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Exercise list number 1 - σ-algebras and probability measures

Exercise 1:

Show that, ifA andB are two σ-algebras, thenA
⋂

B is also a σ-algebra.

Exercise 2:

Let Ω := {ω1,ω2,ω3} be a sample space.

1. Exhibit all the σ-algebras of Ω.

2. Compute σ({ω1}). Check that it is a σ-algebra.

Exercise 3:

Recall that, for a topological space S the Borel σ-algebraB(S) is generated by the family of open
subsets of S. Prove that the Borel σ-algebra of R is generated by π(R) = {(−∞, x] : x ∈R}.

Exercise 4:

Let X be a random variable defined on a sample space Ω. Compute σ(X ), that is the σ-algebra
generated by X , when

1. Ω := {ω1,ω2,ω3} and X (ω1) = X (ω2) = X (ω3) = 1.

2. Ω := {ω1,ω2,ω3} and X (ω1) = 0, X (ω2) = 1 and X (ω3) = 2.

3. Ω := {ω1,ω2,ω3} and X (ω1) = 0, X (ω2) = 0 and X (ω3) = 1.

4. Ω := {ω1,ω2,ω3,ω4} and X (ω1) = 0, X (ω2) = 0, X (ω3) = 1 and X (ω4) = 2.

Exercise 5:

Let Ω be a sample space, F be a σ-algebra of subsets of Ω.
Assume that µ(·) is a set map defined on Ω satisfying the following conditions:

1. ∀E ∈F , µ(E)≥ 0;

2. If {E j} j≥1 is a countable collection of disjoint sets in F , then

µ
�⋃

j≥1

E j

�

=
∑

j≥1

µ(E j);

3. µ(Ω) = 1.

Prove that

1. ∀E ∈F , µ(E)≤ 1;

2. ∀E ∈F , µ(;) = 0;

3. ∀E ∈F , µ(E) = 1−µ(Ec);

4. ∀E, F ∈F , µ(E
⋃

F)+µ(E
⋂

F) =µ(E)+µ(F);
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5. ∀E, F ∈F such that E ⊆ F , µ(E) =µ(F)−µ(F \ E)≤µ(F);

6. Let {E j} j≥1 be an increasing (decreasing) sequence of sets in F that is E j ⊆ E j+1 (E j ⊇ E j+1)
for all j ≥ 1. Prove that, if {E j} j≥1 is an increasing (decreasing) sequence of sets in F such
that E j ↑ E (E j ↓ E), that is E =

⋃

j≥1 E j (E =
⋂

j≥1 E j), then lim j→+∞µ(E j) =µ(E);

7. (Boole’s inequality): µ
�

⋃

j≥1 E j

�

≤
∑

j≥1µ(E j).

Exercise 6:

Let {E j} j≥1 be random events belonging to F , a σ-field of events of a sample space Ω.
Let µ(·) be a probability measure defined on F . Show that for all n≥ 1

1. µ
�

⋂n
j=1 E j

�

≥ 1−
∑n

j=1µ(E
c
j );

2. If µ(E j)≥ 1−ε, for j ∈ {1, · · · ,n}, then µ
�

⋂n
j=1 E j

�

≥ 1−nε;

3. µ
�

⋂

j≥1 E j

�

≥ 1−
∑

j≥1µ(E
c
j );

Exercise 7:

Prove the following properties:

1. If µ(E j) = 0 for all j≥ 1, then µ
�

⋃

j≥1 E j

�

= 0;

2. If µ(E j) = 1 for all j≥ 1, then µ
�

⋂

j≥1 E j

�

= 1;

Exercise 8:

Take {E j} j≥1 and {F j} j≥1 belonging to the same probability space (Ω,F ,µ).
Suppose that lim j→+∞µ(E j) = 1 and lim j→+∞µ(F j) = p, with p ∈ [0,1].
Show that lim j→+∞µ(E j

⋂

F j) = p.

Exercise 9:

Let
limsup

n
En=

⋂

n≥1

⋃

k≥n

Ek, (1)

liminf
n

En=
⋃

n≥1

⋂

k≥n

Ek. (2)

If (2) and (1) are equal we write

lim
n

En= liminf
n

En= limsup
n

En.

Let {En}n≥1 belong to a probability space (Ω,F ,µ). Show that

1.
µ
�

liminf
n

En

�

≤ liminf
n
µ(En)≤ limsup

n
µ(En)≤µ

�

limsup
n

En

�

.

2. If limn→+∞ En= E, then limn→+∞µ(En) =µ(E).
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Exercise list number 2 - Random variables and distribution functions

Exercise 1:

Specify the distribution function and the distribution measure of the random variable X .

(a) If X has probability function defined on k ∈ {0,1} and given by

P(X = k) = pk(1− p)1−k.

That is X has Bernoulli distribution of parameter p.

(b) If X has probability function defined in k ∈ {0, · · · ,n} and given by

P(X = k) = Cn
k pk(1− p)n−k.

That is X has Binomial distribution of parameter n and p.

(c) If X has probability function defined in k ∈ {0,1, · · ·} and given by

P(X = k) =
e−ααk

k!
,

α> 0. That is X has Poisson distribution of parameter α.

(d) If X has probability function defined in k ∈ {0,1, · · ·} and given by

P(X = k) = p(1− p)k.

That is X has Geometric distribution of parameter p.

(e) If X has probability density function given by

f (x) =αe−αx1[0,+∞)(x),

with α> 0. That is X has Exponential distribution with parameter α.

(f) If X has probability density function given by

f (x) =
1

b−a
1[a,b](x)

for a, b ∈R with a< b. That is X has Uniform distribution in [a, b].

(g) If X has probability density function given by

f (x) =
1

π(1+ x2)
,

x ∈R. That is X has Cauchy distribution.

(h) If X has probability density function given by

f (x) =
1
p

2π
e−x2/2,

x ∈R. That is X has Gaussian distribution.
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Exercise 2:

Let σ> 0. Let X be a r.v. with probability density function f :R→R given by f (x)= 1
σ
p

2π
e−

x2

2σ2 .

(a) Prove that f (·) is indeed a probability density function. How does the graph of f look like
when σ is very small?

(b) Compute E[X ] and E[X 2].

Exercise 3:

Let X be a random variable with probability density function given by f (x) = cx21[−1,1](x).

(a) Determine the value of the constant c.

(b) Exhibit the distribution function FX (·) and find x1 such that FX (x1) = 1/4.

Exercise 4:

Let X be a random variable with distribution function given by FX (x) = x31[0,1](x)+1(1,∞](x).
(a) Find the probability density function of X .

(b) Prove that it is indeed a probability density function.

Exercise 5:

A random variable X is said to be symmetric around µ if P(X ≥ µ+ x) = P(X ≤ µ− x) for all
x ∈R. If µ= 0 we simply say that X is symmetric.

Let X be a random variable symmetric around the point b∈R and suppose that X takes the values
a, b and 2b−a, with a< 0 and b> 0.

(a) Show that E[X ] = b.

(b) Suppose that E[X ] = 1, a=−1, Var(X ) = 3 and determine the distribution function of X
and its induced measure µX .

(c) Compute µX ((−∞,−1]), µX ((−∞,3/2]) and µX ({1}).

Exercise 6:

Let X be a symmetric random variable that takes the values a 6= b 6= c.
Suppose that P(X = 0) = 1/5.
Give the results in terms of a 6= 0.

(a) Exhibit the distribution function and the distribution measure of X .

(b) Compute E[X ] and Var(X ).

Exercise 7:

Let X be a random variable with probability density function fX (·) and for b > 0 and c ∈R let
Y = bX + c.

(a) Prove that the probability density function of Y is given by fY (y) =
1
b fX

� y−c
b

�

.

(b) Let X be a random variable with Cauchy distribution.
Compute the probability density function of Y = bX +M , where b> 0 and M ∈R.

(c) Let X be a random variable with standard Normal distribution.
Compute the probability density function of Y =σX +µ, where σ> 0 and µ∈R.

(d) Let X be a random variable with Gamma distribution with parameter α and 1.
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Compute the probability density function of Y = X
β .

What is the distribution of Y when α= 1?

Exercise 8:

Let X be a random variable with density function given by f (x) = (1+ x)−21(0,+∞)(x).
Let Y =max(X ,c), where c is a positive constant c> 0.

(a) Show that f (·) is a probability density function.

(b) Exhibit the distribution function of X and Y . Justify that FX is in fact a distribution function.

(c) Decompose FY (·) in its discrete, absolutely continuous and singular parts.

(d) Compute E[X ] and E[Y ].

Exercise 9:

Let X be a random variable uniformly distributed on the interval [0,1].
Let Y be the random variable defined as Y =min(1/2,X ).

(a) Determine the distribution function of X and Y and represent their graph.

(b) Decompose FY (·) in its discrete, absolutely continuous and singular parts.

(c) Compute E[X ] and E[Y ].

Exercise 10:

Let X be a random variable with exponential distribution with parameterλ>0. Let Y =max(X ,λ).

(a) Determine the distribution function of X and Y and represent their graph.

(b) Decompose FY (·) in its discrete, absolutely continuous and singular parts.

Exercise 11:

Let X be a random variable uniformly distributed on [0,2].
Let Y be the random variable defined by Y =min(1,X ).

(a) Determine the distribution functions of X and Y and represent their graph.

(b) Decompose FY (·) in its discrete, absolutely continuous and singular parts.

Exercise 12:

Let X be a random variable with Cantor distribution:

(a) Describe the construction of its distribution function FX (·).
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(b) Justify that X is a singular random variable.

(c) Compute P
�

X = 1
3

�

. Justify.

(d) Compute P
�

1
3 < X < 2

3

�

, P(X ≤ 2
3) and P(1

9 < X ≤ 8
9).

(e) Compute E[X ]. Justify.

Exercise 13: Let U be a random variable uniformly distributed in [0,1].

(a) Find a function f : [0,1]→R such that f (U) is a random variable uniform in [0,2].

(b) Find a function f : [0,1]→R such that f (U) is a random variable with Bernoulli distribution
of parameter p, where p ∈ (0,1).

(c) Find a function f : [0,1]→R such that f (U) is a random variable with exponential distribu-
tion of parameter λ> 0.

(d) Let 0< p< q< 1. Construct a random vector (X ,Y ) such that X has distribution Bernoulli
with parameter p, Y has distribution Bernoulli with parameter q and X ≤ Y almost surely.

(e) Let 0<λ1 <λ2. Construct a random vector (X ,Y ) such that X has exponential distribution
with parameter λ1, Y has exponential distribution with parameter λ2 and X ≥ Y almost surely.
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Exercise list number 3 - Random vectores. Stochastic Independence.

Exercise 1:

Select a point uniformly in the unitary circle C = {(x , y) : x2+ y2≤ 1}.
Let X and Y be the coordinates of the selected point.

(a) Determine the joint density of X and Y .

(b) Determine P(X < Y ), P(X > Y ) and P(X = Y ).
(c) What is probability of finding the point in the first quadrant? Justify.

Exercise 2:

Suppose that X and Y are random variables identically distributed with symmetric distribution
around zero and with joint distribution given by

X \Y −1 0 ...
−1 ... 0 ...
0 0 ... 0
... θ 0 θ

(a) If P(X =−1) = 2/5, complete the table.

(b) Compute E[X ], E[Y ] and Var(X ).
(c) Are the random variables X and Y independent? Justify.

(d) Find the probability functions of the random variables X +Y and X Y .
Justify if X +Y and X Y are symmetric random variables around zero.

(e) Represent the graph of the distribution function of the random variable X +Y .

(f) Explicit the measure µX+Y .

(g) Compute µX+Y ({0}) and µX+Y ((−∞,0]).

Exercise 3:

Suppose that X and Y are random variables with joint distribution given by:

X \Y 1 2 3
1 0 1/5 0
2 1/5 1/5 1/5
3 0 1/5 0

(a) Compute the marginal probability functions of X and Y .

(b) Compute E[X ], E[Y ] and Var(X ).
(c) Are the random variables X and Y independent? Justify.

(d) If Z and W are independent random variables, then E[ZW ] =E[Z]E[W ].
Is the opposite true? Prove or exhibit a counter example.

(e) Find the distribution function of X and represent its graph.

(f) Exhibit the distribution measure µX of X .

(g) Compute the distribution function of X +Y .

(h) Compute the distribution function of X −Y .
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Exercise 4:

Suppose that X and Y are random variables with joint distribution given by:

X \Y 1 0 −1
1 0 a 0
0 b c b
−1 0 a 0

where a, b,c> 0.

(a) Compute the marginal probability functions of X and Y .

Justify that 2a+2b+ c= 1.

(b) Compute E[X ], E[Y ] and Var(X ).
(c) Verify that the random variable X Y is such that X Y = 0 almost surely.

(d) Are the random variables X and Y independent? Justify.

(e) If Z and W are independent random variables, then E[ZW ] =E[Z]E[W ].
Is the opposite true? Prove or exhibit a counter example.

(f) Take c= 1/4 and a, b such that a= 2b.

( f1) Find the distribution function of X and represent its graph.

( f2) Exhibit the distribution measure µX of X .

Exercise 5:

Let X be a random variable such that X ∼U [0,1]. Compute the distribution of Y =− log(X ).

Exercise 6:

Let X and Y be i.i.d. random variables with X ∼U [0,1]. Compute the distribution of Z = X/Y .

Exercise 7:

Let X and Y have joint density given by f (x , y). Show that

fX+Y (u) =

∫

R
f (u− t, t)d t.

Moreover, if X and Y are independent with densities fX and fY , respectively, then

fX+Y (u) =

∫

R
fX (t) fY (u− t)d t.

Exercise 8:

Let X be a r.v. with density f (x) = 1
4 e−|x |/2, for x ∈R. Compute the distribution of Y = |X |.

Exercise 9:

Show that the function

F(x , y) =

�

1− e−(x+y), x ≥ 0 and y ≥ 0

0, otherwise

is not the distribution function of a random vector.
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Exercise 10:

Show that the function

F(x , y) =

�

(1− e−x)(1− e−y), x ≥ 0 and y ≥ 0

0, otherwise

is the distribution function of a random vector.

Exercise 11:

Let X and Y be i.i.d. random variables with uniform distribution on [θ −1/2,θ +1/2], with
θ ∈R. Compute the distribution of X −Y .

Exercise 12:

Let X1,X2, . . . ,Xn be i.i.d. random variables with Rayleigh distribution with parameter θ , that is,
the density of X1 is given by

f (x) =











x

θ2
e
−

x2

2θ2 , x > 0

0, otherwise

(a) Compute the joint density of Y1, . . . ,Yn, where for each i= 1,.. . ,n it holds that Yi = X 2
i .

(b) Compute the distribution of U =min1≤i≤n X i .

(c) Compute the distribution of Z = X1/X2.

Exercise 13:

Let X1,X2, . . . ,Xn be independent random variables with exponential distribution with parameter
α1, . . . ,αn, respectively.

(a) Compute the distribution of Y =min1≤i≤n X i and Z =max1≤i≤n X i .

(b) Show that for each p= 1,.. . ,n it holds that

P(Xp = min
1≤i≤n

X i) =
αp

α1+ · · ·+αn
.

(Hint: Consider the event {Xp <mini 6=p X i}).

Exercise 14:

Let X1,X2, . . . ,Xn be independent random variables with distribution functions F1, F2, · · · , Fn res-
pectively. Find the distribution functions of the random variables min1≤i≤n X i and max1≤i≤n X i .

Exercise 15:

Let X and Y be independent random variables each assuming the values 1 and−1 with probability
1/2. Show that {X ,Y,X Y } are pairwise independent but not totally independent.
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Exercise list number 4 - Mathematical Expectation.

Exercise 1:

In each case, compute E(X ) and Var(X ), if they exist:

(a) If X has probability function given on k ∈ {0,1} by P(X = k) = pk(1− p)1−k.
That is X has Bernoulli distribution of parameter p.

(b) If X has probability function given on k ∈ {0, · · · ,n} by P(X = k) = Cn
k pk(1− p)n−k.

That is X has Binomial distribution of parameter n and p.

(c) If X has probability function given on k ∈ {0,1, · · ·} by P(X = k) = e−ααk

k! , α> 0.
That is X has Poisson distribution of parameter α.

(d) If X has probability function given on k ∈ {0,1, · · ·} by P(X = k) = p(1− p)k.
That is X has Geometric distribution of parameter p.

(e) If X has probability density function given by f (x) =αe−αx1[0,+∞)(x), with α> 0.
That is X has Exponential distribution with parameter α.

(f) If X has probability density function given by f (x) = 1
b−a 1[a,b](x) for a, b ∈R with a< b.

That is X has Uniform distribution in [a, b].

(g) If X has probability density function given by f (x) = 1
π(1+x2) , x ∈R.

That is X has Cauchy distribution.

(h) If X has probability density function given by f (x) = 1p
2π

e−x2/2, x ∈R.
That is X has Normal distribution.

Exercise 2:

Prove that:

(a) For any random variable X with distribution function FX , it holds that

E[X ] =
∫ +∞

0

1− FX (x)d x−
∫ 0

−∞
FX (x)d x

(b) and for any k ∈N

E[X k] = k

∫ +∞

0

(1− FX (x))x
k−1d x−k

∫ 0

−∞
FX (x)x

k−1d x .

(c) If X is non-negative, then

E[X ] =
∫ +∞

0

1− FX (x)d x .

(d) If X is discrete and takes non-negative integer values, then

E[X ] =
+∞
∑

n=1

P(X ≥ n).

(e) If X has Exponential distribution with parameter λ> 0, then E[X k]= k!/λk, for any k∈N.
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(f) Let X and Y be random variables, such that Y is stochastically dominated by X , that is for
all x ∈R it holds that FX (x)≤ FY (x). Show that E[X ]≥E[Y ], if both expectations exist.

Exercise 3:

Show that:

(a) if X is a constant random variable, then Var(X ) = 0.

(b) if a ∈R then Var(X +a) = Var(X ).

(c) if a, b ∈R then Var(aX + b) = a2Var(X ).

Exercise 4:

Prove:

(a) Basic Tchebychev’s inequality:
If X is a non-negative random variable (that is X ≥ 0), then for all λ> 0: P(X ≥λ)≤ 1

λE(X ).
(b) Classical Tchebychev’s inequality:
If X is an integrable random variable, then for all λ> 0: P(|X −E(X )| ≥λ)≤ 1

λ2 Var(X ).
(b) Markov’s inequality:
If X is a random variable, then for all t > 0 and λ> 0: P(|X | ≥λ)≤ 1

λt E(|X |t).

Exercise 5:

(a) Let X be a non-negative random variable, that is X ≥ 0, such that E(X ) = 0.
Show that P(X = 0) = 1, that is, X = 0 almost surely.

(b) Let X be a random variable independent of itself.
Show that X is constant with probability 1 (that is, there exists a constant c such that P(X = c)=

1).

Exercise 6:

Let X1, · · · ,Xn be integrable random variables, such that for i 6= j,

Cov(X i ,X j) :=E[X iX j]−E[X i]E[X j] = 0.

Show that
Var(X1+ · · ·+Xn) = Var(X1)+ · · ·+Var(Xn).

Exercise 7:

Let X1, · · · ,Xn be independent random variables with distribution function FX1
, · · · , FXn

, respecti-
vely.

(a) Find the distribution function of max1≤ j≤n X j and min1≤ j≤n X j .

(b) Suppose that the random variables are identically distributed with finite mean. Show that

lim
n→+∞

1
n
E
�

max
1≤ j≤n

|X j|
�

= 0.

Exercise 8:

Let X and Y be random variables defined on a probability space (Ω,F , P), both with finite ex-
pectation. Show that
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(a) E[X +Y ] =E[X ]+E[Y ].

(b) if X and Y are independent, then E[X Y ] =E[X ]E[Y ].

Exercise 9:

Let (X ,Y ) be a random vector with density function given by

fX ,Y (x , y) =
1

2πσ1σ2

p

1−ρ2
exp

¦ −1
2(1−ρ2)

�� x−µ1

σ1

�2
−2ρ

� x−µ1

σ1

�� y−µ2

σ2

�

+
� y−µ2

σ2

�2�©
.

(a) Find the marginal distributions of X and Y .

(b) Assume that X and Y are independent. Compute the distribution of X +Y .

(c) Show that X and Y are independent if and only if ρ= 0.

Exercise 10:

Let X and Y be random variables taking only the values 0 and 1. Show that, if E[X Y ]=E[X ]E[Y ]
then X and Y are independent.

Exercise 11:

Let X and Y be random variables with finite variance. Show that, if Var(X ) 6= Var(Y ) then X +Y
and X −Y are not independent.

Exercise 12:

Let X and Y be i.i.d. random variables with Uniform distribution in [0,1]. Compute the expec-
tation of min(X ,Y ) and max(X ,Y ).

Exercise 13:

Prove Wald’s equation, that is, show that E[St] = E[Nt]E[X1], where S(t) is a compound sto-
chastic process, or else, S(t) :=

∑Nt
i=1 X i , where Nt is a counting process (i.e. Nt takes values in N)

and {X i}i≥1 is a sequence of i.i.d. random variables and independent of Nt for all t.

Exercise 14:

Let X be a random variable and FX (·) its distribution function. Prove that, for any a≥0, we have
∫

R

�

FX (x+a)− FX (x)
�

d x = a.

Exercise 15:
Show that if Cov(X ,Y ) =

p

Var(X )
p

Var(Y ), then there exist constants a and b such that

P(Y = aX + b) = 1.
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Exercise list number 5 - Convergence of sequences of random variables.

Exercise 1:

Let (En)n≥1 be random events on a probability space (Ω,F , P). Show that

P(En)−−−−→n→+∞
0⇔ 1En

−−−−→
n→+∞

0, in probability.

Exercise 2:

Let (Xn)n≥1 be a sequence of random variables.
Show that if E(Xn)−−−−→n→+∞

α and Var(Xn)−−−−→n→+∞
0, then Xn −−−−→n→+∞

α, in probability.

Exercise 3:

(a) Let (Xn)n≥1 be a sequence of random variables such that for each n≥ 1 it holds that

P(Xn= 1) = 1/n and P(Xn= 0) = 1−1/n.

Show that
Xn −−−−→n→+∞

0, in probability.

(b) Now suppose that for each n≥ 1 we have that P(Xn = 1) = pn and P(Xn = 0) = 1− pn, and
suppose that (Xn)n≥1 are independent. Show that:

(1) Xn −−−−→n→+∞
0, in probability⇔ pn −−−−→n→+∞

0.

(2) Xn −−−−→n→+∞
0, in Lp⇔ pn −−−−→n→+∞

0.

(3) Xn −−−−→n→+∞
0, almost everywhere⇔

∑

n≥1

pn<+∞.

(c) Justify if in (a) the sequence (Xn)n≥1 converges almost everywhere to 0.

Exercise 4:

Prove the Tchebychev’s weak law:

Let (Xn)n≥1 be a sequence of random variables pairwise independent, with finite variance and
uniformly bounded, i.e. there exists a constant c<+∞ such that Var(Xn)≤ c for all n≥ 1. Then,

Sn−E(Sn)
n

→n→+∞ 0, in probability,

where Sn=
∑n

j=1 X j is the sequence of the partial sums of (Xn)n≥1.

Exercise 5:

Prove the Bernoulli’s Law of Large Numbers:
Consider a sequence of independent Binomial experiments, with the same probability p of success

in each experiment. Let Sn be the number of successes in the first n experiments. Then,

Sn

n
→n→+∞ p, in probability.
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Exercise 6:

Consider a sequence of independent Binomial experiments with probability pn of success in the
n-th trial. For n≥ 1, let Xn= 1 if the n-trial is a success, and Xn= 0 otherwise. Show that

(a) If
∑

n≥1 pn=+∞, then P(
∑

n≥1 Xn=+∞)= 1, (there are an infinite number of successes
a.e.).

(b) If
∑

n≥1 pn<+∞, then P(
∑

n≥1 Xn<∞)=1, (there are a finite number of successes a.e.).

Exercise 7:

Let (Xn)n≥1 be a sequence of independent random variables such that for each n≥ 1 it holds that

P(Xn= en) =
1

n+1
and P(Xn= 0) = 1−

1
n+1

.

Analyze the convergence of (Xn)n≥1 to X = 0 in the case of

(a) convergence in probability.

(b) convergence in Lp, for p> 0.

(c) convergence almost everywhere.

(d) convergence in distribution.

Exercise 8:

Let (Xn)n≥1 be a sequence of independent random variables such that for each n≥ 1 it holds that

P(Xn= 1) =
1
2n

and P(Xn= 0) = 1−
1
2n

.

Show that Xn −−−−→n→+∞
0,

(a) in probability.

(b) in Lp, for p> 0.

(c) almost everywhere.

(d) in distribution.

Exercise 9:

Let X and Y be random variables defined on a probability space (Ω,F ,P). The covariance
between X and Y is defined by

Cov(X ,Y ) :=E[X Y ]−E[X ]E[Y ].

Let X1, · · · ,Xn be uncorrelated random variables, i.e. such that Cov(X i ,X j)=0, for i 6= j, with E[X i]=
µ and Var(X i)≤ C <+∞, for all i≥ 1, where C is a constant. If Sn := X1+ · · ·+Xn, show that

(a) E[Sn] = nµ and Cov(X ,Y ) =E[(X −E[X ])(Y −E[Y ])].
(b) Var(Sn) = Var(X1)+ · · ·+Var(Xn).
(c) Sn

n −−−−→n→+∞
µ, in L2 and in probability.
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Exercise 10:

Let (Xn)n≥2be a sequence of independent and identically distributed random variables such that
X1 has exponential distribution with parameter 1. For each n≥ 2 let Yn = Xn/ log(n). Analyze the
convergence of (Yn)n≥2 to Y = 0 in the case of

(a) convergence in probability.

(b) convergence in L1.

(c) convergence almost everywhere.

(d) convergence in distribution.

Exercise 11:

Let X1,X2,X3... be independent random variables with Xn∼U [0,an], with an> 0. Show that

(a) If an= n2, then, with probability 1, only a finite number of Xn takes values less than 1.

(b) If an= n, then, with probability 1, an infinite number of Xn takes values less than 1.

Exercise 12:

Let (Xn)n≥1 be a sequence of i.i.d. random variables such that X1 ∼U [0,1]. Show that n−Xn

converges to 0 in probability but it does not converge to 0 almost surely.

Exercise 13:

Let (Xn)n≥1 be a sequence of random variables such that for n∈N it holds that

P(Xn= n2) = 1/n2 and P(Xn= 0) = 1−1/n2.

Show that Xn converges almost surely (find the limit X ) but E[X m
n ] does not converge to E[X m], for

all m∈N.

Exercise 14:

Let (Xn)n≥1 be a sequence of i.i.d. random variables such that X1 ∼U [0,1]. Find the limit in

probability of
�

∏n
k=1 Xk

�1/n
.

Exercise 15:

Let (Xn)n≥1 be a sequence of i.i.d. random variables such that E[X1]= 1 and Var(X1)= 1. Show
that

∑n
k=1 Xk

q

n
∑n

k=1 X 2
k

→n→+∞ 1/
p

2

in probability.

Exercise 16:

Let (Xn)n≥1 be a sequence of independent random variables such that E[Xn] = 0 and E[X 2
n] = 1

for all n∈N. Let Sn := X1+ · · ·+Xn and for all x ∈R let ϕ(x)=
∫ x
−∞

1p
2π

e−y2/2d y . If P(Sn≤
p

nx)→

ϕ(x) for all x ∈R, show that limsupn→+∞
Snp

n =+∞ almost everywhere.
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Exercise 17:

Show that if Xn converges to X in probability, as n→ +∞, and if g : R→ R is a continuous
function, then g(Xn) converges to g(X ) in probability, as n→+∞.

Exercise 18:

Let (Xn)n≥1 be a sequence of independent random variables with distribution function Fn. Prove
that, P(limn Xn= 0) = 1 if and only if ∀ε > 0,

∑

n≥1

{1− Fn(ε)+ Fn(−ε−)}<+∞.

Exercise 19:

If
∑

n≥1P(|Xn|> n)<∞, then limsupn
|Xn|

n ≤ 1 almost everywhere.

Exercise 20:

(a) Let X and Y be independent random variables with laws X ∼Poisson(λ1) and Y ∼Poisson(λ2).
What is the law of X +Y ?

(b) Let Z be a random variable with law Poisson(λ), and let ξ1,ξ2, . . . be i.i.d. Bernoulli(p)
random variables, independent of Z . Define X :=

∑Z
j=1ξi . Show that X has law Poisson(pλ).

Remark: Item (b) is know as the Poisson coloring theorem. You can think you have a Poisson
number of balls, and color each ball either red (with probability p) or blue (with probability 1− p),
independently. Then the number of red balls is also Poisson distributed. This is one of the basic
results in the theory of Poisson Point Process.

Exercise 21:

(a) Let X be a random variable with law Exp(λ), and let t,s> 0. Prove that

P(X > t+ s|X > s) = P(X > t).

This property is called "lack of memory of the exponential distribution".

(b) Let Yn be a geometric random variable with success probability λ
n (assume n large enough,

so that λn < 1). Show that Yn
n converges weakly to an Exp(λ) distribution.
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Exercise list number 6 - Characteristic functions.

Exercise 1:

Compute the characteristic function of each one of the following random variables:

(a) X such that P(X = a) = 1 and P(X 6= a) = 0.

(b) X such that P(X = 1) = 1/2 and P(X =−1) = 1/2.

(c) X with Bernoulli distribution with parameter p.

(d) X with Binomial distribution with parameter n and p.

(e) X with Geometric distribution with parameter p.

(f) X with Poisson distribution with parameter λ.

(g) X with exponential distribution with parameter λ.

(h) X with uniform distribution on [−a,a], with a> 0.

(i) X with triangular distribution on [−a,a], with a> 0.

(j) X with Gaussian distribution with mean µ and variance σ2.

Exercise 2:

(a) Show that for X and Y independent random variables it holds that ϕX+Y =ϕXϕY .

(b) Show that if ϕ is a characteristic function, then |ϕ|2 is also a characteristic function.

Exercise 3:

Let ϕ be a characteristic function. Show that ψ(t) = eλ(ϕ(t)−1) with λ> 0 is also a characteristic
function.
Suggestion: Let N ,X1,X2, · · · be independent random variables with N ∼Poisson(λ) and (Xn)n≥1
identically distributed with ϕXn

=ϕ for all n≥ 1. Let Y := SN , with Sn= X1+ · · ·+Xn. Then ϕY =ψ.

Exercise 4:

Let ϕX be a characteristic function of a random variable X with Binomial distribution with para-
meter n and p. Find ϕX and E[X ] and verify that i−1ϕ′X (0) =E[X ] = np.

Exercise 5:

Let (Xn)n≥1 be a sequence of random variables with Uniform distributionU [−n,n]. Find ϕ such
that

ϕn(t)−−−−→n→+∞
ϕ(t),

for all t ∈R where for each n≥1, ϕn is the characteristic function of Xn. Verify if ϕ is a characteristic
function.

Exercise 6:

(a) Show that if Y := aX + b for a, b ∈R and a 6= 0 then ϕY (t) := ei t bϕX (at).
(b) Is ϕ(t) := 1[0,∞)(t) a characteristic function? Justify.

(c) Is ϕ(t) := t1[0,1](t)+1[1,∞)(t) a characteristic function? Justify.

(d) Show that X is a symmetric if and only if its characteristic function ϕX , takes values in R.

(e) Let ϕ(t) = 1+cos(3t)
2 . Find X such that ϕ is its characteristic function.
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Exercise 7:

(a) Using characteristic functions show that if X and Y are independent and identically distri-
buted random variables and if X ∼N (0,1) then X +Y ∼N (0,2).

(b) Obtain the previous result using convolutions. Justify.

(c) Compute the 3-rd centered moment of the random variable X+Y , i.e. computeE[(X+Y )3].
Suggestion: use characteristic functions.

(d) Let X1, · · · ,Xn be independent and identically distributed random variables such that X1∼
N (0,1). Using characteristic functions, show that

Sn

n
−−−−→
n→+∞

0,

in probability, where Sn := X1+ · · ·+Xn.

Exercise 8:

Let X1, · · · ,Xn be independent random variables with Poisson distribution with parameterλ1, · · · ,λn,
respectively, where λi > 0, for all i≥ 1.

(a) Verify that E[X1] =λ1.

(b) Compute the characteristic function ϕX1
of X1.

(c) Verify that dt log(ϕX1
(t)) =λ1iei t and conclude that i−1ϕ′X1

(0) =E[X1].
(d) Compute the characteristic function of Sn= X1+ · · ·+Xn.

Exercise 9:

(a) Let X be a constant random variable and let ϕX be its characteristic function.
Show that |ϕX (t)|2= 1 for all t ∈R.

(b) Let X be a random variable independent of itself. Show that X is constant a.e.

(c) Let X be a symmetric random variable that takes only two values θ and −θ , with θ > 0.
Show that there is no θ ∈R such that ϕX (t) = 1 for all t ∈R where ϕX denotes the characteristic
function of X . Show that ϕ′′X (0) =−θ

2. Conclude that Var(X ) = θ2.

Exercise 10:

Find the distribution of the random variable X +Y +Z , knowing that X ,Y and Z are independent
and identically distributed random variables and such that X has Bernoulli distribution with para-
meter p, i.e. X induces the measure µX := pδ{1}+(1− p)δ{0}.
Solve the exercise in two different ways: using the convolution and characteristic functions.

Exercise 11:

(a) Let X be a symmetric random variable that takes the values a 6= b 6= c.
Knowing that P(X = 0) = 1/5, compute ϕX i.e. the characteristic function of X .

(b) Verify that there is no a ∈R such that ϕX (t) = 1 for all t ∈R.

(c) Compute ϕ′X (t) and verify that i−1ϕ′X (0) =E[X ].
(d) Find a such that ϕ′′X (0) =−1. Conclude that Var(X ) = 1.

Exercise 12:

Justify if ϕ(t) := ei ta+1
2 is the characteristic functions of a symmetric random variable?

Find the random variable whose characteristic function is ϕ.
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Exercise 13:

Find the distribution of the random variable X +Y , knowing that X has Poisson distribution of
parameter λ1 and Y is independent of X and has Poisson distribution of parameter λ2. Solve in two
different ways: using the convolution and characteristic functions.

Exercise 14:

Let X and Y be independent and identically distributed random variables such that X induces
the measure µX := pδ{1}+qδ{−1} where p+q= 1.

(a) Compute the characteristic function of X .

(b) Show that X is symmetric if and only if p= 1/2.

(c) Take p= 1/2. Let ϕX+Y be the characteristic function of the random variable X +Y . Verify
that ϕX+Y (t) := cos2(t), for all t ∈R.

(d) Using the convolution, determine the distribution function of the random variable X +Y .
Show that X +Y is symmetric if and only if p= 1/2. In this case, compute again the characteristic
function of the random variable X +Y and conclude that for all t ∈R

cos2(t) :=
1+ cos(2t)

2
.

Exercise 15:

Let X and Y be independent and identically distributed random variables with X ∼N (0,1).

(a) Using characteristic functions and the convolution, show that X +Y ∼N (0,2).
(b) Show, using characteristic functions, that if Z :=σX +µ then Z ∼N (µ,σ2).
(c) Let ϕZ be the characteristic function of Z . Compute |ϕZ |2 and verify that |ϕZ |2≤ 1. Is the

random variable Z symmetric?

(d) Show that i−1ϕ′Z(0) :=µ and that −ϕ′′Z (0) =µ
2+σ2. Conclude that Var(Z) =σ2.

Exercise 16:

(a) Let X be a random variable with exponential distribution with parameter a> 0. Compute
ϕ′X (t), where ϕX is the characteristic function of X and verify that i−1ϕ′X (0) =E[X ].

(b) Find a such that ϕ′′X (0) =−1/8. Compute Var(X ).

Exercise 17:

(a) Find the random variable X such that ϕ(t) := cos(t) is its characteristic function. Justify.

(b) Show that a symmetric random variable has all its odd moments equal to zero.

(c) Is ϕ(t) := 1[−1,1](t) a characteristic function?

(d) Justify if ϕ(t) := ei t+1
2 is the characteristic function of a symmetric random variable? Find

the random variable whose characteristic function is ϕ. Compute |ϕ|2.

Exercise 18:

Using characteristic functions, show that for g :R→R a continuous function, if

Xn −−−−→n→+∞
X , weakly

then
g(Xn)−−−−→n→+∞

g(X ), weakly.
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Exercise 19:

Using characteristic functions prove Slutsky’s Theorem:

Let (Xn)n≥1 and (Yn)n≥1 be two sequences of random variables and let X be a random variable.
Suppose that

Xn −−−−→n→+∞
X , weakly and Yn −−−−→n→+∞

c, in probability,

where c is a constant. Then

(a)
Xn+Yn −−−−→n→+∞

X + c, weakly.

(b)
Xn−Yn −−−−→n→+∞

X − c, weakly.

(c)
XnYn −−−−→n→+∞

X c, weakly.

(d) if c 6= 0 and P(Yn 6= 0) = 1, for all n≥ 1, then
Xn

Yn
−−−−→
n→+∞

X

c
, weakly.

Exercise 20:

Show, using characteristic functions that if (Xn)n≥1 is a sequence of i.i.d.r.v. with E(X1)=µ<∞,
then Sn

n −−−−→n→+∞
µ, in probability, where Sn=

∑n
j=1 X j .

Exercise 21:

(a) Show, using characteristic functions that if X ∼ B(m, p) and Y ∼ B(n, p), and if X and Y are
independent then X +Y ∼ B(n+m, p).

(b) Show that if X has standard Cauchy distribution, then ϕ2X = (ϕX )2. Use (without showing)
that

1
π

∫ +∞

−∞

cos(t x)
1+ x2

d x = e−|t|.

(c) It is true that if X and Y are independent random variables then ϕX+Y = ϕXϕY . And the
reciprocal, is it true? Prove and present a counter-example.

Exercise 22:

(a) Let ϕ(t) = cos(at) with a> 0. Show that ϕ is a characteristic function.

(b) Let ϕ(t) = cos2(t). Find X such that ϕ is its characteristic function.

Exercise 23:

Let X and Y be i.i.d.r.v. with E(X ) = 0 and Var(X ) = 1. Show that if X + Y and X − Y are
independent then X ,Y ∼N (0,1).
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Exercise list number 7 - Martingales.

Exercise 1: Show that:

(a) if (Xn)n≥1 is a sequence of independent r.v. with E[Xn] = 0 for all n≥ 1, then (Sn,Fn)n≥1
where Sn=

∑n
j=1 X j and Fn=σ(X1, · · · ,Xn) is a martingale

(b) if (Xn)n≥1 is a sequence of independent r.v. with E[Xn] = 1 for all n≥ 1, then (X̃n,Fn)n≥1
where X̃n=

∏n
j=1 X j and Fn=σ(X1, · · · ,Xn), is a martingale.

(c) given an integrable r.v. X , that is with E[|Xn|]<+∞ and a set of σ-algebras F0 êF1 ê · · ·ê
Fn, then (Xn,Fn)n≥1 where Xn=E[X |Fn] is a martingale.

Exercise 2: Show that:

(a) if (Xn)n≥1 is a sequence of non-negative integrable r.v., then (Sn,Fn)n≥1 where Sn=
∑n

j=1 X j
and Fn=σ(X1, · · · ,Xn) is a submartingale.

(b) if (Xn,Fn)n≥1 i a martingale and g :R→R is a convex function with E[|g(Xn)|]<+∞ for
all n≥ 1, then (g(Xn),Fn)n≥1 is a submartingale.

Exercise 3: Let (Xn)n≥1 be i.i.d. r.v. with P(X1 = 1) = p and P(X1 =−1) = q with p+q= 1. If
p 6= q, show that if Sn=

∑n
j=1 X j and Fn=σ(X1, · · · ,Xn), then

(a) (Yn,Fn)n≥1 is a martingale, where Yn=
�

q
p

�Sn
.

(b) (Zn,Fn)n≥1 is a martingale, where Zn= Sn−n(p−q).

Exercise 4: Show that if (Xn)n≥1 is a sequence of i.i.d. r.v. with E[Xn]= 0 and Var(Xn)=σ2 for
all n≥ 1, then (Wn,Fn)n≥1 is a martingale, where Fn=σ(X1, · · · ,Xn) and

(a)

Wn=
�

n
∑

j=1

X j

�2
−nσ2.

(b)

Wn=
eλ
∑n

j=1 X j

(E[eλX1])n
.

Exercise 5: Let (Xn)n≥1 be a sequence of i.i.d. r.v. that take values on a finite set I . For each y ∈
I , let f0(y)=P(X1= y) and let f1 :I → [0,1] be a non-negative function such that

∑

y∈I f1(y)=1.
Show that (Wn,Fn)n≥1 is a martingale, where Fn=σ(X1, · · · ,Xn) and

Wn=
f1(X1) · · · f1(Xn)
f0(X1) · · · f0(Xn)

.

The r.v. Wn are known as likelihood ratios.
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Exercise 6: Let (Xn,Fn)n≥1 be a martingale.

(a) Show that, for all n<m it holds that Xn= E[Xm|Fn].

(b) Conclude that E[X1] =E[Xn] for all n≥ 1.

(c) For each n≥2 let Yn= Xn−Xn−1 and take Y1= X1. We observe that Yn is called the increment
of the martingale. Show that E[Yn] = 0 for all n≥ 0.

(d) Assume that E[X 2
n]<+∞ for all n≥ 1. Show that the increments of the martingale are non

correlated.

(e) Show that Var(Xn) =
∑n

j=1 Var(Yj).

Exercise 7: Let (Xn,Fn)n≥1 and (Yn,Fn)n≥1 be two martingales with X1= Y1= 0. Show that

E[XnYn] =
n
∑

k=2

E[(Xk−Xk−1)(Yk−Yk−1)].

Exercise 8: Let (Xn,Fn)n≥1 be a martingale (or submartingale) and τ a Markov time (with
respect to Fn). Then, the stopping time

Xτ= (Xmin{n,τ},Fn)

is also a martingale (or a submartingale).

Exercise 9:

(a) Prove Wald’s equality. Let (Xn)n≥1 be a sequence of integrable i.i.d. r.v. and let τ be a stopping
time with respect to Fn=σ(X1, · · · ,Xn) and E[τ]<∞. Then, E[X1+ · · ·+Xτ] =E[X1]E[τ].

(b) Analyze the case in which P(X1=1)=1/2=P(X1=−1) and τ= inf{n≥1 : X1+ · · ·+Xτ=1}.
What do you conclude about E[τ]?

Exercise 10: Let (Xn)n≥1 be a sequence of i.i.d.r.v. such that P(X1 = 1) = p = 1−P(X1 =−1).
Interpret Xn = 1 as a success and Xn =−1 as the lost of a player in its n-th play. Assume that the
player can win or lose in the n-th play the amount Vn (so that Vn is the amount of the bet in the n-th
play). The total amount of the player at the n-th play is given by Yn =

∑n
i=1 X iVi . Assume that Vi is

predictable with respect to Fn=σ(X1, · · · ,Xn).

a) Verify in which conditions the game is fair, favorable or unfavorable. In each case, verify if
(Yn,Fn)n is a martingale, sub-martingale or supermartingale.

b) Now consider the following strategy V1 = 1 and Vn = 2n−11{X1=−1,··· ,Xn−1=−1}. Say by words
what means that strategy. Is (Vn)n predictable with respect to Fn? Let τ= inf{n≥ 1 : Yn = 1}. Take
p= 1/2, compute the probability function of τ and express P(τ<∞). Compute E[Yτ]. What can
you say about the game?


