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Useful tools
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Chebychev's inequality:

X r.v with finite variance, A > 0 then:

VarX

P X —EX |2 < =3
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Poisson Process

(Karr, 1993, p. 91; Kulkarni, 1995, p. 203)

A counting process {N;}¢>0 is said to be a (homogenous) Poisson Process
with rate \ if:

@ {N:}+>0 has independent and stationary increments
e N; ~ Poisson(\t)
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Wald's identities

For the mean: N, r.v. assuming positive integer values, X; sequence of
i.i.d. r.v.'s, X; AN, then:

Ny
E Z X; =EN,EX
i=1
For the variance:
Ne
Var Z X; = E N;VarX + E? XVarN,
i=1
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Doob’s Optional stopping theorem

Let (:Z¢)¢>0 be a filtration defined on the probability space (£2,.%#,P), and
let (M¢)r>0 be a stochastic process adapted to the filtration (%;)¢>0
whose paths are right continuous and locally bounded. The following
properties are equivalent:

® (M;)e>0 is a martingale w.r.t. (%¢)e>0

@ For any almost surely bounded stopping time T of the filtration
(Z+t)e>0 such that E | Mt |< 0o we have EM7 =E My
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Cramer Lundberg model
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Cramer Lundberg model

The evolution of the capital U = (U;)+>0 of a certain insurance company
takes place in a probability space (£2,.%,P) as follows:

The initial capital is Uy = u > 0. Insurance payments arrive continuously
at a constant rate ¢ > 0 and claims are received at random times

0< T1 < Ty < ..., where the amounts to paid out at these times are
described by nonnegative r.v.'s Xy, Xo, . ..
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Cramer Lundberg model

i.e., the capital U; at time t > 0 is determined by the formula
Ut =u+ct— 51_-

where
e S = Z,N:tl X; represents the total ammount of claims
@ Ny is the number of claims up to time t
We will assume that
@ (Xi)i>1 is an i.i.d sequence of r.v.'s
o (Xi)i>1ALN; Vt>0
@ (N¢)e>0 is a (Poisson) counting process
e EX >0
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Cramer Lundberg model

One of the main questions relating to the operation of an insurance
company is the calculation of the probability of ruin, P(T < oc), and the
probability of ruin before time t, P(T < t).

By Wald’s identity, notice that

Ne
]E(Ut— Uo):Ct—ESt:Ct—]E E X;
i=1
=ct—-ENEX
= t(c — AEX)
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Cramer Lundberg model

Thus, in the case under consideration, a natural requirement for an
insurance company to operate with a clear profit is that E U; — Uy > 0,

ie., c > AEX
We also define the time of ruin, T:
T :=inf{t>0:U; <0}

i.e., the first time at which the insurance company’s capital becomes less
than or equal to zero. Of course, U; >0 Vt>0= T =0
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Cramer Lundberg model

Our main objective is to derive an upper bound for the probability of ruin,
which we shall do with two different approaches: a more intuitive and
longer approach, and a martingale approach.
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First Approach
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First Approach

Given that we have an expression for the (poisson) point process N,
seems reasonable to try and compute the moment generating function of
our process U; - my,- , which will be a function of the m.g.f of N;, which,
since {X;}; are i.i.d will surely be a function of mx. Conditioning on the
time of ruin we can get an expression depending explicitly on mx and

¥ (u), which might proove to be useful.

Gabriel Nahum (Instituto Superior Técnico) Probability Theory December 20, 2017 16 / 47



First Approach

The trick is to decompose E eVt in order to get P(T < t):

Ee ™t =Ele™ | T <t P(T <t)+E[e™ | T>P(T>1) (1)
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First Approach

But also simplify E[eY] in order to get mx(r):

E[e™V] = e Mt R et = e (M) s (1)
t

ms,(r) = Ee™ = Ee it — ZE[e’Z'N:tO | N¢ = n]P(Ny = n)
n

t At)"?
:ZE[erZ"N:O | N, = ,,](m)eAr

n At)" mx(r)—
:me(r)(nl) :e)\t( x(r)—1)

s EfeV] = e (e Memx(1)-)

=exp[—ru — crt + At(mx(r) — 1)]
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First Approach

Our life would be much easier if t = 0 or if there was

r:g(r) = —crt + At(mx(r) — 1) = 0. In fact, there is an unique solution,
which we shall denote by R.

Therefore, for such R we get:

E[e—RUt] _ e—Ru
which is NOT a function of time. Therefore we can take the limit and get:

e = lim Ele™™ | T <tP(T <t)+ lim Ele™™ | T > t]P(T > t)
t—00 t—00
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First Approach

o Ui—Ur=c(t—T)—(5t—=St)c U =Ur+c(t—T)— (5 —S71)

o T <t= N¢— Nyl Nt (notice the intervals [t, T[,] T, 0] are disjoint)
= UrdS: — S1

e Ny — Nt ~ N;_1 (Homogenous Poisson Process)
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First Approach

Proceding as before (and as the Wald's identity proof) now conditioning
on (N1, N¢) we get:
Ele~™V | T < t] = e ("D E[e Ve 55T | T < ¢]

=e "N E[e~VT | T < t]E[e* 57 | T < ¢]
=e D E[eVT | T < t]E[mx(r)V N1 | T <t
=e “DE[e™YT | T < t]E[mx(r)¥-7 | T < 1]
= e =T E[eVT | T < t]eMt=Tmx(N-1)
=exp[—rc(t — T)+ At — T)(mx(r) — 1)]x
xEle VT | T <]

= E[le RV | T<t]=E[e RIT | T <]
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First Approach

Up to now, we have:

e R —FE[e RUT | T <t](T <t)+ Jim Ele RV | T > t]P(T > t)
—00
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First Approach

If we can show that lim; o E[e™"Y | T > t]P(T > t) = 0 we might have
something useful, since we can express the propability of ruin as a function
of the other terms, which are possible to estimate.

Notice that T > t = U; > 0.

With some abuse of notation:
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First Approach

Ele RV | T > t](T > t) =E[e RV T > 1]

=E[e R T > 10> U < b] +E[e RV, T > t, U; > by]

=E[e RV | T>t,0> U < b]P(T >t,0> U; < by) +E[e RV | T > ¢,
<P(T>t,0> U < b)) +E[e RV | T > t, U > b ]P(T > t,U; > by)

<P(Us < b))+ E[e RV | T > t,U; > b ] P(T > t, Us > b;)
<P(U; < by) + Ee Rt
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First Approach

E[e RV | T > ] P(T > t) <P(U; < by) + Ee Rt

for some b : by — oo if t — oo, and we used that
(U, R>0A U > by) =
° e‘RUfgliE[e_RUf | T>t,0< U <b]<1
e P(T>t,0< U <b)=P(T>t|0< U <b)P(0 < Ut < by)

<SPO< U < b)) =P0< U Ur < be) <P(Ur < bt)
o E[e RVt | T > t, Uy > b] <Ee R
(] P(T>t,Ut>bt)§1
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First Approach

Now we want to show that lim; o P(Us < b;) = lim;_,oo Ee Pt = 0.
Notice that:

:]P[(Ut—EUt § bt—EUt)U(Ut—]EUt 2 _(bt_]EUt))]
ZP(Ut—EUtS bt—EUt):P(UtS bt)
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First Approach

If we choose b; such that E U; — by > 0 we can apply Chebychev's
inequality to get:
Var( Ut)

B(Ur < be) S B(|Ur ~E Ul 2 EUe = be) < (7,7 5
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First Approach

To estimate the variance:

Var(U;) =E U? — E? U;
EU; =E(u+ct— S)° =
:E(U + ct — ES[-)Z + E(St — Est)2

Gabriel Nahum (Instituto Superior Técnico) Probability Theory December 20, 2017 28 / 47



First Approach

We only need to estimate E(S; — E S;)?. By Wald'’s identity for the
variance we have:

E(S; — ES;)? =: VarS; = E N, Var(X) + E? XVarN;
= \t(VarX + E? X)
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First Approach

E(u+ct—ES)? =F*(u+ct—ES;)=FE*(u+ct—S;)=E>U,
= Var(U;) = E U? — At(VarX + E2 X) — E? U; = At(VarX + E2 X)

Choose b; s.t. EU; — by = tkA(VarX + E2 X) > 0 and we have:

Var(Us) 1

- 0 Vk>1
(b —EU)?  tF1 ”
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First Approach

We conclude that

—Ru

e
lim P(T <t)=
AU (T=1) lime_yoo E[e=RUT | T < t]

Notice that lim; oo P(T < t) =P(T < o0)
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First Approach

—Ru

e
T < 20) = ferur [T < ]

Furthermore, E[e RUT | T < o0] > 1 since Ur < 0 and so we have

P(T < o0) < e Fu
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Martingale Approach
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Martingale Approach

Computing the m.g.f of Uy — u, for r > 0:
F e—r(Ut—u) _ e—rctEerZ,I.V:to X;

Repeating the procedure seen on the "usual” approach, we get:

Ee*f(Ut*U) — et((mx(r)fl))\fcr)
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Martingale Approach

Define g(r) = A(mx(r) — 1) — cr. Notice that tg(r) = f(r), and they
have the same roots (as a function of r), which we will denote again by
R:g(R)=0.

As seen in before, but now as a function of g, conditioning on (N, Ns):
REF

s<t=Eeli U = glt—s)(r),
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Martingale Approach

Take the sigma-algebra .7 = {F;}i>0 s.t.%: = o(Us 1 s < t)

Again, by the independence of increments property of the homogenous
poisson process we have that N; — Ns Il %5 = U; — Us I 5. Taking
inspiration from the last calculations we can construct a martingal:

E[e~"(Vt=Us)=(t=)e(r) | ] = e~ (t=5)8(n) g[e=r(Ui=Us) | 2]

= ¢ (t=9)8("N E[e=r(Ui=Us)] by independence
e (t=5)8(r) g(t=5)g(r)
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Martingale Approach

That is, Z; := e "Vt=t%(") has the martingale property, and it is in fact a
martingale.

Notice that the time of ruin is in fact a stopping time, and T At is also a
stopping time Vt > 0.

By the Doob’s Optional Stopping Theorem we have that

EZrpe =EZp(=e ™).

Therefore, we have that:
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Martingale Approach

=EZy=EZrn:

=E[Zrpat | T <t]P(T < t)+E[Zrpe | T > t]P(T > t)
>E[Zrae | T < P(T < 1)

=E[Z7 | T<t]]P’(T<t)

=E[e~VT-Tel) | T < t]P(T < t)

>E[e 80 | T < t]P(T < t)

> min e ¥ P(T <t)
0<s<t
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Martingale Approach

And we get 2 useful inequalities:

e—ru
< <
PT<1t)< E[e—Ur—T8() | T < ]

P(T <t)<e ™ max e
0<s<t
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Martingale Approach

Taking the limit and evaluating at r = R, (g(R) = 0) we get the
Fundamental Theorem and the Lundberg inequality:

efRu

<
~ E[e RUT | T < o]
P(T < o0) <e R

P(T < o)
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Example
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Example

Remember that in order to operate with clear profit we assumed that our
model follows ¢ > AE X, thus makes sense to define a safety coefficient

a >0, through ¢ = (1 + a)AE X.

Take X ~ Exp(f). Let T be the time of ruin, b the capital right before
the ruin, and y > 0.
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Example

Notice that {0 > y + Ut} ={X > b+ y | X > b}: the claim that
originated the ruin (the "fall” X) must be larger than our value right
before (b), plus some y small enough, i.e.,:

X=|Ur|+bs X>b+y:y>| Ur|=—-Ur, ie,

{0>y+ Ur}={X>b+y| X > b}, thus we can show that

—U ~ Exp(6):
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Example

P(—Ur>y| T<o0)=P(X>b+y|X>Db)
 P(X>b+y,X>b)
P(X > b)
P(X > b+y)
CPB(X>b)
e—0(b+y)

= w = efey = ]P)(X > _y)

And we have that E[e RUT | T < o0] = H_LWQ >R. Let = ﬁ — 1 be
the safety coefficient.
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Example

e—Ru e—obu/(1+a)
IP)(T<OO‘UOZU):IE‘,[e—RUT|T<oo]: ﬁ
_ b —atu/(ra)

14«

NoticethatIP(T<oo|Uozo):p%a:/\j
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Observations

Some (general) observations related to the Fundamental theorem:
00—-0=R—=-0=>P(T<oo|Uy=u)—1
0 0<0=P(T <o0o| Uy=u)=1 (not safe = ruin)
o fixed u, limg_ oo P(T <00 | Up=u)=0
o fixed R, lim,,oc P(T < 0o | Uy = u) = 0 (the larger the initial
capital, the smaller the probability of ruin)
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THANK YOU!
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