Martingales in Ruin theory

Gabriel Nahum
Instituto Superior Técnico
December 20, 2017

Introduction

Introduction

- Useful tools
- Cramer Lundberg model
- Fundamental Theorem of Ruin Theory
- Usual Approach
- Martingale Approach
- Example
- Observations

Useful tools

Chebychev's inequality:

X r.v with finite variance, $\lambda>0$ then:

$$
\mathbb{P}[|X-\mathbb{E} X| \geq \lambda] \leq \frac{\operatorname{Var} X}{\lambda^{2}}
$$

Poisson Process

(Karr, 1993, p. 91; Kulkarni, 1995, p. 203)
A counting process $\left\{N_{t}\right\}_{t \geq 0}$ is said to be a (homogenous) Poisson Process with rate λ if:

- $\left\{N_{t}\right\}_{t \geq 0}$ has independent and stationary increments
- $N_{t} \sim \operatorname{Poisson}(\lambda t)$

Wald's identities

For the mean: N_{t} r.v. assuming positive integer values, X_{i} sequence of i.i.d. r.v.'s, $X_{i} \Perp N$, then:

$$
\mathbb{E} \sum_{i=1}^{N_{t}} X_{i}=\mathbb{E} N_{t} \mathbb{E} X
$$

For the variance:

$$
\operatorname{Var} \sum_{i=1}^{N_{t}} X_{i}=\mathbb{E} N_{t} \operatorname{Var} X+\mathbb{E}^{2} X \operatorname{Var} N_{t}
$$

Doob's Optional stopping theorem

Let $\left(\mathscr{F}_{t}\right)_{t \geq 0}$ be a filtration defined on the probability space $(\Omega, \mathscr{F}, \mathbb{P})$, and let $\left(M_{t}\right)_{t \geq 0}$ be a stochastic process adapted to the filtration $\left(\mathscr{F}_{t}\right)_{t \geq 0}$ whose paths are right continuous and locally bounded. The following properties are equivalent:

- $\left(M_{t}\right)_{t \geq 0}$ is a martingale w.r.t. $\left(\mathscr{F}_{t}\right)_{t \geq 0}$
- For any almost surely bounded stopping time T of the filtration $\left(\mathscr{F}_{t}\right)_{t \geq 0}$ such that $\mathbb{E}\left|M_{T}\right|<\infty$ we have $\mathbb{E} M_{T}=\mathbb{E} M_{0}$

Cramer Lundberg model

Cramer Lundberg model

The evolution of the capital $U=\left(U_{t}\right)_{t \geq 0}$ of a certain insurance company takes place in a probability space $(\Omega, \mathscr{F}, \mathbb{P})$ as follows:
The initial capital is $U_{0}=u>0$. Insurance payments arrive continuously at a constant rate $c>0$ and claims are received at random times $0<T_{1}<T_{2}<\ldots$, where the amounts to paid out at these times are described by nonnegative r.v.'s X_{1}, X_{2}, \ldots

Cramer Lundberg model

i.e., the capital U_{t} at time $t>0$ is determined by the formula

$$
U_{t}=u+c t-S_{t}
$$

where

- $S_{t}=\sum_{i=1}^{N_{t}} X_{i}$ represents the total ammount of claims
- N_{T} is the number of claims up to time t

We will assume that

- $\left(X_{i}\right)_{i \geq 1}$ is an i.i.d sequence of r.v.'s
- $\left(X_{i}\right)_{i \geq 1} \Perp N_{t} \quad \forall t \geq 0$
- $\left(N_{t}\right)_{t \geq 0}$ is a (Poisson) counting process
- $\mathbb{E} X>0$

Cramer Lundberg model

One of the main questions relating to the operation of an insurance company is the calculation of the probability of ruin, $\mathbb{P}(T<\infty)$, and the probability of ruin before time $\mathrm{t}, P(T \leq t)$.

By Wald's identity, notice that

$$
\begin{aligned}
\mathbb{E}\left(U_{t}-U_{0}\right) & =c t-\mathbb{E} S_{t}=c t-\mathbb{E} \sum_{i=1}^{N_{t}} X_{i} \\
& =c t-\mathbb{E} N_{t} \mathbb{E} X \\
& =t(c-\lambda \mathbb{E} X)
\end{aligned}
$$

Cramer Lundberg model

Thus, in the case under consideration, a natural requirement for an insurance company to operate with a clear profit is that $\mathbb{E} U_{t}-U_{0}>0$, i.e., $c>\lambda \mathbb{E} X$

We also define the time of ruin, T :

$$
T:=\inf \left\{t \geq 0: U_{t} \leq 0\right\}
$$

i.e., the first time at which the insurance company's capital becomes less than or equal to zero. Of course, $U_{t} \geq 0 \quad \forall t \geq 0 \Rightarrow T=\infty$

Cramer Lundberg model

Our main objective is to derive an upper bound for the probability of ruin, which we shall do with two different approaches: a more intuitive and longer approach, and a martingale approach.

First Approach

First Approach

Given that we have an expression for the (poisson) point process N_{t}, seems reasonable to try and compute the moment generating function of our process $U_{t}-m_{U_{t}}$, which will be a function of the m.g.f of N_{t}, which, since $\left\{X_{i}\right\}_{i}$ are i.i.d will surely be a function of m_{X}. Conditioning on the time of ruin we can get an expression depending explicitly on m_{X} and $\psi(u)$, which might proove to be useful.

First Approach

The trick is to decompose $\mathbb{E} e^{-r U_{t}}$ in order to get $\mathbb{P}(T \leq t)$:

$$
\begin{equation*}
\mathbb{E} e^{-r U_{t}}=\mathbb{E}\left[e^{-r U_{t}} \mid T \leq t\right] \mathbb{P}(T \leq t)+\mathbb{E}\left[e^{-r U_{t}} \mid T>t\right] \mathbb{P}(T>t) \tag{1}
\end{equation*}
$$

First Approach

But also simplify $\mathbb{E}\left[e^{U_{t}}\right]$ in order to get $m_{X}(r)$:

$$
\begin{aligned}
& \mathbb{E}\left[e^{-r U_{t}}\right]=e^{-r u-c r t} \mathbb{E} e^{r S_{t}}=e^{-(r u+c r t)} m_{S_{t}}(r) \\
& m_{S_{t}}(r)=\mathbb{E} e^{r S_{t}}=\mathbb{E} e^{r \sum_{i=0}^{N_{t}}}=\sum_{n} \mathbb{E}\left[e^{r \sum_{i=0}^{N_{t}}} \mid N_{t}=n\right] \mathbb{P}\left(N_{t}=n\right) \\
&= \sum_{n} \mathbb{E}\left[e^{\left.r \sum_{i=0}^{N_{t}} \mid N_{t}=n\right] \frac{(\lambda t)^{n}}{n!} e^{-\lambda t}}\right. \\
&=\sum_{n} m_{X}^{n}(r) \frac{(\lambda t)^{n}}{n!}=e^{\lambda t\left(m_{X}(r)-1\right)} \\
& \Rightarrow \mathbb{E}\left[e^{-r U_{t}}\right]=e^{-(r u+c r t)} e^{\lambda t\left(m_{X}(r)-1\right)} \\
&= \exp \left[-r u-c r t+\lambda t\left(m_{X}(r)-1\right)\right]
\end{aligned}
$$

First Approach

Our life would be much easier if $t=0$ or if there was $r: g(r)=-c r t+\lambda t\left(m_{X}(r)-1\right)=0$. In fact, there is an unique solution, which we shall denote by R.
Therefore, for such R we get:

$$
\mathbb{E}\left[e^{-R U_{t}}\right]=e^{-R u}
$$

which is NOT a function of time. Therefore we can take the limit and get:

$$
e^{-R u}=\lim _{t \rightarrow \infty} \mathbb{E}\left[e^{-r U_{t}} \mid T \leq t\right] \mathbb{P}(T \leq t)+\lim _{t \rightarrow \infty} \mathbb{E}\left[e^{-r U_{t}} \mid T>t\right] \mathbb{P}(T>t)
$$

First Approach

- $U_{t}-U_{T}=c(t-T)-\left(S_{t}-S_{T}\right) \Leftrightarrow U_{t}=U_{T}+c(t-T)-\left(S_{t}-S_{T}\right)$
- $T \leq t \Rightarrow N_{t}-N_{T} \Perp N_{T}$ (notice the intervals $[t, T[] T, 0$,$] are disjoint)$ $\Rightarrow U_{T} \Perp S_{t}-S_{T}$
- $N_{t}-N_{T} \sim N_{t-T}$ (Homogenous Poisson Process)

First Approach

Proceding as before (and as the Wald's identity proof) now conditioning on (N_{T}, N_{t}) we get:

$$
\begin{aligned}
\mathbb{E}\left[e^{-r U_{t}} \mid T \leq t\right] & =e^{-r c(t-T)} \mathbb{E}\left[e^{-r U_{T}} e^{r\left(S_{t}-S_{T}\right)} \mid T \leq t\right] \\
& =e^{-r c(t-T)} \mathbb{E}\left[e^{-r U_{T}} \mid T \leq t\right] \mathbb{E}\left[e^{r\left(S_{t}-S_{T}\right)} \mid T \leq t\right] \\
& =e^{-r c(t-T)} \mathbb{E}\left[e^{-r U_{T}} \mid T \leq t\right] \mathbb{E}\left[m_{X}(r)^{N_{t}-N_{T}} \mid T \leq t\right] \\
& =e^{-r c(t-T)} \mathbb{E}\left[e^{-r U_{T}} \mid T \leq t\right] \mathbb{E}\left[m_{X}(r)^{N_{t-T}} \mid T \leq t\right] \\
& =e^{-r c(t-T)} \mathbb{E}\left[e^{-r U_{T}} \mid T \leq t\right] e^{\lambda(t-T)\left(m_{X}(r)-1\right)} \\
& =\exp \left[-r c(t-T)+\lambda(t-T)\left(m_{X}(r)-1\right)\right] \times \\
& \times \mathbb{E}\left[e^{-r U_{T}} \mid T \leq t\right] \\
\Rightarrow & \mathbb{E}\left[e^{-R U_{t}} \mid T \leq t\right]=\mathbb{E}\left[e^{-R U_{T}} \mid T \leq t\right]
\end{aligned}
$$

First Approach

Up to now, we have:

$$
e^{-R u}=\mathbb{E}\left[e^{-R U_{T}} \mid T \leq t\right] \mathbb{P}(T \leq t)+\lim _{t \rightarrow \infty} \mathbb{E}\left[e^{-R U_{t}} \mid T>t\right] \mathbb{P}(T>t)
$$

First Approach

If we can show that $\lim _{t \rightarrow \infty} \mathbb{E}\left[e^{-r U_{t}} \mid T>t\right] \mathbb{P}(T>t)=0$ we might have something useful, since we can express the propability of ruin as a function of the other terms, which are possible to estimate.

Notice that $T>t \Rightarrow U_{t} \geq 0$.
With some abuse of notation:

First Approach

$$
\begin{aligned}
& \mathbb{E}\left[e^{-R U_{t}} \mid T>t\right] \mathbb{P}(T>t)=\mathbb{E}\left[e^{-R U_{t}}, T>t\right] \\
& =\mathbb{E}\left[e^{-R U_{t}}, T>t, 0 \geq U_{t} \leq b_{t}\right]+\mathbb{E}\left[e^{-R U_{t}}, T>t, U_{t}>b_{t}\right] \\
& =\mathbb{E}\left[e^{-R U_{t}} \mid T>t, 0 \geq U_{t} \leq b_{t}\right] \mathbb{P}\left(T>t, 0 \geq U_{t} \leq b_{t}\right)+\mathbb{E}\left[e^{-R U_{t}} \mid T>t,\right. \\
& \leq \mathbb{P}\left(T>t, 0 \geq U_{t} \leq b_{t}\right)+\mathbb{E}\left[e^{-R U_{t}} \mid T>t, U_{t}>b_{t}\right] \mathbb{P}\left(T>t, U_{t}>b_{t}\right) \\
& \leq \mathbb{P}\left(U_{t} \leq b_{t}\right)+\mathbb{E}\left[e^{-R U_{t}} \mid T>t, U_{t}>b_{t}\right] \mathbb{P}\left(T>t, U_{t}>b_{t}\right) \\
& \leq \mathbb{P}\left(U_{t} \leq b_{t}\right)+\mathbb{E} e^{-R b_{t}}
\end{aligned}
$$

First Approach

i.e.,

$$
\mathbb{E}\left[e^{-R U_{t}} \mid T>t\right] \mathbb{P}(T>t) \leq \mathbb{P}\left(U_{t} \leq b_{t}\right)+\mathbb{E} e^{-R b_{t}}
$$

for some $b_{t}: b_{t} \rightarrow \infty$ if $t \rightarrow \infty$, and we used that $\left(U_{t}, R>0 \wedge U_{t}>b_{t}\right) \Rightarrow$

- $e^{-R U_{t}} \leq 1 \Rightarrow \mathbb{E}\left[e^{-R U_{t}} \mid T>t, 0 \leq U_{t} \leq b_{t}\right] \leq 1$
- $\mathbb{P}\left(T>t, 0 \leq U_{t} \leq b_{t}\right)=\mathbb{P}\left(T>t \mid 0 \leq U_{t} \leq b_{t}\right) \mathbb{P}\left(0 \leq U_{t} \leq b_{t}\right)$

$$
\leq \mathbb{P}\left(0 \leq U_{t} \leq b_{t}\right)=\mathbb{P}\left(0 \leq U_{t} \bigcap U_{t} \leq b_{t}\right) \leq \mathbb{P}\left(U_{t} \leq b_{t}\right)
$$

- $\mathbb{E}\left[e^{-R U_{t}} \mid T>t, U_{t}>b_{t}\right] \leq \mathbb{E} e^{-R b_{t}}$
- $\mathbb{P}\left(T>t, U_{t}>b_{t}\right) \leq 1$

First Approach

Now we want to show that $\lim _{t \rightarrow \infty} \mathbb{P}\left(U_{t} \leq b_{t}\right)=\lim _{t \rightarrow \infty} \mathbb{E} e^{-R b_{t}}=0$. Notice that:

$$
\begin{aligned}
& \mathbb{P}\left(\left|U_{t}-\mathbb{E} U_{t}\right| \geq-\left(b_{t}-\mathbb{E} U_{t}\right)\right)= \\
& =\mathbb{P}\left[\left(U_{t}-\mathbb{E} U_{t} \leq b_{t}-\mathbb{E} U_{t}\right) \cup\left(U_{t}-\mathbb{E} U_{t} \geq-\left(b_{t}-\mathbb{E} U_{t}\right)\right)\right] \\
& \geq \mathbb{P}\left(U_{t}-\mathbb{E} U_{t} \leq b_{t}-\mathbb{E} U_{t}\right)=\mathbb{P}\left(U_{t} \leq b_{t}\right)
\end{aligned}
$$

First Approach

If we choose b_{t} such that $\mathbb{E} U_{t}-b_{t}>0$ we can apply Chebychev's inequality to get:

$$
\mathbb{P}\left(U_{t} \leq b_{t}\right) \leq \mathbb{P}\left(\left|U_{t}-\mathbb{E} U_{t}\right| \geq \mathbb{E} U_{t}-b_{t}\right) \leq \frac{\operatorname{Var}\left(U_{t}\right)}{\left(\mathbb{E} U_{t}-b_{t}\right)^{2}}
$$

First Approach

To estimate the variance:

$$
\begin{aligned}
\operatorname{Var}\left(U_{t}\right)= & \mathbb{E} U_{t}^{2}-\mathbb{E}^{2} U_{t} \\
& \mathbb{E} U_{t}^{2}=\mathbb{E}\left(u+c t-S_{t}\right)^{2}= \\
= & \mathbb{E}\left(u+c t-\mathbb{E} S_{t}\right)^{2}+\mathbb{E}\left(S_{t}-\mathbb{E} S_{t}\right)^{2}
\end{aligned}
$$

First Approach

We only need to estimate $\mathbb{E}\left(S_{t}-\mathbb{E} S_{t}\right)^{2}$. By Wald's identity for the variance we have:

$$
\begin{aligned}
\mathbb{E}\left(S_{t}-\mathbb{E} S_{t}\right)^{2} & =: \operatorname{Var}_{t}=\mathbb{E} N_{t} \operatorname{Var}(X)+\mathbb{E}^{2} X \operatorname{Var} N_{t} \\
& =\lambda t\left(\operatorname{Var} X+\mathbb{E}^{2} X\right)
\end{aligned}
$$

First Approach

$$
\begin{aligned}
& \mathbb{E}\left(u+c t-\mathbb{E} S_{t}\right)^{2}=\mathbb{E}^{2}\left(u+c t-\mathbb{E} S_{t}\right)=\mathbb{E}^{2}\left(u+c t-S_{t}\right)=\mathbb{E}^{2} U_{t} \\
\Rightarrow & \operatorname{Var}\left(U_{t}\right)=\mathbb{E} U_{t}^{2}-\lambda t\left(\operatorname{Var} X+\mathbb{E}^{2} X\right)-\mathbb{E}^{2} U_{t}=\lambda t\left(\operatorname{Var} X+\mathbb{E}^{2} X\right)
\end{aligned}
$$

Choose b_{t} s.t. $\mathbb{E} U_{t}-b_{t}=t^{k} \lambda\left(\operatorname{Var} X+\mathbb{E}^{2} X\right)>0$ and we have:

$$
\frac{\operatorname{Var}\left(U_{t}\right)}{\left(b_{t}-\mathbb{E} U_{t}\right)^{2}}=\frac{1}{t^{k-1}} \rightarrow 0 \quad \forall k>1
$$

First Approach

We conclude that

$$
\lim _{t \rightarrow \infty} \mathbb{P}(T \leq t)=\frac{e^{-R u}}{\lim _{t \rightarrow \infty} \mathbb{E}\left[e^{-R U_{T}} \mid T \leq t\right]}
$$

Notice that $\lim _{t \rightarrow \infty} \mathbb{P}(T \leq t)=\mathbb{P}(T<\infty)$

First Approach

$$
\mathbb{P}(T<\infty)=\frac{e^{-R u}}{\mathbb{E}\left[e^{-R U_{T}} \mid T<\infty\right]}
$$

Furthermore, $\mathbb{E}\left[e^{-R U_{T}} \mid T<\infty\right] \geq 1$ since $U_{T} \leq 0$ and so we have

$$
\mathbb{P}(T<\infty) \leq e^{-R u}
$$

Martingale Approach

Martingale Approach

Computing the m.g.f of $U_{t}-u$, for $r>0$:

$$
\mathbb{E} e^{-r\left(U_{t}-u\right)}=e^{-r c t} \mathbb{E} e^{r \sum_{i=0}^{N_{t}} x_{i}}
$$

Repeating the procedure seen on the "usual" approach, we get:

$$
\mathbb{E} e^{-r\left(U_{t}-u\right)}=e^{t\left(\left(m_{X}(r)-1\right) \lambda-c r\right)}
$$

Martingale Approach

Define $g(r)=\lambda\left(m_{X}(r)-1\right)-c r$. Notice that $\operatorname{tg}(r)=f(r)$, and they have the same roots (as a function of r), which we will denote again by
$R: g(R)=0$.
As seen in before, but now as a function of g, conditioning on $\left(N_{t}, N_{s}\right)$: REF

$$
s<t \Rightarrow \mathbb{E} e^{U_{t}-U_{s}}=e^{(t-s) g(r)}
$$

Martingale Approach

Take the sigma-algebra $\mathscr{F}=\left\{\mathscr{F}_{t}\right\}_{t>0}$ s.t. $\mathscr{F}_{t}=\sigma\left(U_{s}: s \leq t\right)$ Again, by the independence of increments property of the homogenous poisson process we have that $N_{t}-N_{s} \Perp \mathscr{F}_{s} \Rightarrow U_{t}-U_{s} \Perp \mathscr{F}_{s}$. Taking inspiration from the last calculations we can construct a martingal:

$$
\begin{aligned}
\mathbb{E}\left[e^{-r\left(U_{t}-U_{s}\right)-(t-s) g(r)} \mid \mathscr{F}_{s}\right] & =e^{-(t-s) g(r)} \mathbb{E}\left[e^{-r\left(U_{t}-U_{s}\right)} \mid \mathscr{F}_{s}\right] \\
& =e^{-(t-s) g(r)} \mathbb{E}\left[e^{-r\left(U_{t}-U_{s}\right)}\right] \quad \text { by independence } \\
& =e^{-(t-s) g(r)} e^{(t-s) g(r)} \\
& =1
\end{aligned}
$$

Martingale Approach

That is, $Z_{t}:=e^{-r U_{t}-\operatorname{tg}(r)}$ has the martingale property, and it is in fact a martingale.
Notice that the time of ruin is in fact a stopping time, and $T \wedge t$ is also a stopping time $\forall t \geq 0$.
By the Doob's Optional Stopping Theorem we have that
$\mathbb{E} Z_{T \wedge t}=\mathbb{E} Z_{0}\left(=e^{-r u}\right)$.
Therefore, we have that:

Martingale Approach

$$
\begin{aligned}
e^{r u} & =\mathbb{E} Z_{0}=\mathbb{E} Z_{T \wedge t} \\
& =\mathbb{E}\left[Z_{T \wedge t} \mid T \leq t\right] \mathbb{P}(T \leq t)+\mathbb{E}\left[Z_{T \wedge t} \mid T>t\right] \mathbb{P}(T>t) \\
& \geq \mathbb{E}\left[Z_{T \wedge t} \mid T \leq t\right] \mathbb{P}(T \leq t) \\
& =\mathbb{E}\left[Z_{T} \mid T \leq t\right] \mathbb{P}(T \leq t) \\
& =\mathbb{E}\left[e^{-r U_{T}-T g(r)} \mid T \leq t\right] \mathbb{P}(T \leq t) \\
& \geq \mathbb{E}\left[e^{-T g(r)} \mid T \leq t\right] \mathbb{P}(T \leq t) \\
& \geq \min _{0 \leq s \leq t} e^{-\operatorname{sg}(r)} \mathbb{P}(T \leq t)
\end{aligned}
$$

Martingale Approach

And we get 2 useful inequalities:

$$
\begin{aligned}
& \mathbb{P}(T \leq t) \leq \frac{e^{-r u}}{\mathbb{E}\left[e^{-r U_{T}-\operatorname{Tg}(r)} \mid T \leq t\right]} \\
& \mathbb{P}(T \leq t) \leq e^{-r u} \max _{0 \leq s \leq t} e^{s g(r)}
\end{aligned}
$$

Martingale Approach

Taking the limit and evaluating at $r=R,(g(R)=0)$ we get the Fundamental Theorem and the Lundberg inequality:

$$
\begin{aligned}
& \mathbb{P}(T<\infty) \leq \frac{e^{-R u}}{\mathbb{E}\left[e^{-R U_{T}} \mid T<\infty\right]} \\
& \mathbb{P}(T<\infty) \leq e^{-R u}
\end{aligned}
$$

Example

Example

Remember that in order to operate with clear profit we assumed that our model follows $c>\lambda \mathbb{E} X$, thus makes sense to define a safety coefficient $\alpha>0$, through $c=(1+\alpha) \lambda \mathbb{E} X$.

Take $X \sim \operatorname{Exp}(\theta)$. Let T be the time of ruin, b the capital right before the ruin, and $y>0$.

Example

Notice that $\left\{0>y+U_{T}\right\}=\{X>b+y \mid X>b\}$: the claim that originated the ruin (the "fall" X) must be larger than our value right before (b), plus some y small enough, i.e.,:
$X=\left|U_{T}\right|+b \Leftrightarrow X>b+y: y>\left|U_{T}\right|=-U_{T}$, i.e., $\left\{0>y+U_{T}\right\}=\{X>b+y \mid X>b\}$, thus we can show that $-U \sim \operatorname{Exp}(\theta)$:

Example

$$
\begin{aligned}
\mathbb{P}\left(-U_{T}>y \mid T<\infty\right)= & \mathbb{P}(X>b+y \mid X>b) \\
& =\frac{\mathbb{P}(X>b+y, X>b)}{\mathbb{P}(X>b)} \\
& =\frac{\mathbb{P}(X>b+y)}{\mathbb{P}(X>b)} \\
& =\frac{e^{-\theta(b+y)}}{e^{-\theta b}}=e^{-\theta y}=\mathbb{P}(X>y)
\end{aligned}
$$

And we have that $\mathbb{E}\left[e^{-R U_{T}} \mid T<\infty\right]=\frac{\theta}{\theta-R}, \theta>R$. Let $\alpha=\frac{c}{\lambda \mu}-1$ be the safety coefficient.

Example

$$
\begin{aligned}
\mathbb{P}\left(T<\infty \mid U_{0}=u\right) & =\frac{e^{-R u}}{\mathbb{E}\left[e^{-R U_{T}} \mid T<\infty\right]}=\frac{e^{-\alpha \theta u /(1+\alpha)}}{\frac{\theta}{\theta-R}} \\
& =\frac{1}{1+\alpha} e^{-\alpha \theta u /(1+\alpha)}
\end{aligned}
$$

Notice that $\mathbb{P}\left(T<\infty \mid U_{0}=0\right)=\frac{1}{1+\alpha}=\frac{\lambda \mu}{c}$

Observations

Some (general) observations related to the Fundamental theorem:

- $\theta \rightarrow 0 \Rightarrow R \rightarrow 0 \Rightarrow \mathbb{P}\left(T<\infty \mid U_{0}=u\right) \rightarrow 1$
- $\theta \leq 0 \Rightarrow \mathbb{P}\left(T<\infty \mid U_{0}=u\right)=1$ (not safe \Rightarrow ruin)
- fixed $u, \lim _{R \rightarrow \infty} \mathbb{P}\left(T<\infty \mid U_{0}=u\right)=0$
- fixed $R, \lim _{u \rightarrow \infty} \mathbb{P}\left(T<\infty \mid U_{0}=u\right)=0$ (the larger the initial capital, the smaller the probability of ruin)

THANK YOU!

