

Exercise 5:

Prove the Bernoulli's Law of Large Numbers:
Consider a sequence of independent Binomial experiments, with the same probability p of success in each experiment. Let S_{n} be the number of successes in the first n experiments. Then,

$$
\frac{S_{n}}{n} \rightarrow_{n \rightarrow+\infty} p, \quad \text { in probability. }
$$

Exercise 6:

Consider a sequence of independent Binomial experiments with probability p_{n} of success in the n-th trial. For $n \geq 1$, let $X_{n}=1$ if the n-trial is a success, and $X_{n}=0$ otherwise. Show that
(a) If $\sum_{n \geq 1} p_{n}=+\infty$, then $\mathbb{P}\left(\sum_{n \geq 1} X_{n}=+\infty\right)=1$, (there are an infinite number of successes a.e.).
(b) If $\sum_{n \geq 1} p_{n}<+\infty$, then $\mathbb{P}\left(\sum_{n \geq 1} X_{n}<\infty\right)=1$, (there are a finite number of successes a.e.).

Exercise 7:

Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of independent random variables such that for each $n \geq 1$ it holds that

$$
\mathbb{P}\left(X_{n}=e^{n}\right)=\frac{1}{n+1} \quad \text { and } \quad \mathbb{P}\left(X_{n}=0\right)=1-\frac{1}{n+1} .
$$

Analyze the convergence of $\left(X_{n}\right)_{n \geq 1}$ to $X=0$ in the case of
(a) convergence in probability.
(b) convergence in \mathbb{L}^{p}, for $p>0$.
(c) convergence almost everywhere.
(d) convergence in distribution.

Exercise 8:

Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of independent random variables such that for each $n \geq 1$ it holds that

$$
\mathbb{P}\left(X_{n}=1\right)=\frac{1}{2^{n}} \quad \text { and } \quad \mathbb{P}\left(X_{n}=0\right)=1-\frac{1}{2^{n}} .
$$

Show that $X_{n} \xrightarrow[n \rightarrow+\infty]{ } 0$,
(a) in probability.
(b) in \mathbb{L}^{p}, for $p>0$.
(c) almost everywhere.
(d) in distribution.

Exercise 9:

Let X and Y be random variables defined on a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. The covariance between X and Y is defined by

$$
\operatorname{Cov}(X, Y):=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y] .
$$

Let X_{1}, \cdots, X_{n} be uncorrelated random variables, i.e. such that $\operatorname{Cov}\left(X_{i}, X_{j}\right)=0$, for $i \neq j$, with $\mathbb{E}\left[X_{i}\right]=$ μ and $\operatorname{Var}\left(X_{i}\right) \leq C<+\infty$, for all $i \geq 1$, where C is a constant. If $S_{n}:=X_{1}+\cdots+X_{n}$, show that
(a) $\mathbb{E}\left[S_{n}\right]=n \mu$ and $\operatorname{Cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]$.
(b) $\operatorname{Var}\left(S_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)$.
(c) $\frac{S_{n}}{n} \xrightarrow[n \rightarrow+\infty]{ } \mu$, in \mathbb{L}^{2} and in probability.

Exercise 10:

Let $\left(X_{n}\right)_{n \geq 2}$ be a sequence of independent and identically distributed random variables such that X_{1} has exponential distribution with parameter 1. For each $n \geq 2$ let $Y_{n}=X_{n} / \log (n)$. Analyze the convergence of $\left(Y_{n}\right)_{n \geq 2}$ to $Y=0$ in the case of
(a) convergence in probability.
(b) convergence in \mathbb{L}^{1}.
(c) convergence almost everywhere.
(d) convergence in distribution.

Exercise 11:

Let $X_{1}, X_{2}, X_{3} \ldots$ be independent random variables with $X_{n} \sim \mathscr{U}\left[0, a_{n}\right]$, with $a_{n}>0$. Show that
(a) If $a_{n}=n^{2}$, then, with probability 1 , only a finite number of X_{n} takes values less than 1 .
(b) If $a_{n}=n$, then, with probability 1 , an infinite number of X_{n} takes values less than 1 .

Exercise 12:

Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of i.i.d. random variables such that $X_{1} \sim \mathscr{U}[0,1]$. Show that $n^{-X_{n}}$ converges to 0 in probability but it does not converge to 0 almost surely.

Exercise 13:

Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of random variables such that for $n \in \mathbb{N}$ it holds that

$$
\mathbb{P}\left(X_{n}=n^{2}\right)=1 / n^{2} \quad \text { and } \quad \mathbb{P}\left(X_{n}=0\right)=1-1 / n^{2} .
$$

Show that X_{n} converges almost surely (find the limit X) but $\mathbb{E}\left[X_{n}^{m}\right]$ does not converge to $\mathbb{E}\left[X^{m}\right]$, for all $m \in \mathbb{N}$.

Exercise 14:

Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of i.i.d. random variables such that $X_{1} \sim \mathscr{U}[0,1]$. Find the limit in probability of $\left(\prod_{k=1}^{n} X_{k}\right)^{1 / n}$.

Exercise 15:

Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of i.i.d. random variables such that $\mathbb{E}\left[X_{1}\right]=1$ and $\operatorname{Var}\left(X_{1}\right)=1$. Show that

$$
\frac{\sum_{k=1}^{n} X_{k}}{\sqrt{n \sum_{k=1}^{n} X_{k}^{2}}} \rightarrow_{n \rightarrow+\infty} 1 / \sqrt{2}
$$

in probability.

Exercise 16:

Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of independent random variables such that $\mathbb{E}\left[X_{n}\right]=0$ and $\mathbb{E}\left[X_{n}^{2}\right]=1$ for all $n \in \mathbb{N}$. Let $S_{n}:=X_{1}+\cdots+X_{n}$ and for all $x \in \mathbb{R}$ let $\varphi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} d y$. If $\mathbb{P}\left(S_{n} \leq \sqrt{n} x\right) \rightarrow$ $\varphi(x)$ for all $x \in \mathbb{R}$, show that $\limsup _{n \rightarrow+\infty} \frac{S_{n}}{\sqrt{n}}=+\infty$ almost everywhere.

Exercise 17:

Show that if X_{n} converges to X in probability, as $n \rightarrow+\infty$, and if $g: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function, then $g\left(X_{n}\right)$ converges to $g(X)$ in probability, as $n \rightarrow+\infty$.

Exercise 18:

Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of independent random variables with distribution function F_{n}. Prove that, $\mathbb{P}\left(\lim _{n} X_{n}=0\right)=1$ if and only if $\forall \varepsilon>0$,

$$
\sum_{n \geq 1}\left\{1-F_{n}(\varepsilon)+F_{n}\left(-\varepsilon^{-}\right)\right\}<+\infty .
$$

Exercise 19:

If $\sum_{n \geq 1} \mathbb{P}\left(\left|X_{n}\right|>n\right)<\infty$, then $\limsup _{n} \frac{\left|X_{n}\right|}{n} \leq 1$ almost everywhere.

Exercise 20:

(a) Let X and Y be independent random variables with laws $X \sim \operatorname{Poisson}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poisson}\left(\lambda_{2}\right)$. What is the law of $X+Y$?
(b) Let Z be a random variable with law Poisson(λ), and let ξ_{1}, ξ_{2}, \ldots be i.i.d. Bernoulli(p) random variables, independent of Z. Define $X:=\sum_{j=1}^{Z} \xi_{i}$. Show that X has law Poisson $(p \lambda)$.

Remark: Item (b) is know as the Poisson coloring theorem. You can think you have a Poisson number of balls, and color each ball either red (with probability p) or blue (with probability $1-p$), independently. Then the number of red balls is also Poisson distributed. This is one of the basic results in the theory of Poisson Point Process.

Exercise 21:

(a) Let X be a random variable with law $\operatorname{Exp}(\lambda)$, and let $t, s>0$. Prove that

$$
\mathbb{P}(X>t+s \mid X>s)=P(X>t) .
$$

This property is called "lack of memory of the exponential distribution".
(b) Let Y_{n} be a geometric random variable with success probability $\frac{\lambda}{n}$ (assume n large enough, so that $\frac{\lambda}{n}<1$). Show that $\frac{Y_{n}}{n}$ converges weakly to an $\operatorname{Exp}(\lambda)$ distribution.

Teoria da probabilidade - 2017/2018

Exercise list number 6 - Characteristic functions.

Exercise 1:

Compute the characteristic function of each one of the following random variables:
(a) $\quad X$ such that $\mathbb{P}(X=a)=1$ and $\mathbb{P}(X \neq a)=0$.
(b) $\quad X$ such that $\mathbb{P}(X=1)=1 / 2$ and $\mathbb{P}(X=-1)=1 / 2$.
(c) X with Bernoulli distribution with parameter p.
(d) X with Binomial distribution with parameter n and p.
(e) X with Geometric distribution with parameter p.
(f) X with Poisson distribution with parameter λ.
(g) X with exponential distribution with parameter λ.
(h) X with uniform distribution on $[-a, a]$, with $a>0$.
(i) X with triangular distribution on $[-a, a]$, with $a>0$.
(j) X with Gaussian distribution with mean μ and variance σ^{2}.

Exercise 2:

(a) Show that for X and Y independent random variables it holds that $\varphi_{X+Y}=\varphi_{X} \varphi_{Y}$.
(b) Show that if φ is a characteristic function, then $|\varphi|^{2}$ is also a characteristic function.

Exercise 3:

Let φ be a characteristic function. Show that $\psi(t)=e^{\lambda(\varphi(t)-1)}$ with $\lambda>0$ is also a characteristic function.
Suggestion: Let N, X_{1}, X_{2}, \cdots be independent random variables with $N \sim \operatorname{Poisson}(\lambda)$ and $\left(X_{n}\right)_{n \geq 1}$ identically distributed with $\varphi_{X_{n}}=\varphi$ for all $n \geq 1$. Let $Y:=S_{N}$, with $S_{n}=X_{1}+\cdots+X_{n}$. Then $\varphi_{Y}=\psi$.

Exercise 4:

Let φ_{X} be a characteristic function of a random variable X with Binomial distribution with parameter n and p. Find φ_{X} and $\mathbb{E}[X]$ and verify that $i^{-1} \varphi_{X}^{\prime}(0)=\mathbb{E}[X]=n p$.

Exercise 5:

Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of random variables with Uniform distribution $\mathscr{U}[-n, n]$. Find φ such that

$$
\varphi_{n}(t) \underset{n \rightarrow+\infty}{\longrightarrow} \varphi(t)
$$

for all $t \in \mathbb{R}$ where for each $n \geq 1, \varphi_{n}$ is the characteristic function of X_{n}. Verify if φ is a characteristic function.

Exercise 6:

(a) Show that if $Y:=a X+b$ for $a, b \in \mathbb{R}$ and $a \neq 0$ then $\varphi_{Y}(t):=e^{i t b} \varphi_{X}(a t)$.
(b) Is $\varphi(t):=\mathbf{1}_{[0, \infty)}(t)$ a characteristic function? Justify.
(c) Is $\varphi(t):=t \mathbf{1}_{[0,1]}(t)+\mathbf{1}_{[1, \infty)}(t)$ a characteristic function? Justify.
(d) Show that X is a symmetric if and only if its characteristic function φ_{X}, takes values in \mathbb{R}.
(e) Let $\varphi(t)=\frac{1+\cos (3 t)}{2}$. Find X such that φ is its characteristic function.

Teoria da probabilidade - 2017/2018

Exercise 7:

(a) Using characteristic functions show that if X and Y are independent and identically distributed random variables and if $X \sim \mathscr{N}(0,1)$ then $X+Y \sim \mathscr{N}(0,2)$.
(b) Obtain the previous result using convolutions. Justify.
(c) Compute the 3 -rd centered moment of the random variable $X+Y$, i.e. compute $\mathbb{E}\left[(X+Y)^{3}\right]$. Suggestion: use characteristic functions.
(d) Let X_{1}, \cdots, X_{n} be independent and identically distributed random variables such that $X_{1} \sim$ $\mathscr{N}(0,1)$. Using characteristic functions, show that

$$
\frac{S_{n}}{n} \xrightarrow[n \rightarrow+\infty]{ } 0
$$

in probability, where $S_{n}:=X_{1}+\cdots+X_{n}$.

Exercise 8:

Let X_{1}, \cdots, X_{n} be independent random variables with Poisson distribution with parameter $\lambda_{1}, \cdots, \lambda_{n}$, respectively, where $\lambda_{i}>0$, for all $i \geq 1$.
(a) Verify that $\mathbb{E}\left[X_{1}\right]=\lambda_{1}$.
(b) Compute the characteristic function $\varphi_{X_{1}}$ of X_{1}.
(c) Verify that $d_{t} \log \left(\varphi_{X_{1}}(t)\right)=\lambda_{1} i e^{i t}$ and conclude that $i^{-1} \varphi_{X_{1}}^{\prime}(0)=\mathbb{E}\left[X_{1}\right]$.
(d) Compute the characteristic function of $S_{n}=X_{1}+\cdots+X_{n}$.

Exercise 9:

(a) Let X be a constant random variable and let φ_{X} be its characteristic function.

Show that $\left|\varphi_{X}(t)\right|^{2}=1$ for all $t \in \mathbb{R}$.
(b) Let X be a random variable independent of itself. Show that X is constant a.e.
(c) Let X be a symmetric random variable that takes only two values θ and $-\theta$, with $\theta>0$. Show that there is no $\theta \in \mathbb{R}$ such that $\varphi_{X}(t)=1$ for all $t \in \mathbb{R}$ where φ_{X} denotes the characteristic function of X. Show that $\varphi_{X}^{\prime \prime}(0)=-\theta^{2}$. Conclude that $\operatorname{Var}(X)=\theta^{2}$.

Exercise 10:

Find the distribution of the random variable $X+Y+Z$, knowing that X, Y and Z are independent and identically distributed random variables and such that X has Bernoulli distribution with parameter p, i.e. X induces the measure $\mu_{X}:=p \delta_{\{1\}}+(1-p) \delta_{\{0\}}$.
Solve the exercise in two different ways: using the convolution and characteristic functions.

Exercise 11:

(a) Let X be a symmetric random variable that takes the values $a \neq b \neq c$.

Knowing that $\mathbb{P}(X=0)=1 / 5$, compute φ_{X} i.e. the characteristic function of X.
(b) Verify that there is no $a \in \mathbb{R}$ such that $\varphi_{X}(t)=1$ for all $t \in \mathbb{R}$.
(c) Compute $\varphi_{X}^{\prime}(t)$ and verify that $i^{-1} \varphi_{X}^{\prime}(0)=\mathbb{E}[X]$.
(d) Find a such that $\varphi_{X}^{\prime \prime}(0)=-1$. Conclude that $\operatorname{Var}(X)=1$.

Exercise 12:

Justify if $\varphi(t):=\frac{e^{i t a}+1}{2}$ is the characteristic functions of a symmetric random variable?
Find the random variable whose characteristic function is φ.

Exercise 13:

Find the distribution of the random variable $X+Y$, knowing that X has Poisson distribution of parameter λ_{1} and Y is independent of X and has Poisson distribution of parameter λ_{2}. Solve in two different ways: using the convolution and characteristic functions.

Exercise 14:

Let X and Y be independent and identically distributed random variables such that X induces the measure $\mu_{X}:=p \delta_{\{1\}}+q \delta_{\{-1\}}$ where $p+q=1$.
(a) Compute the characteristic function of X.
(b) Show that X is symmetric if and only if $p=1 / 2$.
(c) Take $p=1 / 2$. Let φ_{X+Y} be the characteristic function of the random variable $X+Y$. Verify that $\varphi_{X+Y}(t):=\cos ^{2}(t)$, for all $t \in \mathbb{R}$.
(d) Using the convolution, determine the distribution function of the random variable $X+Y$. Show that $X+Y$ is symmetric if and only if $p=1 / 2$. In this case, compute again the characteristic function of the random variable $X+Y$ and conclude that for all $t \in \mathbb{R}$

$$
\cos ^{2}(t):=\frac{1+\cos (2 t)}{2}
$$

Exercise 15:

Let X and Y be independent and identically distributed random variables with $X \sim \mathscr{N}(0,1)$.
(a) Using characteristic functions and the convolution, show that $X+Y \sim \mathscr{N}(0,2)$.
(b) Show, using characteristic functions, that if $Z:=\sigma X+\mu$ then $Z \sim \mathscr{N}\left(\mu, \sigma^{2}\right)$.
(c) Let φ_{Z} be the characteristic function of Z. Compute $\left|\varphi_{Z}\right|^{2}$ and verify that $\left|\varphi_{Z}\right|^{2} \leq 1$. Is the random variable Z symmetric?
(d) Show that $i^{-1} \varphi_{Z}^{\prime}(0):=\mu$ and that $-\varphi_{Z}^{\prime \prime}(0)=\mu^{2}+\sigma^{2}$. Conclude that $\operatorname{Var}(Z)=\sigma^{2}$.

Exercise 16:

(a) Let X be a random variable with exponential distribution with parameter $a>0$. Compute $\varphi_{X}^{\prime}(t)$, where φ_{X} is the characteristic function of X and verify that $i^{-1} \varphi_{X}^{\prime}(0)=\mathbb{E}[X]$.
(b) Find a such that $\varphi_{X}^{\prime \prime}(0)=-1 / 8$. Compute $\operatorname{Var}(X)$.

Exercise 17:

(a) Find the random variable X such that $\varphi(t):=\cos (t)$ is its characteristic function. Justify.
(b) Show that a symmetric random variable has all its odd moments equal to zero.
(c) Is $\varphi(t):=\mathbf{1}_{[-1,1]}(t)$ a characteristic function?
(d) Justify if $\varphi(t):=\frac{e^{i t}+1}{2}$ is the characteristic function of a symmetric random variable? Find the random variable whose characteristic function is φ. Compute $|\varphi|^{2}$.

Exercise 18:

Using characteristic functions, show that for $g: \mathbb{R} \rightarrow \mathbb{R}$ a continuous function, if

$$
X_{n} \xrightarrow[n \rightarrow+\infty]{ } X \text {, weakly }
$$

then

$$
g\left(X_{n}\right) \xrightarrow[n \rightarrow+\infty]{ } g(X), \quad \text { weakly }
$$

Exercise 19:

Using characteristic functions prove Slutsky's Theorem:
Let $\left(X_{n}\right)_{n \geq 1}$ and $\left(Y_{n}\right)_{n \geq 1}$ be two sequences of random variables and let X be a random variable. Suppose that

$$
X_{n} \xrightarrow[n \rightarrow+\infty]{ } X \text {, weakly and } Y_{n} \xrightarrow[n \rightarrow+\infty]{ } c \text {, in probability, }
$$

where c is a constant. Then
(a)

$$
X_{n}+Y_{n} \xrightarrow[n \rightarrow+\infty]{ } X+c \text {, weakly. }
$$

(b)

$$
X_{n}-Y_{n} \xrightarrow[n \rightarrow+\infty]{ } X-c \text {, weakly. }
$$

(c)

$$
X_{n} Y_{n} \xrightarrow[n \rightarrow+\infty]{ } X c \text {, weakly }
$$

(d) if $c \neq 0$ and $\mathbb{P}\left(Y_{n} \neq 0\right)=1$, for all $n \geq 1$, then $\frac{X_{n}}{Y_{n}} \xrightarrow[n \rightarrow+\infty]{ } \frac{X}{c}$, weakly.

Exercise 20:

Show, using characteristic functions that if $\left(X_{n}\right)_{n \geq 1}$ is a sequence of i.i.d.r.v. with $\mathbb{E}\left(X_{1}\right)=\mu<\infty$, then $\frac{S_{n}}{n} \xrightarrow[n \rightarrow+\infty]{ } \mu$, in probability, where $S_{n}=\sum_{j=1}^{n} X_{j}$.

Exercise 21:

(a) Show, using characteristic functions that if $X \sim B(m, p)$ and $Y \sim B(n, p)$, and if X and Y are independent then $X+Y \sim B(n+m, p)$.
(b) Show that if X has standard Cauchy distribution, then $\varphi_{2 X}=\left(\varphi_{X}\right)^{2}$. Use (without showing) that

$$
\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{\cos (t x)}{1+x^{2}} d x=e^{-|t|}
$$

(c) It is true that if X and Y are independent random variables then $\varphi_{X+Y}=\varphi_{X} \varphi_{Y}$. And the reciprocal, is it true? Prove and present a counter-example.

Exercise 22:

(a) Let $\varphi(t)=\cos (a t)$ with $a>0$. Show that φ is a characteristic function.
(b) Let $\varphi(t)=\cos ^{2}(t)$. Find X such that φ is its characteristic function.

Exercise 23:

Let X and Y be i.i.d.r.v. with $\mathbb{E}(X)=0$ and $\operatorname{Var}(X)=1$. Show that if $X+Y$ and $X-Y$ are independent then $X, Y \sim \mathscr{N}(0,1)$.

Exercise list number 7 - Martingales.

Exercise 1: Show that:
(a) if $\left(X_{n}\right)_{n \geq 1}$ is a sequence of independent r.v. with $\mathbb{E}\left[X_{n}\right]=0$ for all $n \geq 1$, then $\left(S_{n}, \mathscr{F}_{n}\right)_{n \geq 1}$ where $S_{n}=\sum_{j=1}^{n} X_{j}$ and $\mathscr{F}_{n}=\sigma\left(X_{1}, \cdots, X_{n}\right)$ is a martingale
(b) if $\left(X_{n}\right)_{n \geq 1}$ is a sequence of independent r.v. with $\mathbb{E}\left[X_{n}\right]=1$ for all $n \geq 1$, then $\left(\tilde{X}_{n}, \mathscr{F}_{n}\right)_{n \geq 1}$ where $\tilde{X}_{n}=\prod_{j=1}^{n} X_{j}$ and $\mathscr{F}_{n}=\sigma\left(X_{1}, \cdots, X_{n}\right)$, is a martingale.
(c) given an integrable r.v. X, that is with $\mathbb{E}\left[\left|X_{n}\right|\right]<+\infty$ and a set of σ-algebras $\mathscr{F}_{0} \subseteq \mathscr{F}_{1} \subseteq \cdots \subseteq$ \mathscr{F}_{n}, then $\left(X_{n}, \mathscr{F}_{n}\right)_{n \geq 1}$ where $X_{n}=\mathbb{E}\left[X \mid \mathscr{F}_{n}\right]$ is a martingale.

Exercise 2: Show that:
(a) if $\left(X_{n}\right)_{n \geq 1}$ is a sequence of non-negative integrable r.v., then $\left(S_{n}, \mathscr{F}_{n}\right)_{n \geq 1}$ where $S_{n}=\sum_{j=1}^{n} X_{j}$ and $\mathscr{F}_{n}=\sigma\left(X_{1}, \cdots, X_{n}\right)$ is a submartingale.
(b) if $\left(X_{n}, \mathscr{F}_{n}\right)_{n \geq 1}$ i a martingale and $g: \mathbb{R} \rightarrow \mathbb{R}$ is a convex function with $\mathbb{E}\left[\left|g\left(X_{n}\right)\right|\right]<+\infty$ for all $n \geq 1$, then $\left(g\left(X_{n}\right), \mathscr{F}_{n}\right)_{n \geq 1}$ is a submartingale.

Exercise 3: Let $\left(X_{n}\right)_{n \geq 1}$ be i.i.d. r.v. with $\mathbb{P}\left(X_{1}=1\right)=p$ and $\mathbb{P}\left(X_{1}=-1\right)=q$ with $p+q=1$. If $p \neq q$, show that if $S_{n}=\sum_{j=1}^{n} X_{j}$ and $\mathscr{F}_{n}=\sigma\left(X_{1}, \cdots, X_{n}\right)$, then
(a) $\left(Y_{n}, \mathscr{F}_{n}\right)_{n \geq 1}$ is a martingale, where $Y_{n}=\left(\frac{q}{p}\right)^{S_{n}}$.
(b) $\left(Z_{n}, \mathscr{F}_{n}\right)_{n \geq 1}$ is a martingale, where $Z_{n}=S_{n}-n(p-q)$.

Exercise 4: Show that if $\left(X_{n}\right)_{n \geq 1}$ is a sequence of i.i.d. r.v. with $\mathbb{E}\left[X_{n}\right]=0$ and $\operatorname{Var}\left(X_{n}\right)=\sigma^{2}$ for all $n \geq 1$, then $\left(\mathscr{W}_{n}, \mathscr{F}_{n}\right)_{n \geq 1}$ is a martingale, where $\mathscr{F}_{n}=\sigma\left(X_{1}, \cdots, X_{n}\right)$ and
(a)

$$
\mathscr{W}_{n}=\left(\sum_{j=1}^{n} X_{j}\right)^{2}-n \sigma^{2}
$$

(b)

$$
\mathscr{W}_{n}=\frac{e^{\lambda \sum_{j=1}^{n} X_{j}}}{\left(E\left[e^{\lambda X_{1}}\right]\right)^{n}} .
$$

Exercise 5: Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of i.i.d. r.v. that take values on a finite set \mathscr{I}. For each $y \in$ \mathscr{I}, let $f_{0}(y)=\mathbb{P}\left(X_{1}=y\right)$ and let $f_{1}: \mathscr{I} \rightarrow[0,1]$ be a non-negative function such that $\sum_{y \in \mathscr{\mathscr { I }}} f_{1}(y)=1$. Show that $\left(\mathscr{W}_{n}, \mathscr{F}_{n}\right)_{n \geq 1}$ is a martingale, where $\mathscr{F}_{n}=\sigma\left(X_{1}, \cdots, X_{n}\right)$ and

$$
\mathscr{W}_{n}=\frac{f_{1}\left(X_{1}\right) \cdots f_{1}\left(X_{n}\right)}{f_{0}\left(X_{1}\right) \cdots f_{0}\left(X_{n}\right)} .
$$

The r.v. \mathscr{W}_{n} are known as likelihood ratios.

Exercise 6: Let $\left(X_{n}, \mathscr{F}_{n}\right)_{n \geq 1}$ be a martingale.
(a) Show that, for all $n<m$ it holds that $X_{n}=E\left[X_{m} \mid \mathscr{F}_{n}\right]$.
(b) Conclude that $\mathbb{E}\left[X_{1}\right]=\mathbb{E}\left[X_{n}\right]$ for all $n \geq 1$.
(c) For each $n \geq 2$ let $Y_{n}=X_{n}-X_{n-1}$ and take $Y_{1}=X_{1}$. We observe that Y_{n} is called the increment of the martingale. Show that $\mathbb{E}\left[Y_{n}\right]=0$ for all $n \geq 0$.
(d) Assume that $\mathbb{E}\left[X_{n}^{2}\right]<+\infty$ for all $n \geq 1$. Show that the increments of the martingale are non correlated.
(e) Show that $\operatorname{Var}\left(X_{n}\right)=\sum_{j=1}^{n} \operatorname{Var}\left(Y_{j}\right)$.

Exercise 7: Let $\left(X_{n}, \mathscr{F}_{n}\right)_{n \geq 1}$ and $\left(Y_{n}, \mathscr{F}_{n}\right)_{n \geq 1}$ be two martingales with $X_{1}=Y_{1}=0$. Show that

$$
\mathbb{E}\left[X_{n} Y_{n}\right]=\sum_{k=2}^{n} \mathbb{E}\left[\left(X_{k}-X_{k-1}\right)\left(Y_{k}-Y_{k-1}\right)\right]
$$

Exercise 8: Let $\left(X_{n}, \mathscr{F}_{n}\right)_{n \geq 1}$ be a martingale (or submartingale) and τ a Markov time (with respect to \mathscr{F}_{n}). Then, the stopping time

$$
X^{\tau}=\left(X_{\min \{n, \tau\}}, \mathscr{F}_{n}\right)
$$

is also a martingale (or a submartingale).

Exercise 9:

(a) Prove Wald's equality. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of integrable i.i.d. r.v. and let τ be a stopping time with respect to $\mathscr{F}_{n}=\sigma\left(X_{1}, \cdots, X_{n}\right)$ and $\mathbb{E}[\tau]<\infty$. Then, $\mathbb{E}\left[X_{1}+\cdots+X_{\tau}\right]=\mathbb{E}\left[X_{1}\right] \mathbb{E}[\tau]$.
(b) Analyze the case in which $\mathbb{P}\left(X_{1}=1\right)=1 / 2=\mathbb{P}\left(X_{1}=-1\right)$ and $\tau=\inf \left\{n \geq 1: X_{1}+\cdots+X_{\tau}=1\right\}$. What do you conclude about $\mathbb{E}[\tau]$?

Exercise 10: Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of i.i.d.r.v. such that $\mathbb{P}\left(X_{1}=1\right)=p=1-\mathbb{P}\left(X_{1}=-1\right)$. Interpret $X_{n}=1$ as a success and $X_{n}=-1$ as the lost of a player in its n-th play. Assume that the player can win or lose in the n-th play the amount V_{n} (so that V_{n} is the amount of the bet in the n-th play). The total amount of the player at the n-th play is given by $Y_{n}=\sum_{i=1}^{n} X_{i} V_{i}$. Assume that V_{i} is predictable with respect to $\mathscr{F}_{n}=\sigma\left(X_{1}, \cdots, X_{n}\right)$.
a) Verify in which conditions the game is fair, favorable or unfavorable. In each case, verify if $\left(Y_{n}, \mathscr{F}_{n}\right)_{n}$ is a martingale, sub-martingale or supermartingale.
b) Now consider the following strategy $V_{1}=1$ and $V_{n}=2^{n-1} \mathbf{1}_{\left\{X_{1}=-1, \cdots, X_{n-1}=-1\right\}}$. Say by words what means that strategy. Is $\left(V_{n}\right)_{n}$ predictable with respect to \mathscr{F}_{n} ? Let $\tau=\inf \left\{n \geq 1: Y_{n}=1\right\}$. Take $p=1 / 2$, compute the probability function of τ and express $\mathbb{P}(\tau<\infty)$. Compute $\mathbb{E}\left[Y_{\tau}\right]$. What can you say about the game?

