

Exercise list number 1 - σ -algebras and probability measures

Exercise 1:

Show that, if \mathscr{A} and \mathscr{B} are two σ -algebras, then $\mathscr{A} \cap \mathscr{B}$ is also a σ -algebra.

Exercise 2:

Let $\Omega := \{\omega_1, \omega_2, \omega_3\}$ be a sample space.

- 1. Exhibit all the σ -algebras of Ω .
- 2. Compute $\sigma(\{\omega_1\})$. Check that it is a σ -algebra.

Exercise 3:

Recall that, for a topological space *S* the Borel σ -algebra $\mathscr{B}(S)$ is generated by the family of open subsets of *S*. Prove that the Borel σ -algebra of \mathbb{R} is generated by $\pi(\mathbb{R}) = \{(-\infty, x] : x \in \mathbb{R}\}$.

Exercise 4:

Let *X* be a random variable defined on a sample space Ω . Compute $\sigma(X)$, that is the σ -algebra generated by *X*, when

- 1. $\Omega := \{\omega_1, \omega_2, \omega_3\}$ and $X(\omega_1) = X(\omega_2) = X(\omega_3) = 1$.
- 2. $\Omega := \{\omega_1, \omega_2, \omega_3\}$ and $X(\omega_1) = 0, X(\omega_2) = 1$ and $X(\omega_3) = 2$.
- 3. $\Omega := \{\omega_1, \omega_2, \omega_3\}$ and $X(\omega_1) = 0, X(\omega_2) = 0$ and $X(\omega_3) = 1$.
- 4. $\Omega := \{\omega_1, \omega_2, \omega_3, \omega_4\}$ and $X(\omega_1) = 0, X(\omega_2) = 0, X(\omega_3) = 1$ and $X(\omega_4) = 2$.

Exercise 5:

Let Ω be a sample space, \mathscr{F} be a σ -algebra of subsets of Ω . Assume that $\mu(\cdot)$ is a set map defined on Ω satisfying the following conditions:

- 1. $\forall E \in \mathscr{F}, \mu(E) \geq 0;$
- 2. If $\{E_i\}_{i\geq 1}$ is a countable collection of disjoint sets in \mathscr{F} , then

$$\mu\Big(\bigcup_{j\geq 1}E_j\Big)=\sum_{j\geq 1}\mu(E_j);$$

3. $\mu(\Omega) = 1$.

Prove that

- 1. $\forall E \in \mathscr{F}, \mu(E) \leq 1;$
- 2. $\forall E \in \mathscr{F}, \mu(\emptyset) = 0;$
- 3. $\forall E \in \mathscr{F}, \mu(E) = 1 \mu(E^c);$
- 4. $\forall E, F \in \mathscr{F}, \mu(E \bigcup F) + \mu(E \bigcap F) = \mu(E) + \mu(F);$

- 5. $\forall E, F \in \mathscr{F}$ such that $E \subseteq F$, $\mu(E) = \mu(F) \mu(F \setminus E) \le \mu(F)$;
- 6. Let $\{E_j\}_{j\geq 1}$ be an increasing (decreasing) sequence of sets in \mathscr{F} that is $E_j \subseteq E_{j+1}$ $(E_j \supseteq E_{j+1})$ for all $j \ge 1$. Prove that, if $\{E_j\}_{j\geq 1}$ is an increasing (decreasing) sequence of sets in \mathscr{F} such that $E_j \uparrow E$ $(E_j \downarrow E)$, that is $E = \bigcup_{j\geq 1} E_j$ $(E = \bigcap_{j\geq 1} E_j)$, then $\lim_{j\to+\infty} \mu(E_j) = \mu(E)$;
- 7. (Boole's inequality): $\mu\left(\bigcup_{j\geq 1}E_j\right)\leq \sum_{j\geq 1}\mu(E_j)$.

Exercise 6:

Let $\{E_j\}_{j\geq 1}$ be random events belonging to \mathscr{F} , a σ -field of events of a sample space Ω . Let $\mu(\cdot)$ be a probability measure defined on \mathscr{F} . Show that for all $n \geq 1$

1.
$$\mu\left(\bigcap_{j=1}^{n} E_{j}\right) \geq 1 - \sum_{j=1}^{n} \mu(E_{j}^{c});$$

2. If $\mu(E_{j}) \geq 1 - \varepsilon$, for $j \in \{1, \dots, n\}$, then $\mu\left(\bigcap_{j=1}^{n} E_{j}\right) \geq 1 - n\varepsilon;$
3. $\mu\left(\bigcap_{j\geq 1} E_{j}\right) \geq 1 - \sum_{j\geq 1} \mu(E_{j}^{c});$

Exercise 7:

Prove the following properties:

Exercise 8:

Take $\{E_j\}_{j\geq 1}$ and $\{F_j\}_{j\geq 1}$ belonging to the same probability space $(\Omega, \mathscr{F}, \mu)$. Suppose that $\lim_{j\to+\infty} \mu(E_j) = 1$ and $\lim_{j\to+\infty} \mu(F_j) = p$, with $p \in [0,1]$. Show that $\lim_{j\to+\infty} \mu(E_j \cap F_j) = p$.

Exercise 9:

Let

$$\limsup_{n} E_{n} = \bigcap_{n \ge 1} \bigcup_{k \ge n} E_{k}, \tag{1}$$

$$\liminf_{n} E_n = \bigcup_{n \ge 1} \bigcap_{k \ge n} E_k.$$
⁽²⁾

If (2) and (1) are equal we write

$$\lim_{n} E_n = \liminf_{n} E_n = \limsup_{n} E_n.$$

Let $\{E_n\}_{n\geq 1}$ belong to a probability space $(\Omega, \mathscr{F}, \mu)$. Show that

1.

$$\mu\left(\liminf_{n} E_{n}\right) \leq \liminf_{n} \mu(E_{n}) \leq \limsup_{n} \mu(E_{n}) \leq \mu\left(\limsup_{n} E_{n}\right)$$

2. If $\lim_{n \to +\infty} E_n = E$, then $\lim_{n \to +\infty} \mu(E_n) = \mu(E)$.

Exercise list number 2 - Random variables and distribution functions

Exercise 1:

Specify the distribution function and the distribution measure of the random variable X.

(a) If *X* has probability function defined on $k \in \{0, 1\}$ and given by

$$\mathbb{P}(X=k) = p^k (1-p)^{1-k}$$

That is X has Bernoulli distribution of parameter p.

(b) If *X* has probability function defined in $k \in \{0, \dots, n\}$ and given by

$$\mathbb{P}(X=k) = C_k^n p^k (1-p)^{n-k}.$$

That is X has Binomial distribution of parameter n and p.

(c) If *X* has probability function defined in $k \in \{0, 1, \dots\}$ and given by

$$\mathbb{P}(X=k)=\frac{e^{-\alpha}\alpha^k}{k!},$$

 $\alpha > 0$. That is *X* has Poisson distribution of parameter α .

(d) If *X* has probability function defined in $k \in \{0, 1, \dots\}$ and given by

$$\mathbb{P}(X=k)=p(1-p)^k.$$

That is X has Geometric distribution of parameter p.

(e) If *X* has probability density function given by

$$f(x) = \alpha e^{-\alpha x} \mathbf{1}_{[0,+\infty)}(x),$$

with $\alpha > 0$. That is *X* has Exponential distribution with parameter α .

(f) If *X* has probability density function given by

$$f(x) = \frac{1}{b-a} \mathbf{1}_{[a,b]}(x)$$

for $a, b \in \mathbb{R}$ with a < b. That is *X* has Uniform distribution in [a, b].

(g) If *X* has probability density function given by

$$f(x) = \frac{1}{\pi(1+x^2)},$$

 $x \in \mathbb{R}$. That is *X* has Cauchy distribution.

(h) If *X* has probability density function given by

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2},$$

 $x \in \mathbb{R}$. That is *X* has Gaussian distribution.

Exercise 2:

Let $\sigma > 0$. Let X be a r.v. with probability density function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}}$.

(a) Prove that $f(\cdot)$ is indeed a probability density function. How does the graph of f look like when σ is very small?

(b) Compute $\mathbb{E}[X]$ and $\mathbb{E}[X^2]$.

Exercise 3:

Let *X* be a random variable with probability density function given by $f(x) = cx^2 \mathbf{1}_{[-1,1]}(x)$.

- (a) Determine the value of the constant *c*.
- (b) Exhibit the distribution function $F_X(\cdot)$ and find x_1 such that $F_X(x_1) = 1/4$.

Exercise 4:

Let *X* be a random variable with distribution function given by $F_X(x) = x^3 \mathbf{1}_{[0,1]}(x) + \mathbf{1}_{(1,\infty]}(x)$.

- (a) Find the probability density function of *X*.
- (b) Prove that it is indeed a probability density function.

Exercise 5:

A random variable *X* is said to be symmetric around μ if $\mathbb{P}(X \ge \mu + x) = \mathbb{P}(X \le \mu - x)$ for all $x \in \mathbb{R}$. If $\mu = 0$ we simply say that *X* is symmetric.

Let *X* be a random variable symmetric around the point $b \in \mathbb{R}$ and suppose that *X* takes the values *a*, *b* and 2b-a, with a < 0 and b > 0.

(a) Show that $\mathbb{E}[X] = b$.

(b) Suppose that $\mathbb{E}[X] = 1$, a = -1, Var(X) = 3 and determine the distribution function of *X* and its induced measure μ_X .

(c) Compute $\mu_X((-\infty, -1])$, $\mu_X((-\infty, 3/2])$ and $\mu_X(\{1\})$.

Exercise 6:

Let *X* be a symmetric random variable that takes the values $a \neq b \neq c$. Suppose that $\mathbb{P}(X = 0) = 1/5$. Give the results in terms of $a \neq 0$.

- (a) Exhibit the distribution function and the distribution measure of *X*.
- (b) Compute $\mathbb{E}[X]$ and Var(X).

Exercise 7:

Let *X* be a random variable with probability density function $f_X(\cdot)$ and for b > 0 and $c \in \mathbb{R}$ let Y = bX + c.

(a) Prove that the probability density function of *Y* is given by $f_Y(y) = \frac{1}{h} f_X(\frac{y-c}{h})$.

(b) Let *X* be a random variable with Cauchy distribution.

Compute the probability density function of Y = bX + M, where b > 0 and $M \in \mathbb{R}$.

(c) Let *X* be a random variable with standard Normal distribution. Compute the probability density function of $Y = \sigma X + \mu$, where $\sigma > 0$ and $\mu \in \mathbb{R}$.

(d) Let *X* be a random variable with Gamma distribution with parameter α and 1.

Compute the probability density function of $Y = \frac{X}{\beta}$. What is the distribution of *Y* when $\alpha = 1$?

Exercise 8:

Let *X* be a random variable with density function given by $f(x) = (1+x)^{-2} \mathbf{1}_{(0,+\infty)}(x)$. Let $Y = \max(X, c)$, where *c* is a positive constant c > 0.

- (a) Show that $f(\cdot)$ is a probability density function.
- (b) Exhibit the distribution function of X and Y. Justify that F_X is in fact a distribution function.
- (c) Decompose $F_{Y}(\cdot)$ in its discrete, absolutely continuous and singular parts.
- (d) Compute $\mathbb{E}[X]$ and $\mathbb{E}[Y]$.

Exercise 9:

Let *X* be a random variable uniformly distributed on the interval [0,1]. Let *Y* be the random variable defined as Y = min(1/2, X).

- (a) Determine the distribution function of *X* and *Y* and represent their graph.
- (b) Decompose $F_{Y}(\cdot)$ in its discrete, absolutely continuous and singular parts.
- (c) Compute $\mathbb{E}[X]$ and $\mathbb{E}[Y]$.

Exercise 10:

Let *X* be a random variable with exponential distribution with parameter $\lambda > 0$. Let $Y = \max(X, \lambda)$.

- (a) Determine the distribution function of *X* and *Y* and represent their graph.
- (b) Decompose $F_Y(\cdot)$ in its discrete, absolutely continuous and singular parts.

Exercise 11:

Let *X* be a random variable uniformly distributed on [0,2].

Let *Y* be the random variable defined by Y = min(1, X).

- (a) Determine the distribution functions of *X* and *Y* and represent their graph.
- (b) Decompose $F_{Y}(\cdot)$ in its discrete, absolutely continuous and singular parts.

Exercise 12:

Let *X* be a random variable with Cantor distribution:

- (b) Justify that *X* is a singular random variable.
- (c) Compute $\mathbb{P}(X = \frac{1}{3})$. Justify.
- (d) Compute $\mathbb{P}\left(\frac{1}{3} < X < \frac{2}{3}\right)$, $\mathbb{P}(X \le \frac{2}{3})$ and $\mathbb{P}\left(\frac{1}{9} < X \le \frac{8}{9}\right)$.
- (e) Compute $\mathbb{E}[X]$. Justify.

Exercise 13: Let *U* be a random variable uniformly distributed in [0,1].

(a) Find a function $f : [0,1] \to \mathbb{R}$ such that f(U) is a random variable uniform in [0,2].

(b) Find a function $f : [0,1] \rightarrow \mathbb{R}$ such that f(U) is a random variable with Bernoulli distribution of parameter p, where $p \in (0,1)$.

(c) Find a function $f : [0,1] \to \mathbb{R}$ such that f(U) is a random variable with exponential distribution of parameter $\lambda > 0$.

(d) Let 0 . Construct a random vector (*X*,*Y*) such that*X*has distribution Bernoulli with parameter*p*,*Y*has distribution Bernoulli with parameter*q* $and <math>X \le Y$ almost surely.

(e) Let $0 < \lambda_1 < \lambda_2$. Construct a random vector (*X*, *Y*) such that *X* has exponential distribution with parameter λ_1 , *Y* has exponential distribution with parameter λ_2 and $X \ge Y$ almost surely.

Exercise list number 3 - Random vectores. Stochastic Independence.

Exercise 1:

Select a point uniformly in the unitary circle $\mathscr{C} = \{(x, y) : x^2 + y^2 \le 1\}$. Let *X* and *Y* be the coordinates of the selected point.

- (a) Determine the joint density of *X* and *Y*.
- (b) Determine $\mathbb{P}(X < Y)$, $\mathbb{P}(X > Y)$ and $\mathbb{P}(X = Y)$.
- (c) What is probability of finding the point in the first quadrant? Justify.

Exercise 2:

Suppose that *X* and *Y* are random variables identically distributed with symmetric distribution around zero and with joint distribution given by

- (a) If $\mathbb{P}(X = -1) = 2/5$, complete the table.
- (b) Compute $\mathbb{E}[X]$, $\mathbb{E}[Y]$ and Var(X).
- (c) Are the random variables X and Y independent? Justify.
- (d) Find the probability functions of the random variables X + Y and XY. Justify if X + Y and XY are symmetric random variables around zero.
- (e) Represent the graph of the distribution function of the random variable X + Y.
- (f) Explicit the measure μ_{X+Y} .
- (g) Compute $\mu_{X+Y}(\{0\})$ and $\mu_{X+Y}((-\infty, 0])$.

Exercise 3:

Suppose that *X* and *Y* are random variables with joint distribution given by:

$$\begin{array}{ccccccc} X \setminus Y & 1 & 2 & 3 \\ 1 & 0 & 1/5 & 0 \\ 2 & 1/5 & 1/5 & 1/5 \\ 3 & 0 & 1/5 & 0 \end{array}$$

- (a) Compute the marginal probability functions of *X* and *Y*.
- (b) Compute $\mathbb{E}[X]$, $\mathbb{E}[Y]$ and Var(X).
- (c) Are the random variables *X* and *Y* independent? Justify.
- (d) If *Z* and *W* are independent random variables, then $\mathbb{E}[ZW] = \mathbb{E}[Z]\mathbb{E}[W]$. Is the opposite true? Prove or exhibit a counter example.
- (e) Find the distribution function of *X* and represent its graph.
- (f) Exhibit the distribution measure μ_X of *X*.
- (g) Compute the distribution function of X + Y.
- (h) Compute the distribution function of X Y.

Exercise 4:

Suppose that X and Y are random variables with joint distribution given by:

$X \setminus Y$	1	0	-1
1	0	а	0
0	b	c	Ь
-1	0	а	0

where a, b, c > 0.

- (a) Compute the marginal probability functions of *X* and *Y*. Justify that 2a + 2b + c = 1.
- (b) Compute $\mathbb{E}[X]$, $\mathbb{E}[Y]$ and Var(X).
- (c) Verify that the random variable XY is such that XY = 0 almost surely.
- (d) Are the random variables *X* and *Y* independent? Justify.
- (e) If *Z* and *W* are independent random variables, then E[*ZW*] = E[*Z*]E[*W*]. Is the opposite true? Prove or exhibit a counter example.
- (f) Take c = 1/4 and a, b such that a = 2b.
 - (f_1) Find the distribution function of *X* and represent its graph.
 - (f_2) Exhibit the distribution measure μ_X of *X*.

Exercise 5:

Let *X* be a random variable such that $X \sim \mathcal{U}[0,1]$. Compute the distribution of $Y = -\log(X)$.

Exercise 6:

Let *X* and *Y* be i.i.d. random variables with $X \sim \mathcal{U}[0,1]$. Compute the distribution of Z = X/Y.

Exercise 7:

Let *X* and *Y* have joint density given by f(x, y). Show that

$$f_{X+Y}(u) = \int_{\mathbb{R}} f(u-t,t)dt.$$

Moreover, if *X* and *Y* are independent with densities f_X and f_Y , respectively, then

$$f_{X+Y}(u) = \int_{\mathbb{R}} f_X(t) f_Y(u-t) dt.$$

Exercise 8:

Let *X* be a r.v. with density $f(x) = \frac{1}{4}e^{-|x|/2}$, for $x \in \mathbb{R}$. Compute the distribution of Y = |X|.

Exercise 9:

Show that the function

$$F(x,y) = \begin{cases} 1 - e^{-(x+y)}, & x \ge 0 \text{ and } y \ge 0\\ 0, & \text{otherwise} \end{cases}$$

is not the distribution function of a random vector.

Exercise 10:

Show that the function

$$F(x,y) = \begin{cases} (1-e^{-x})(1-e^{-y}), & x \ge 0 \text{ and } y \ge 0\\ 0, & \text{otherwise} \end{cases}$$

is the distribution function of a random vector.

Exercise 11:

Let *X* and *Y* be i.i.d. random variables with uniform distribution on $[\theta - 1/2, \theta + 1/2]$, with $\theta \in \mathbb{R}$. Compute the distribution of *X*−*Y*.

Exercise 12:

Let $X_1, X_2, ..., X_n$ be i.i.d. random variables with Rayleigh distribution with parameter θ , that is, the density of X_1 is given by

$$f(x) = \begin{cases} \frac{x}{\theta^2} e^{-\frac{x^2}{2\theta^2}}, & x > 0\\ 0, & \text{otherwise} \end{cases}$$

- (a) Compute the joint density of Y_1, \ldots, Y_n , where for each $i = 1, \ldots, n$ it holds that $Y_i = X_i^2$.
- (b) Compute the distribution of $U = \min_{1 \le i \le n} X_i$.
- (c) Compute the distribution of $Z = X_1/X_2$.

Exercise 13:

Let $X_1, X_2, ..., X_n$ be independent random variables with exponential distribution with parameter $\alpha_1, ..., \alpha_n$, respectively.

- (a) Compute the distribution of $Y = \min_{1 \le i \le n} X_i$ and $Z = \max_{1 \le i \le n} X_i$.
- (b) Show that for each p = 1, ..., n it holds that

$$\mathbb{P}(X_p = \min_{1 \le i \le n} X_i) = \frac{\alpha_p}{\alpha_1 + \dots + \alpha_n}.$$

(Hint: Consider the event $\{X_p < \min_{i \neq p} X_i\}$).

Exercise 14:

Let $X_1, X_2, ..., X_n$ be independent random variables with distribution functions $F_1, F_2, ..., F_n$ respectively. Find the distribution functions of the random variables $\min_{1 \le i \le n} X_i$ and $\max_{1 \le i \le n} X_i$.

Exercise 15:

Let *X* and *Y* be independent random variables each assuming the values 1 and -1 with probability 1/2. Show that {*X*, *Y*, *XY*} are pairwise independent but not totally independent.

Exercise list number 4 - Mathematical Expectation.

Exercise 1:

In each case, compute $\mathbb{E}(X)$ and Var(X), if they exist:

(a) If *X* has probability function given on $k \in \{0, 1\}$ by $\mathbb{P}(X = k) = p^k (1-p)^{1-k}$. That is *X* has Bernoulli distribution of parameter *p*.

(b) If *X* has probability function given on $k \in \{0, \dots, n\}$ by $\mathbb{P}(X = k) = C_k^n p^k (1-p)^{n-k}$. That is *X* has Binomial distribution of parameter *n* and *p*.

(c) If *X* has probability function given on $k \in \{0, 1, \dots\}$ by $\mathbb{P}(X = k) = \frac{e^{-\alpha}\alpha^k}{k!}$, $\alpha > 0$. That is *X* has Poisson distribution of parameter α .

(d) If *X* has probability function given on $k \in \{0, 1, \dots\}$ by $\mathbb{P}(X = k) = p(1-p)^k$. That is *X* has Geometric distribution of parameter *p*.

(e) If *X* has probability density function given by $f(x) = \alpha e^{-\alpha x} \mathbf{1}_{[0,+\infty)}(x)$, with $\alpha > 0$. That is *X* has Exponential distribution with parameter α .

(f) If *X* has probability density function given by $f(x) = \frac{1}{b-a} \mathbf{1}_{[a,b]}(x)$ for $a, b \in \mathbb{R}$ with a < b. That is *X* has Uniform distribution in [a, b].

(g) If *X* has probability density function given by $f(x) = \frac{1}{\pi(1+x^2)}, x \in \mathbb{R}$. That is *X* has Cauchy distribution.

(h) If *X* has probability density function given by $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$, $x \in \mathbb{R}$. That is *X* has Normal distribution.

Exercise 2:

Prove that:

(a) For any random variable X with distribution function F_X , it holds that

$$\mathbb{E}[X] = \int_0^{+\infty} 1 - F_X(x) dx - \int_{-\infty}^0 F_X(x) dx$$

(b) and for any $k \in \mathbb{N}$

$$\mathbb{E}[X^{k}] = k \int_{0}^{+\infty} (1 - F_{X}(x)) x^{k-1} dx - k \int_{-\infty}^{0} F_{X}(x) x^{k-1} dx.$$

(c) If *X* is non-negative, then

$$\mathbb{E}[X] = \int_0^{+\infty} 1 - F_X(x) dx.$$

(d) If *X* is discrete and takes non-negative integer values, then

$$\mathbb{E}[X] = \sum_{n=1}^{+\infty} \mathbb{P}(X \ge n).$$

(e) If *X* has Exponential distribution with parameter $\lambda > 0$, then $\mathbb{E}[X^k] = k!/\lambda^k$, for any $k \in \mathbb{N}$.

(f) Let *X* and *Y* be random variables, such that *Y* is stochastically dominated by *X*, that is for all $x \in \mathbb{R}$ it holds that $F_X(x) \leq F_Y(x)$. Show that $\mathbb{E}[X] \geq \mathbb{E}[Y]$, if both expectations exist.

Exercise 3:

Show that:

- (a) if X is a constant random variable, then Var(X) = 0.
- (b) if $a \in \mathbb{R}$ then Var(X+a) = Var(X).

(c) if $a, b \in \mathbb{R}$ then $Var(aX+b) = a^2 Var(X)$.

Exercise 4:

Prove:

(a) Basic Tchebychev's inequality:

If *X* is a non-negative random variable (that is $X \ge 0$), then for all $\lambda > 0$: $P(X \ge \lambda) \le \frac{1}{\lambda} \mathbb{E}(X)$.

(b) Classical Tchebychev's inequality:

If *X* is an integrable random variable, then for all $\lambda > 0$: $\mathbb{P}(|X - \mathbb{E}(X)| \ge \lambda) \le \frac{1}{\lambda^2} Var(X)$.

(b) Markov's inequality:

If *X* is a random variable, then for all t > 0 and $\lambda > 0$: $\mathbb{P}(|X| \ge \lambda) \le \frac{1}{\lambda^t} \mathbb{E}(|X|^t)$.

Exercise 5:

(a) Let *X* be a non-negative random variable, that is $X \ge 0$, such that $\mathbb{E}(X) = 0$. Show that $\mathbb{P}(X = 0) = 1$, that is, X = 0 almost surely.

(b) Let *X* be a random variable independent of itself.

Show that *X* is constant with probability 1 (that is, there exists a constant *c* such that $\mathbb{P}(X = c) = 1$).

Exercise 6:

Let X_1, \dots, X_n be integrable random variables, such that for $i \neq j$,

$$Cov(X_i, X_j) := \mathbb{E}[X_i X_j] - \mathbb{E}[X_i] \mathbb{E}[X_j] = 0.$$

Show that

$$Var(X_1 + \dots + X_n) = Var(X_1) + \dots + Var(X_n).$$

Exercise 7:

Let X_1, \dots, X_n be independent random variables with distribution function F_{X_1}, \dots, F_{X_n} , respectively.

- (a) Find the distribution function of $\max_{1 \le j \le n} X_j$ and $\min_{1 \le j \le n} X_j$.
- (b) Suppose that the random variables are identically distributed with finite mean. Show that

$$\lim_{n\to+\infty}\frac{1}{n}\mathbb{E}\Big[\max_{1\leq j\leq n}|X_j|\Big]=0.$$

Exercise 8:

Let *X* and *Y* be random variables defined on a probability space (Ω, \mathcal{F}, P) , both with finite expectation. Show that

- (a) $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y].$
- (b) if *X* and *Y* are independent, then $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$.

Exercise 9:

Let (X, Y) be a random vector with density function given by

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{\frac{-1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - 2\rho\left(\frac{x-\mu_1}{\sigma_1}\right)\left(\frac{y-\mu_2}{\sigma_2}\right) + \left(\frac{y-\mu_2}{\sigma_2}\right)^2\right]\right\}.$$

- (a) Find the marginal distributions of *X* and *Y*.
- (b) Assume that *X* and *Y* are independent. Compute the distribution of X + Y.
- (c) Show that *X* and *Y* are independent if and only if $\rho = 0$.

Exercise 10:

Let *X* and *Y* be random variables taking only the values 0 and 1. Show that, if $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$ then *X* and *Y* are independent.

Exercise 11:

Let *X* and *Y* be random variables with finite variance. Show that, if $Var(X) \neq Var(Y)$ then X + Y and X - Y are not independent.

Exercise 12:

Let *X* and *Y* be i.i.d. random variables with Uniform distribution in [0,1]. Compute the expectation of min(*X*,*Y*) and max(*X*,*Y*).

Exercise 13:

Prove Wald's equation, that is, show that $\mathbb{E}[S_t] = E[\mathbb{N}_t]\mathbb{E}[X_1]$, where S(t) is a compound stochastic process, or else, $S(t) := \sum_{i=1}^{N_t} X_i$, where N_t is a counting process (i.e. N_t takes values in \mathbb{N}) and $\{X_i\}_{i\geq 1}$ is a sequence of i.i.d. random variables and independent of N_t for all t.

Exercise 14:

Let *X* be a random variable and $F_X(\cdot)$ its distribution function. Prove that, for any $a \ge 0$, we have

$$\int_{\mathbb{R}} \Big(F_X(x+a) - F_X(x) \Big) dx = a.$$

Exercise 15:

Show that if $Cov(X,Y) = \sqrt{Var(X)}\sqrt{Var(Y)}$, then there exist constants *a* and *b* such that

 $\mathbb{P}(Y = aX + b) = 1.$

Exercise list number 5 - Convergence of sequences of random variables.

Exercise 1:

Let $(\mathscr{E}_n)_{n\geq 1}$ be random events on a probability space (Ω, \mathscr{F}, P) . Show that

$$\mathbb{P}(\mathscr{E}_n) \xrightarrow[n \to +\infty]{} 0 \Longleftrightarrow \mathbf{1}_{\mathscr{E}_n} \xrightarrow[n \to +\infty]{} 0, \quad \text{in probability.}$$

Exercise 2:

Let $(X_n)_{n\geq 1}$ be a sequence of random variables. Show that if $\mathbb{E}(X_n) \xrightarrow[n \to +\infty]{} \alpha$ and $Var(X_n) \xrightarrow[n \to +\infty]{} 0$, then $X_n \xrightarrow[n \to +\infty]{} \alpha$, in probability.

Exercise 3:

(a) Let $(X_n)_{n\geq 1}$ be a sequence of random variables such that for each $n\geq 1$ it holds that

$$\mathbb{P}(X_n = 1) = 1/n$$
 and $\mathbb{P}(X_n = 0) = 1 - 1/n$.

Show that

$$X_n \xrightarrow[n \to +\infty]{} 0$$
, in probability.

(b) Now suppose that for each $n \ge 1$ we have that $\mathbb{P}(X_n = 1) = p_n$ and $\mathbb{P}(X_n = 0) = 1 - p_n$, and suppose that $(X_n)_{n\geq 1}$ are independent. Show that:

(1)
$$X_n \xrightarrow[n \to +\infty]{} 0$$
, in probability $\Leftrightarrow p_n \xrightarrow[n \to +\infty]{} 0$.
(2) $X_n \xrightarrow[n \to +\infty]{} 0$, in $\mathbb{L}^p \Leftrightarrow p_n \xrightarrow[n \to +\infty]{} 0$.
(3) $X_n \xrightarrow[n \to +\infty]{} 0$, almost everywhere $\Leftrightarrow \sum_{n \ge 1} p_n < +\infty$.

(c) Justify if in (a) the sequence $(X_n)_{n\geq 1}$ converges almost everywhere to 0.

Exercise 4:

Prove the Tchebychev's weak law:

Let $(X_n)_{n\geq 1}$ be a sequence of random variables pairwise independent, with finite variance and uniformly bounded, i.e. there exists a constant $c < +\infty$ such that $Var(X_n) \le c$ for all $n \ge 1$. Then,

$$\frac{S_n - \mathbb{E}(S_n)}{n} \to_{n \to +\infty} 0, \quad \text{in probability,}$$

where $S_n = \sum_{j=1}^n X_j$ is the sequence of the partial sums of $(X_n)_{n \ge 1}$.

Exercise 5:

Prove the Bernoulli's Law of Large Numbers:

Consider a sequence of independent Binomial experiments, with the same probability p of success in each experiment. Let S_n be the number of successes in the first n experiments. Then,

$$\frac{S_n}{n} \to_{n \to +\infty} p$$
, in probability.

Exercise 6:

Consider a sequence of independent Binomial experiments with probability p_n of success in the *n*-th trial. For $n \ge 1$, let $X_n = 1$ if the *n*-trial is a success, and $X_n = 0$ otherwise. Show that

(a) If $\sum_{n\geq 1} p_n = +\infty$, then $\mathbb{P}(\sum_{n\geq 1} X_n = +\infty) = 1$, (there are an infinite number of successes a.e.).

(b) If $\sum_{n\geq 1} p_n < +\infty$, then $\mathbb{P}(\sum_{n\geq 1} X_n < \infty) = 1$, (there are a finite number of successes a.e.).

Exercise 7:

Let $(X_n)_{n\geq 1}$ be a sequence of independent random variables such that for each $n\geq 1$ it holds that

$$\mathbb{P}(X_n = e^n) = \frac{1}{n+1}$$
 and $\mathbb{P}(X_n = 0) = 1 - \frac{1}{n+1}$.

Analyze the convergence of $(X_n)_{n\geq 1}$ to X = 0 in the case of

- (a) convergence in probability.
- (b) convergence in \mathbb{L}^p , for p > 0.
- (c) convergence almost everywhere.
- (d) convergence in distribution.

Exercise 8:

Let $(X_n)_{n\geq 1}$ be a sequence of independent random variables such that for each $n\geq 1$ it holds that

$$\mathbb{P}(X_n = 1) = \frac{1}{2^n}$$
 and $\mathbb{P}(X_n = 0) = 1 - \frac{1}{2^n}$.

Show that $X_n \xrightarrow[n \to +\infty]{} 0$,

- (a) in probability.
- (b) in \mathbb{L}^p , for p > 0.
- (c) almost everywhere.
- (d) in distribution.

Exercise 9:

Let *X* and *Y* be random variables defined on a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. The covariance between *X* and *Y* is defined by

$$Cov(X,Y) := \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$$

Let X_1, \dots, X_n be uncorrelated random variables, i.e. such that $Cov(X_i, X_j) = 0$, for $i \neq j$, with $\mathbb{E}[X_i] = \mu$ and $Var(X_i) \leq C < +\infty$, for all $i \geq 1$, where *C* is a constant. If $S_n := X_1 + \dots + X_n$, show that

- (a) $\mathbb{E}[S_n] = n\mu$ and $Cov(X, Y) = \mathbb{E}[(X \mathbb{E}[X])(Y \mathbb{E}[Y])].$
- (b) $Var(S_n) = Var(X_1) + \dots + Var(X_n).$
- (c) $\frac{S_n}{n} \xrightarrow[n \to +\infty]{} \mu$, in \mathbb{L}^2 and in probability.

Exercise 10:

Let $(X_n)_{n\geq 2}$ be a sequence of independent and identically distributed random variables such that X_1 has exponential distribution with parameter 1. For each $n \geq 2$ let $Y_n = X_n / \log(n)$. Analyze the convergence of $(Y_n)_{n\geq 2}$ to Y = 0 in the case of

- (a) convergence in probability.
- (b) convergence in \mathbb{L}^1 .
- (c) convergence almost everywhere.
- (d) convergence in distribution.

Exercise 11:

Let X_1, X_2, X_3 ... be independent random variables with $X_n \sim \mathcal{U}[0, a_n]$, with $a_n > 0$. Show that

- (a) If $a_n = n^2$, then, with probability 1, only a finite number of X_n takes values less than 1.
- (b) If $a_n = n$, then, with probability 1, an infinite number of X_n takes values less than 1.

Exercise 12:

Let $(X_n)_{n\geq 1}$ be a sequence of i.i.d. random variables such that $X_1 \sim \mathcal{U}[0,1]$. Show that n^{-X_n} converges to 0 in probability but it does not converge to 0 almost surely.

Exercise 13:

Let $(X_n)_{n\geq 1}$ be a sequence of random variables such that for $n \in \mathbb{N}$ it holds that

$$\mathbb{P}(X_n = n^2) = 1/n^2$$
 and $\mathbb{P}(X_n = 0) = 1 - 1/n^2$.

Show that X_n converges almost surely (find the limit X) but $\mathbb{E}[X_n^m]$ does not converge to $\mathbb{E}[X^m]$, for all $m \in \mathbb{N}$.

Exercise 14:

Let $(X_n)_{n\geq 1}$ be a sequence of i.i.d. random variables such that $X_1 \sim \mathcal{U}[0,1]$. Find the limit in probability of $\left(\prod_{k=1}^n X_k\right)^{1/n}$.

Exercise 15:

Let $(X_n)_{n\geq 1}$ be a sequence of i.i.d. random variables such that $\mathbb{E}[X_1] = 1$ and $Var(X_1) = 1$. Show that

$$\frac{\sum_{k=1}^{n} X_k}{\sqrt{n \sum_{k=1}^{n} X_k^2}} \to_{n \to +\infty} 1/\sqrt{2}$$

in probability.

Exercise 16:

Let $(X_n)_{n\geq 1}$ be a sequence of independent random variables such that $\mathbb{E}[X_n] = 0$ and $\mathbb{E}[X_n^2] = 1$ for all $n \in \mathbb{N}$. Let $S_n := X_1 + \dots + X_n$ and for all $x \in \mathbb{R}$ let $\varphi(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy$. If $\mathbb{P}(S_n \le \sqrt{nx}) \to \varphi(x)$ for all $x \in \mathbb{R}$, show that $\limsup_{n \to +\infty} \frac{S_n}{\sqrt{n}} = +\infty$ almost everywhere.

Exercise 17:

Show that if X_n converges to X in probability, as $n \to +\infty$, and if $g : \mathbb{R} \to \mathbb{R}$ is a continuous function, then $g(X_n)$ converges to g(X) in probability, as $n \to +\infty$.

Exercise 18:

Let $(X_n)_{n\geq 1}$ be a sequence of independent random variables with distribution function F_n . Prove that, $\mathbb{P}(\lim_n X_n = 0) = 1$ if and only if $\forall \varepsilon > 0$,

$$\sum_{n\geq 1} \{1-F_n(\varepsilon)+F_n(-\varepsilon^-)\} < +\infty.$$

Exercise 19:

If $\sum_{n\geq 1} \mathbb{P}(|X_n| > n) < \infty$, then $\limsup_{n \to \infty} \frac{|X_n|}{n} \le 1$ almost everywhere.

Exercise 20:

(a) Let *X* and *Y* be independent random variables with laws *X* ~Poisson(λ_1) and *Y* ~Poisson(λ_2). What is the law of *X* + *Y*?

(b) Let *Z* be a random variable with law Poisson(λ), and let $\xi_1, \xi_2, ...$ be i.i.d. Bernoulli(*p*) random variables, independent of *Z*. Define $X := \sum_{j=1}^{Z} \xi_i$. Show that *X* has law Poisson($p\lambda$).

Remark: Item (b) is know as the *Poisson coloring theorem*. You can think you have a Poisson number of balls, and color each ball either red (with probability p) or blue (with probability 1-p), independently. Then the number of red balls is also Poisson distributed. This is one of the basic results in the theory of *Poisson Point Process*.

Exercise 21:

(a) Let *X* be a random variable with law $Exp(\lambda)$, and let t, s > 0. Prove that

$$\mathbb{P}(X > t + s | X > s) = P(X > t).$$

This property is called "lack of memory of the exponential distribution".

(b) Let Y_n be a geometric random variable with success probability $\frac{\lambda}{n}$ (assume *n* large enough, so that $\frac{\lambda}{n} < 1$). Show that $\frac{Y_n}{n}$ converges weakly to an $\text{Exp}(\lambda)$ distribution.

Exercise list number 6 - Characteristic functions.

Exercise 1:

Compute the characteristic function of each one of the following random variables:

- (a) X such that $\mathbb{P}(X = a) = 1$ and $\mathbb{P}(X \neq a) = 0$.
- (b) *X* such that $\mathbb{P}(X = 1) = 1/2$ and $\mathbb{P}(X = -1) = 1/2$.
- (c) *X* with Bernoulli distribution with parameter *p*.
- (d) *X* with Binomial distribution with parameter *n* and *p*.
- (e) *X* with Geometric distribution with parameter *p*.
- (f) *X* with Poisson distribution with parameter λ .
- (g) *X* with exponential distribution with parameter λ .
- (h) *X* with uniform distribution on [-a, a], with a > 0.
- (i) *X* with triangular distribution on [-a, a], with a > 0.
- (j) *X* with Gaussian distribution with mean μ and variance σ^2 .

Exercise 2:

- (a) Show that for *X* and *Y* independent random variables it holds that $\varphi_{X+Y} = \varphi_X \varphi_Y$.
- (b) Show that if φ is a characteristic function, then $|\varphi|^2$ is also a characteristic function.

Exercise 3:

Let φ be a characteristic function. Show that $\psi(t) = e^{\lambda(\varphi(t)-1)}$ with $\lambda > 0$ is also a characteristic function.

Suggestion: Let N, X_1, X_2, \cdots be independent random variables with $N \sim \text{Poisson}(\lambda)$ and $(X_n)_{n \ge 1}$ identically distributed with $\varphi_{X_n} = \varphi$ for all $n \ge 1$. Let $Y := S_N$, with $S_n = X_1 + \cdots + X_n$. Then $\varphi_Y = \psi$.

Exercise 4:

Let φ_X be a characteristic function of a random variable *X* with Binomial distribution with parameter *n* and *p*. Find φ_X and $\mathbb{E}[X]$ and verify that $i^{-1}\varphi'_X(0) = \mathbb{E}[X] = np$.

Exercise 5:

Let $(X_n)_{n\geq 1}$ be a sequence of random variables with Uniform distribution $\mathscr{U}[-n,n]$. Find φ such that

$$\varphi_n(t) \xrightarrow[n \to +\infty]{} \varphi(t),$$

for all $t \in \mathbb{R}$ where for each $n \ge 1$, φ_n is the characteristic function of X_n . Verify if φ is a characteristic function.

Exercise 6:

- (a) Show that if Y := aX + b for $a, b \in \mathbb{R}$ and $a \neq 0$ then $\varphi_Y(t) := e^{itb} \varphi_X(at)$.
- (b) Is $\varphi(t) := \mathbf{1}_{[0,\infty)}(t)$ a characteristic function? Justify.
- (c) Is $\varphi(t) := t \mathbf{1}_{[0,1]}(t) + \mathbf{1}_{[1,\infty)}(t)$ a characteristic function? Justify.
- (d) Show that *X* is a symmetric if and only if its characteristic function φ_X , takes values in \mathbb{R} .
- (e) Let $\varphi(t) = \frac{1 + \cos(3t)}{2}$. Find X such that φ is its characteristic function.

Exercise 7:

(a) Using characteristic functions show that if *X* and *Y* are independent and identically distributed random variables and if $X \sim \mathcal{N}(0, 1)$ then $X + Y \sim \mathcal{N}(0, 2)$.

(b) Obtain the previous result using convolutions. Justify.

(c) Compute the 3-rd centered moment of the random variable X + Y, i.e. compute $\mathbb{E}[(X + Y)^3]$. Suggestion: use characteristic functions.

(d) Let X_1, \dots, X_n be independent and identically distributed random variables such that $X_1 \sim \mathcal{N}(0, 1)$. Using characteristic functions, show that

$$\frac{S_n}{n} \xrightarrow[n \to +\infty]{} 0,$$

in **probability**, where $S_n := X_1 + \dots + X_n$.

Exercise 8:

Let X_1, \dots, X_n be independent random variables with Poisson distribution with parameter $\lambda_1, \dots, \lambda_n$, respectively, where $\lambda_i > 0$, for all $i \ge 1$.

- (a) Verify that $\mathbb{E}[X_1] = \lambda_1$.
- (b) Compute the characteristic function φ_{X_1} of X_1 .

(c) Verify that $d_t \log(\varphi_{X_1}(t)) = \lambda_1 i e^{it}$ and conclude that $i^{-1} \varphi'_{X_1}(0) = \mathbb{E}[X_1]$.

(d) Compute the characteristic function of $S_n = X_1 + \dots + X_n$.

Exercise 9:

(a) Let *X* be a constant random variable and let φ_X be its characteristic function. Show that $|\varphi_X(t)|^2 = 1$ for all $t \in \mathbb{R}$.

(b) Let *X* be a random variable independent of itself. Show that *X* is constant a.e.

(c) Let *X* be a symmetric random variable that takes only two values θ and $-\theta$, with $\theta > 0$. Show that there is no $\theta \in \mathbb{R}$ such that $\varphi_X(t) = 1$ for all $t \in \mathbb{R}$ where φ_X denotes the characteristic function of *X*. Show that $\varphi''_X(0) = -\theta^2$. Conclude that $Var(X) = \theta^2$.

Exercise 10:

Find the distribution of the random variable X + Y + Z, knowing that X, Y and Z are independent and identically distributed random variables and such that X has Bernoulli distribution with parameter p, i.e. X induces the measure $\mu_X := p\delta_{\{1\}} + (1-p)\delta_{\{0\}}$.

Solve the exercise in two different ways: using the convolution and characteristic functions.

Exercise 11:

(a) Let *X* be a symmetric random variable that takes the values $a \neq b \neq c$.

Knowing that $\mathbb{P}(X = 0) = 1/5$, compute φ_X i.e. the characteristic function of *X*.

- (b) Verify that there is no $a \in \mathbb{R}$ such that $\varphi_X(t) = 1$ for all $t \in \mathbb{R}$.
- (c) Compute $\varphi'_X(t)$ and verify that $i^{-1}\varphi'_X(0) = \mathbb{E}[X]$.
- (d) Find *a* such that $\varphi_X''(0) = -1$. Conclude that Var(X) = 1.

Exercise 12:

Justify if $\varphi(t) := \frac{e^{ita}+1}{2}$ is the characteristic functions of a symmetric random variable? Find the random variable whose characteristic function is φ .

Exercise 13:

Find the distribution of the random variable X + Y, knowing that X has Poisson distribution of parameter λ_1 and Y is independent of X and has Poisson distribution of parameter λ_2 . Solve in two different ways: using the convolution and characteristic functions.

Exercise 14:

Let *X* and *Y* be independent and identically distributed random variables such that *X* induces the measure $\mu_X := p \delta_{\{1\}} + q \delta_{\{-1\}}$ where p + q = 1.

- (a) Compute the characteristic function of *X*.
- (b) Show that *X* is symmetric if and only if p = 1/2.

(c) Take p = 1/2. Let φ_{X+Y} be the characteristic function of the random variable X + Y. Verify that $\varphi_{X+Y}(t) := \cos^2(t)$, for all $t \in \mathbb{R}$.

(d) Using the convolution, determine the distribution function of the random variable X + Y. Show that X + Y is symmetric if and only if p = 1/2. In this case, compute again the characteristic function of the random variable X + Y and conclude that for all $t \in \mathbb{R}$

$$\cos^2(t) := \frac{1 + \cos(2t)}{2}.$$

Exercise 15:

Let *X* and *Y* be independent and identically distributed random variables with $X \sim \mathcal{N}(0, 1)$.

- (a) Using characteristic functions and the convolution, show that $X + Y \sim \mathcal{N}(0,2)$.
- (b) Show, using characteristic functions, that if $Z := \sigma X + \mu$ then $Z \sim \mathcal{N}(\mu, \sigma^2)$.

(c) Let φ_Z be the characteristic function of *Z*. Compute $|\varphi_Z|^2$ and verify that $|\varphi_Z|^2 \le 1$. Is the random variable *Z* symmetric?

(d) Show that $i^{-1}\varphi'_Z(0) := \mu$ and that $-\varphi''_Z(0) = \mu^2 + \sigma^2$. Conclude that $Var(Z) = \sigma^2$.

Exercise 16:

(a) Let *X* be a random variable with exponential distribution with parameter a > 0. Compute $\varphi'_X(t)$, where φ_X is the characteristic function of *X* and verify that $i^{-1}\varphi'_X(0) = \mathbb{E}[X]$.

(b) Find *a* such that $\varphi_X''(0) = -1/8$. Compute Var(X).

Exercise 17:

- (a) Find the random variable X such that $\varphi(t) := \cos(t)$ is its characteristic function. Justify.
- (b) Show that a symmetric random variable has all its odd moments equal to zero.

(c) Is $\varphi(t) := \mathbf{1}_{[-1,1]}(t)$ a characteristic function?

(d) Justify if $\varphi(t) := \frac{e^{it}+1}{2}$ is the characteristic function of a symmetric random variable? Find the random variable whose characteristic function is φ . Compute $|\varphi|^2$.

Exercise 18:

Using characteristic functions, show that for $g : \mathbb{R} \to \mathbb{R}$ a continuous function, if

$$X_n \xrightarrow[n \to +\infty]{} X$$
, weakly

then

$$g(X_n) \xrightarrow[n \to +\infty]{} g(X)$$
, weakly.

Exercise 19:

Using characteristic functions prove Slutsky's Theorem:

Let $(X_n)_{n\geq 1}$ and $(Y_n)_{n\geq 1}$ be two sequences of random variables and let *X* be a random variable. Suppose that

$$X_n \xrightarrow[n \to +\infty]{} X$$
, weakly and $Y_n \xrightarrow[n \to +\infty]{} c$, in probability,

where c is a constant. Then

(a)

$$X_n + Y_n \xrightarrow[n \to +\infty]{} X + c$$
, weakly

(b)

$$X_n - Y_n \xrightarrow[n \to +\infty]{} X - c$$
, weakly

(c)

$$X_n Y_n \xrightarrow[n \to +\infty]{} Xc$$
, weakly.

(d) if $c \neq 0$ and $\mathbb{P}(Y_n \neq 0) = 1$, for all $n \ge 1$, then $\frac{X_n}{Y_n} \xrightarrow{n \to +\infty} \frac{X}{c}$, weakly.

Exercise 20:

Show, using characteristic functions that if $(X_n)_{n\geq 1}$ is a sequence of i.i.d.r.v. with $\mathbb{E}(X_1) = \mu < \infty$, then $\frac{S_n}{n} \xrightarrow[n \to +\infty]{} \mu$, in probability, where $S_n = \sum_{j=1}^n X_j$.

Exercise 21:

(a) Show, using characteristic functions that if $X \sim B(m,p)$ and $Y \sim B(n,p)$, and if X and Y are independent then $X + Y \sim B(n+m,p)$.

(b) Show that if *X* has standard Cauchy distribution, then $\varphi_{2X} = (\varphi_X)^2$. Use (without showing) that

$$\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{\cos(tx)}{1+x^2} \, dx = e^{-|t|}.$$

(c) It is true that if *X* and *Y* are independent random variables then $\varphi_{X+Y} = \varphi_X \varphi_Y$. And the reciprocal, is it true? Prove and present a counter-example.

Exercise 22:

(a) Let $\varphi(t) = \cos(at)$ with a > 0. Show that φ is a characteristic function.

(b) Let $\varphi(t) = \cos^2(t)$. Find X such that φ is its characteristic function.

Exercise 23:

Let *X* and *Y* be i.i.d.r.v. with $\mathbb{E}(X) = 0$ and Var(X) = 1. Show that if X + Y and X - Y are independent then $X, Y \sim \mathcal{N}(0, 1)$.

Exercise list number 7 - Martingales.

Exercise 1: Show that:

(a) if $(X_n)_{n\geq 1}$ is a sequence of independent r.v. with $\mathbb{E}[X_n] = 0$ for all $n \geq 1$, then $(S_n, \mathscr{F}_n)_{n\geq 1}$ where $S_n = \sum_{i=1}^n X_i$ and $\mathscr{F}_n = \sigma(X_1, \dots, X_n)$ is a martingale

(b) if $(X_n)_{n\geq 1}$ is a sequence of independent r.v. with $\mathbb{E}[X_n] = 1$ for all $n \geq 1$, then $(\tilde{X}_n, \mathscr{F}_n)_{n\geq 1}$ where $\tilde{X}_n = \prod_{i=1}^n X_i$ and $\mathscr{F}_n = \sigma(X_1, \dots, X_n)$, is a martingale.

(c) given an integrable r.v. *X*, that is with $\mathbb{E}[|X_n|] < +\infty$ and a set of σ -algebras $\mathscr{F}_0 \subseteq \mathscr{F}_1 \subseteq \cdots \subseteq \mathscr{F}_n$, then $(X_n, \mathscr{F}_n)_{n \ge 1}$ where $X_n = \mathbb{E}[X|\mathscr{F}_n]$ is a martingale.

Exercise 2: Show that:

(a) if $(X_n)_{n\geq 1}$ is a sequence of non-negative integrable r.v., then $(S_n, \mathscr{F}_n)_{n\geq 1}$ where $S_n = \sum_{j=1}^n X_j$ and $\mathscr{F}_n = \sigma(X_1, \dots, X_n)$ is a submartingale.

(b) if $(X_n, \mathscr{F}_n)_{n\geq 1}$ i a martingale and $g : \mathbb{R} \to \mathbb{R}$ is a convex function with $\mathbb{E}[|g(X_n)|] < +\infty$ for all $n \geq 1$, then $(g(X_n), \mathscr{F}_n)_{n\geq 1}$ is a submartingale.

Exercise 3: Let $(X_n)_{n\geq 1}$ be i.i.d. r.v. with $\mathbb{P}(X_1=1)=p$ and $\mathbb{P}(X_1=-1)=q$ with p+q=1. If $p\neq q$, show that if $S_n=\sum_{j=1}^n X_j$ and $\mathscr{F}_n=\sigma(X_1,\cdots,X_n)$, then

(a) $(Y_n, \mathscr{F}_n)_{n \ge 1}$ is a martingale, where $Y_n = \left(\frac{q}{p}\right)^{S_n}$.

(b) $(Z_n, \mathscr{F}_n)_{n \ge 1}$ is a martingale, where $Z_n = S_n - n(p-q)$.

Exercise 4: Show that if $(X_n)_{n\geq 1}$ is a sequence of i.i.d. r.v. with $\mathbb{E}[X_n] = 0$ and $Var(X_n) = \sigma^2$ for all $n \geq 1$, then $(\mathcal{W}_n, \mathcal{F}_n)_{n\geq 1}$ is a martingale, where $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$ and

(a)

$$\mathscr{W}_n = \left(\sum_{j=1}^n X_j\right)^2 - n\sigma^2.$$

(b)

$$\mathcal{W}_n = \frac{e^{\lambda \sum_{j=1}^n X_j}}{(E[e^{\lambda X_1}])^n}.$$

Exercise 5: Let $(X_n)_{n\geq 1}$ be a sequence of i.i.d. r.v. that take values on a finite set \mathscr{I} . For each $y \in \mathscr{I}$, let $f_0(y) = \mathbb{P}(X_1 = y)$ and let $f_1 : \mathscr{I} \to [0, 1]$ be a non-negative function such that $\sum_{y \in \mathscr{I}} f_1(y) = 1$. Show that $(\mathscr{W}_n, \mathscr{F}_n)_{n\geq 1}$ is a martingale, where $\mathscr{F}_n = \sigma(X_1, \dots, X_n)$ and

$$\mathscr{W}_n = \frac{f_1(X_1)\cdots f_1(X_n)}{f_0(X_1)\cdots f_0(X_n)}.$$

The r.v. \mathcal{W}_n are known as likelihood ratios.

Exercise 6: Let $(X_n, \mathscr{F}_n)_{n \ge 1}$ be a martingale.

(a) Show that, for all n < m it holds that $X_n = E[X_m | \mathscr{F}_n]$.

(b) Conclude that $\mathbb{E}[X_1] = \mathbb{E}[X_n]$ for all $n \ge 1$.

(c) For each $n \ge 2$ let $Y_n = X_n - X_{n-1}$ and take $Y_1 = X_1$. We observe that Y_n is called the increment of the martingale. Show that $\mathbb{E}[Y_n] = 0$ for all $n \ge 0$.

(d) Assume that $\mathbb{E}[X_n^2] < +\infty$ for all $n \ge 1$. Show that the increments of the martingale are non correlated.

(e) Show that $Var(X_n) = \sum_{j=1}^n Var(Y_j)$.

Exercise 7: Let $(X_n, \mathscr{F}_n)_{n \ge 1}$ and $(Y_n, \mathscr{F}_n)_{n \ge 1}$ be two martingales with $X_1 = Y_1 = 0$. Show that

$$\mathbb{E}[X_n Y_n] = \sum_{k=2}^n \mathbb{E}[(X_k - X_{k-1})(Y_k - Y_{k-1})].$$

Exercise 8: Let $(X_n, \mathscr{F}_n)_{n\geq 1}$ be a martingale (or submartingale) and τ a Markov time (with respect to \mathscr{F}_n). Then, the stopping time

$$X^{\tau} = (X_{\min\{n,\tau\}}, \mathscr{F}_n)$$

is also a martingale (or a submartingale).

Exercise 9:

(a) Prove Wald's equality. Let $(X_n)_{n\geq 1}$ be a sequence of integrable i.i.d. r.v. and let τ be a stopping time with respect to $\mathscr{F}_n = \sigma(X_1, \dots, X_n)$ and $\mathbb{E}[\tau] < \infty$. Then, $\mathbb{E}[X_1 + \dots + X_{\tau}] = \mathbb{E}[X_1]\mathbb{E}[\tau]$.

(b) Analyze the case in which $\mathbb{P}(X_1 = 1) = 1/2 = \mathbb{P}(X_1 = -1)$ and $\tau = \inf\{n \ge 1 : X_1 + \dots + X_{\tau} = 1\}$. What do you conclude about $\mathbb{E}[\tau]$?

Exercise 10: Let $(X_n)_{n\geq 1}$ be a sequence of i.i.d.r.v. such that $\mathbb{P}(X_1 = 1) = p = 1 - \mathbb{P}(X_1 = -1)$. Interpret $X_n = 1$ as a success and $X_n = -1$ as the lost of a player in its *n*-th play. Assume that the player can win or lose in the *n*-th play the amount V_n (so that V_n is the amount of the bet in the *n*-th play). The total amount of the player at the *n*-th play is given by $Y_n = \sum_{i=1}^n X_i V_i$. Assume that V_i is predictable with respect to $\mathscr{F}_n = \sigma(X_1, \dots, X_n)$.

a) Verify in which conditions the game is fair, favorable or unfavorable. In each case, verify if $(Y_n, \mathscr{F}_n)_n$ is a martingale, sub-martingale or supermartingale.

b) Now consider the following strategy $V_1 = 1$ and $V_n = 2^{n-1} \mathbf{1}_{\{X_1 = -1, \dots, X_{n-1} = -1\}}$. Say by words what means that strategy. Is $(V_n)_n$ predictable with respect to \mathscr{F}_n ? Let $\tau = \inf\{n \ge 1 : Y_n = 1\}$. Take p = 1/2, compute the probability function of τ and express $\mathbb{P}(\tau < \infty)$. Compute $\mathbb{E}[Y_{\tau}]$. What can you say about the game?