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Chapter 1

The relative entropy

method

In this chapter we will introduce Yau’s relative entropy inequality and we will

explain how the relative entropy method works.

1.1 Relative entropy

Firstly, we need to explain what is the relative entropy. For, that purpose,

Definition 1.1.1. Let µ and ν be two probability measures in the same state

space Ω. The relative entropy of µ with respect to ν is defined as

H (µ | ν) := sup
f

{∫
f(η)µ(d η)− log

∫
ef(η)ν (d η)

}
, (1.1.1)

where the supreme is considered over all continuous functions f : Ω→ R.

By the definition of relative entropy, we can observe the following inequality:

Proposition 1.1.2 (Entropy inequality). Let B > 0. Let µ and ν be two

probability measures in Ω. Let f : Ω→ R be any continuous function. We have∫
f (η)µ(d η) ≤ 1

B

(
H (µ | ν) + log

∫
e{B f (η)} ν (d η)

)
.

An immediate consequence of the Entropy inequality is the following:
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Corollary 1.1.3. Let A ⊂ Ω. Let µ and ν be two probability measures in Ω.

We have

µ (A) ≤ log 2 +H (µ | ν)

log (1 + 1/ν (A))
.

Proof. Take f = 1A and B = log (1 + 1/ν (A)).

Proposition 1.1.4. If µ is a measure absolutely continuous with respect to ν,

then

H (µ | ν) =

∫
f (η) log f (η) ν (d η), (1.1.2)

where f is the Radom-Nykodym derivative of µ with respect to ν, that is,

f (η) =
µ (η)

ν (η)
.

For more properties concerning the relative entropy we suggest the reading

of [2].

1.2 Yau’s relative entropy inequality

In [?], Yau proved a famous inequality concerning relative entropy. We will

show a proof of this inequality which is very different from Yau’s one and it

was found in [3]. In order to do so, let us consider a continuous-time Markov

chain {Xt ; t ≥ 0} with state space Ω and generator L which acts on function

f : Ω→ R by

L f (η) =
∑
ξ∈Ω

r (η, ξ) (f(ξ)− f(η)),

where r (η, ξ) stands for the transition rate from state η to state ξ. Let St denote

the semigroup associated to L.

Definition 1.2.1. We say that a measure ν in Ω is a reference measure if

ν(x) > 0 for any x ∈ Ω.

Definition 1.2.2. Fix a reference measure ν and fix T > 0. Let {νt; t ∈ [0, T ]}
be a family of reference measures in Ω, differentiable with respect to t. Let

ψt : Ω → [0,∞) be the Radon-Nikodym derivative of νt with respect to ν, that
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is, ψt(x) = νt(x)
ν(x) for any t ∈ [0, T ] and any x ∈ Ω. Let L∗t be the adjoint of L

with respect to νt. The action of L∗t over a function g : Ω→ R is given by

L∗t g(η) =
∑
ξ∈Ω

{
r(ξ, η)g(ξ)

µ(ξ)

µ(η)
− r(η, ξ)g(η)

}
. (1.2.1)

Remark 1.2.3. In general, νt will not be an invariant measure of {Xt ; t ≥ 0}
and therefore L∗t will not be necessarily a Markovian operator.

Definition 1.2.4. The carré du champ Γ operator associated to L is defined as

Γ f (η) =
∑
ξ∈Ω

r (η, ξ) (f(η)− f(ξ))2,

for any function f : Ω→ R.

Proposition 1.2.5 (Yau’s inequality). Let µ denote the initial measure of

{Xt ; t ≥ 0}. Let ft : Ω → [0,∞) be the Radon-Nydokym derivative of the

law of {Xt ; t ≥ 0} and νt, that is,

ft(η) :=
µSt (η)

νt (η)
, for any η ∈ Ω and any t ∈ [0, T ].

Define H (t) := H (µSt | νt). For any t ∈ [0, T ],

∂tH (t) ≤ −
∫

Γ
√
ftdνt +

∫ (
L∗t1− ∂t logψt

)
ft dνt.

Proof. Let L∗ be the adjoint of L with respect to the reference measure ν. The

forward Fokker-Planck equation asserts that

∂t
(
ft ψt

)
= L∗

(
ft ψt

)
for any t ∈ [0, T ], from where

∂tft =
1

ψt

(
L∗
(
ftψt

)
− ft ∂t ψt

)
.
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Therefore, rewriting H(t) as H(t) =
∫
ft log ftψtdν, we see that

∂tH(t) =

∫
(1 + log ft)

(
L∗
(
ftψt

)
− ft∂tψt

)
dν

+

∫
ft log ft∂tψtdν

=

∫
ftL log ftdνt −

∫
ft ∂t logψtdνt.

Now, since a(log b− log a) ≤ 2
√
a(
√
b−
√
a), we obtain

ft(η)L log ft(η) =
∑
ξ∈Ω

r(η, ξ)ft(η)
(

log ft(ξ)− log ft(η)
)

≤
∑
ξ∈Ω

2r(η, ξ)
√
ft(η)

(√
ft(ξ)−

√
ft(η)

)
for any η ∈ Ω. Moreover, since 2

√
a(
√
b −
√
a) = −(

√
b −
√
a)2 + b − a, we

conclude that

2 r(η, ξ)
√
ft(η)

(√
ft(ξ)−

√
ft(η)

)
= −r(η, ξ)

(√
ft(ξ)−

√
ft(η)

)2
+r(η, ξ)

(
ft(ξ)−ft(η)

)
.

Therefore, 2
√
ft L
√
ft = −Γ

√
ft + Lft. Hence, we obtain that

∂tH(t) ≤ −
∫

Γ
√
ftdνt +

∫ (
Lft − ft ∂t logψt

)
dνt,

which implies the desired inequality due to the fact that
∫
Lftdνt =

∫
L∗t1ftdνt.

Exercise 1.2.6. Show that
∫
ft ∂t logψt dνt is constant on ν.

Exercise 1.2.7. Show that if νt is the invariant measure of {Xt ; t ≥ 0} then∫ (
Lft − ft ∂t logψt

)
dνt = 0. (1.2.2)

In particular,

∂tH(t) ≤ −
∫

Γ
√
ftdνt. (1.2.3)

Here, one can that see the the term on the left-hand side of (1.2.2) is the price

that they have to pay when changing the Dirichlet form (carré du champ asso-
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ciated with the invariant measure) to the carré du champ associated with the

measure νt.

1.3 Yau’s relative entropy method

Now we explain the relative entropy method [4]. The idea is simple. In many

problems, one wants to show that two measures µ and ν on the same proba-

bility space are close, in some distance. Although the relative entropy is not

actually a metric, it is commonly used as one. For instance, the relative entropy

H(µ | ν) bounds the total variation distance ‖µ − ν‖TV from above (Pinsker’s

inequality) and when µ is the time distribution of the process and ν is invariant,

the combination of (1.2.3) with log-Sobolev inequalities H(µ | ν) ≤ C Γ
√
ftdν

shows strong properties on the mixing time of this Markov chain. As we will

see in the next chapter, in order to prove the hydrodynamic limit of a particle

system, we will show choose reference measures νt which are associated with

this hydrodynamic equation and we will show that the relative entropy of the

time distribution of the process (starting at nice initial measures) and νt keeps

bounded by a small enough sequence in n ∈ N. This choice on the reference

measures and the bounds obtained on the relative entropy are explained by

the conservation of local equilibrium. Moreover, the relative entropy method

requires the existence of a smooth solution of such PDE’s and it implies the

uniqueness itself.

Now one may ask how can we use the hydrodynamic equation to prove the

hydrodynamic limit whether we do not know which PDE should it be. As we

will see, the computation of the left-hand side of (1.2.2) will be given in a nice

algorithm found in [3], and it presents a closed expression. In order to close

this expression, we will see which PDE should we consider, as well as which

boundary conditions and initial data.
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Chapter 2

Hydrodynamic limits of

interacting particle systems

2.1 Simple exclusion process

Let G = (V,E) be an undirected graph with vertex set V , edge set E and order

n. In this model, each vertex of V is occupied or not by a particle. The resulting

matching between the vertices and their occupations is called a configuration of

particles and it can be seen as a function η : V → {0, 1}. In this description, we

say that the vertex x is occupied by a particle if η(x) = 1 and that it is empty

if η(x) = 0. We denote by

Ωkn = {η : V → {0, 1};
∑
x∈V

η(x) = k} (2.1.1)

the set of all configurations with exactly k particles. The simple exclusion pro-

cess (SEP) inG is described as follows: Exponential clocks of rate 1 are attached,

independently, to each edge in E. Whenever a clock rings, the edge associated

with that clock is flipped, exchanging the occupations of its incident vertices.

The probability that two clocks ring at the same time is zero. Since particles

are indistinguishable, we can suppose that when both vertices incident to the

same edge have the same occupation, the interaction between those particles (if

the vertices are occupied) does not happen. This is called exclusion rule. Note

that the dynamics conserves the total mass, that is, the number of particles in

the system does not change. Therefore, if the initial configuration has exactly k
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particles, then the SEP in G is the continuous-time Markov process {ηt ; t ≥ 0}
with state space Ωkn whose generator is given by

L f(η) =
1

2

∑
x∈V

∑
y∼V

(
f(ηx,y)− f(η)

)
, (2.1.2)

for every function f : Ωkn → R, where ηx,y is the configuration obtained from η

after exchanging the occupations of vertices x and y, that is,

ηx,y(z) =


η(x), if z = y;

η(y), if z = x;

η(x). if z /∈ {x, y}.

(2.1.3)

In the above definition, we write x ∼ y to say that there exists the edge {x, y} ∈
E. The constant 1/2 in the right-hand side of (2.1.2) appears owing to the fact

that each edge {x, y} is being counted twice in the sums.

2.2 Hydrodynamic limit for the SEP on the torus

In this section we show how to prove the so called hydrodynamic limit using

Yau’s relative entropy method. We will illustrate the idea with the simple

exclusion process on the discrete one-dimensional torus of length n (the n-circle).

Indeed, let Tn = Zn = Z/nZ be the set of vertices of the aforementioned graph.

Two vertices x and y are adjacent if x = y ± 1 mod n. Define Ωn := ∪nk=0 Ωkn.

The simple exclusion process on the discrete one-dimensional torus of length n

is the Markov process {ηt ; t ≥ 0} with state space Ωn and generator

n2 Ln f (η) =
∑
x∈Tn

(f (ηx,x+1)− f (η)). (2.2.1)

The factor n2 in front of the generator speeds up time to the diffusive time

scale. Let DΩn [0, T ] be the path space of cádlág time trajectories with values

in Ωn, which is called Skorohod space. We will denote by Pµn the probability

measure on DΩn [0, T ] induced by the initial measure µn and the Markov process

{ηt; t ≥ 0}. The expectation with respect to Pµn will be denoted by Eµn . We will

also denote the semigroup associate with Ln by St and we will define µt := µn St.

Let T denote the one dimensional torus. Let us fix a profile ρ0 : T →
[ε0, 1 − ε0] for some ε0 ∈ (0, 1/2] and a time horizon [0, T ], T > 0. Let ρ :
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[0, T ]× T→ [ε0, 1− ε0] be a smooth solution of

∂t ρ (t, u) = ∆ ρ (t, u), u ∈ T , t ∈ [0, T ].

Let

ρnt (x) = ρ
(
t,
x

n

)
.

For each t ∈ [0, T ] we define the measure νt on Ωn as the Bernoulli product

measure

νt (η) =

n−1∏
x=1

{η(x) ρnt (x) + (1− η(x)) (1− ρnt (x))} .

We will prove the following results:

Teorema 2.2.1. If H (µn | ν0) = O(1) then H (µt | νt) = O(1).

Corollary 2.2.2 (Hydrodynamic limit). For any δ > 0, any t ∈ [0, T ] and any

H ∈ C (T), let us define the stochastic process

At,H :=
1

n

∑
x∈Tn

ηt(x)H
(x
n

)
−
∫
T
ρ (t, u)H (u) d u (2.2.2)

and the event

At,δ,H := {η ; |At,H | > δ} (2.2.3)

If H (µn | ν0) = O(1) then for any δ > 0, any t ∈ [0, T ] and any H ∈ C (T)

lim
n→∞

Pµn (At,δ,H) = 0.

We first prove the corollary. We will use Hoeffding’s Lemma, whose proof

can be found in Wikipedia.

Exercise 2.2.3 (Hoeffding’s Lemma). Let η be a random value taking values

on [0, 1]. If m = E[η] then for any θ ∈ R we have

logE
[
eθ (η−m)

]
≤ θ2

8
.

Proof of Corollary 2.2.2. We give a complete proof of this result based in the

sketch of the proof of [1, Theorem 2.9.1]. However, we do not use large deviation
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estimates and that why we require Hoeffding’s Lemma. Firstly, observe that,

by Corollary 1.1.3, we have

Pµn
(At,δ,H) ≤ log 2 +H (µt | νt)

log (1 + 1/νt (At,δ,H))
. (2.2.4)

Now, let us define the stochastic process

Bt,H :=
1

n

∑
x∈Tn

(ηt(x)− ρnt (x))H
(x
n

)
. (2.2.5)

and the sequence

Ct,H :=
1

n

∑
x∈Tn

ρnt (x)H
(x
n

)
−
∫
T
ρ (t, u)H (u) d u.

Thus,

νt (At,δ,H) = νt (At,H > δ) + νt (At,−H > δ)

= νt (Bt,H + Ct,H > δ) + νt (Bt,−H + Ct,−H > δ) .

Since 1
n

∑
x∈Tn

ρnt (x)H
(
x
n

)
converges to

∫
T ρ (t, u)H (u) d u, for sufficiently large

n we have

−δ
2
< Ct,H <

δ

2

Therefore, νt (At,δ,H) ≤ νt (Bt,H > δ/2) + νt (Bt,−H > δ/2). Moreover, by

Chebyshev’s exponential inequality P(X > b) ≤ e−a b E[eaX ] and since νt is a
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product measure, for any a > 0 we have

νt (At,δ,H) ≤ e−a δ/2E[eaBt,H ] + e−a δ/2E[eaBt,−H ]

= e−a δ/2 νt

[ ∏
x∈Tn

exp

{
aH

(
x
n

)
n

(ηt(x)− ρnt (x))

}]

+ e−a δ/2 νt

[ ∏
x∈Tn

exp

{
−
aH

(
x
n

)
n

(ηt(x)− ρnt (x))

}]

= e−a δ/2
∏
x∈Tn

νt

[
exp

{
aH

(
x
n

)
n

(ηt(x)− ρnt (x))

}]

+ e−a δ/2
∏
x∈Tn

νt

[
exp

{
−
aH

(
x
n

)
n

(ηt(x)− ρnt (x))

}]

= e−a δ/2 exp

{
log

∏
x∈Tn

νt

[
exp

{
aH

(
x
n

)
n

(ηt(x)− ρnt (x))

}]}

+ e−a δ/2 exp

{
log

∏
x∈Tn

νt

[
exp

{
−
aH

(
x
n

)
n

(ηt(x)− ρnt (x))

}]}

= e−a δ/2 exp

{∑
x∈Tn

log νt

[
exp

{
aH

(
x
n

)
n

(ηt(x)− ρnt (x))

}]}

+ e−a δ/2 exp

{∑
x∈Tn

log νt

[
exp

{
−
aH

(
x
n

)
n

(ηt(x)− ρnt (x))

}]}
.

Now, by Hoeffding’s Lemma (see Exercise 2.2.3) we have

νt (At,δ,H) ≤ 2 e−a δ/2 exp

{
a2

n2

∑
x∈Tn

H2
(x
n

)}

= exp

{
a2

n
‖H‖2∞ + log 2− a δ

2

}
.

Choosing a = δ n
4 ‖H‖2∞

we obtain that

νt (At,δ,H) ≤ exp

{
− δ2

16 ‖H‖2∞
n+ log 2

}
Hence, there exists a constant C = C (δ) such that for any sufficiently large n
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we have

νt (At,δ,H) < e−C n. (2.2.6)

Last, replacing (2.2.6) in (2.2.4) we obtain

Pµn
(At,δ,H) <

log 2 +H (µt | νt)
C n

,

which converges to zero by Theorem 2.2.1.

Now, let ∆n and ∇n stand for the discrete Laplacian and gradient, respec-

tively defined as

∆n f(x) = n2 (f(x+ 1) + f(x− 1)− 2 f(x))

and

∇n f(x) = n (f(x+ 1)− f(x)).

Recall that we want to prove Theorem 2.2.1. Before we do so, we show the

validity of the following lemma:

Lemma 2.2.4. For each x ∈ Tn define

ωt(x) =
η(x)− ρnt (x)

ρnt (x) (1− ρnt (x))
.

Let H(t) = H (µt | νt). There exists a constant C = C(ε0) such that

∂tH (t) ≤ −
∫

Γ
√
ftdνt +H(t) + C

−
∑
x∈Tn

(∇n ρnt (x))2 Eµn [ωt(x)ωt(x+ 1)] .

Proof. Recall Yau’s inequality (Proposition 1.2.5),

∂tH (t) ≤ −
∫

Γ
√
ftdνt +

∫ (
L∗t1− ∂t logψt

)
ft dνt.
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First let us compute L∗t1. Indeed, by identity (1.2.1) we have

L∗t 1(η) = n2
∑
x∈Tn

{
η(x) (1− η(x+ 1))

µ(ηx,x+1)

µ(η)
− η(x+ 1) (1− η(x))

}

+ n2
∑
x∈Tn

{
η(x+ 1) (1− η(x))

µ(ηx,x+1)

µ(η)
− η(x) (1− η(x+ 1))

}
= n2

∑
x∈Tn

{
η(x) (1− η(x+ 1))

ρnt (x+ 1) (1− ρnt (x))

ρnt (x) (1− ρnt (x+ 1))
− η(x+ 1) (1− η(x))

}
+ n2

∑
x∈Tn

{
η(x+ 1) (1− η(x))

ρnt (x) (1− ρnt (x+ 1))

ρnt (x+ 1) (1− ρnt (x))
− η(x) (1− η(x+ 1))

}
.

Therefore, factorizing the above identity, we obtain

L∗t 1(η) = n2
∑
x∈Tn

(ρnt (x)− ρnt (x+ 1))×

×
(

η(x+ 1) (1− η(x))

ρnt (x+ 1) (1− ρnt (x))
− η(x) (1− η(x+ 1))

ρnt (x) (1− ρnt (x+ 1))

)
(2.2.7)

Recall that

ωt(x) =
η(x)− ρnt (x)

ρnt (x) (1− ρnt (x))
.

We will write (2.2.7) as linear combination of 1, ωt(x), ωt(x+1) and ωt(x)ωt(x+

1), that is, we will find a, b, c, d ∈ R such that(
η(x+ 1) (1− η(x))

ρnt (x+ 1) (1− ρnt (x))
− η(x) (1− η(x+ 1))

ρnt (x) (1− ρnt (x+ 1))

)
= a+ b ωt(x) + c ωt(x+ 1)

+ dωt(x)ωt(x+ 1). (2.2.8)

Indeed, taking the expectation in both sides of (2.2.8), with respect to νt we

obtain that a = 0. Evaluating (2.2.8) at η(x) = 1 and η(x+ 1) = ρnt (x+ 1) (it

is the same as taking the expectation with respect to Bern(1) × Bern(ρnt (x))),

we obtain that b = −1. Taking η(x) = ρnt (x) and η(x+ 1) = 1, we obtain c = 1.

Last, taking η(x) = η(x+ 1) = 1 we obtain the relation

d

ρnt (x) ρnt (x+ 1)
=

1

ρnt (x)

1

ρnt (x+ 1)
.
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Therefore, d = (ρnt (x+1)−ρnt (x)) and hence, a summation by parts shows that

L∗t 1(η) =
∑
x∈Tn

(∆n ρ
n
t (x))ωt(x)−

∑
x∈Tn

(∇n ρnt (x))2 ωt(x)ωt(x+ 1). (2.2.9)

Now let us compute ∂t logψt. Indeed, let the reference measure ν be the

Bernoulli product measure with parameters 1/2 (recall that we can choose any

reference measure). Since νt is a product measure, we have

∂t logψnt = ∂t
∑
x∈Tn

(
η(x) log(2 ρnt (x)) + (1− η(x)) log(2 (1− ρnt (x)))

)
=
∑
x∈Tn

(
η(x)∂t log(2 ρnt (x)) + (1− η(x))∂t log(2 (1− ρnt (x)))

)
=
∑
x∈Tn

( η(x)

ρnt (x)
− 1− η(x)

1− ρnt (x)

)
∂t ρ

n
t (x)

=
∑
x∈Tn

ωt(x) ∂t ρ
n
t (x). (2.2.10)

Therefore, by Yau’s inequality (Proposition 1.2.5), and identities (2.2.9) and

(2.2.10), we obtain that

∂tH (t) ≤ −
∫

Γ
√
ftdνt +

∑
x∈Tn

Eµn
[ωt(x)]

(
∆n − ∂t

)
ρnt (x)

−
∑
x∈Tn

(∇n ρnt (x))2 Eµn [ωt(x)ωt(x+ 1)] .

Furthermore, since ∆n is a discrete approximation or order O(n−2) of ∆ (for

any f of class C4, supx |(∆n −∆) f (x)| < C(f)n−2), the above inequality is of

the form

∂tH (t) ≤ −
∫

Γ
√
ftdνt + Eµn

[
1

n2

∑
x∈Tn

ωt(x)Rt(x)

]
−
∑
x∈Tn

(∇n ρnt (x))2 Eµn
[ωt(x)ωt(x+ 1)] , (2.2.11)

where |Rt(x)| ≤ |ρt|C4 . Furthermore, by Proposition 1.1.2 and Hoeffding’s
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Lemma (see Exercise 2.2.3), we have

Eµn

[
1

n2

∑
x∈Tn

ωt(x)Rt(x)

]
≤ H(t) + log

∫
exp

{
1

n2

∑
x∈Tn

ωxR
n
x(t)

}
dµnt

≤ H(t) +
C(ε0)

n3
‖Rn(t)‖2∞

≤ H(t) + C (ε0).

Hence,

∂tH (t) ≤ −
∫

Γ
√
ftdνt +H(t) + C (ε0)

−
∑
x∈Tn

(∇n ρnt (x))2 Eµn
[ωt(x)ωt(x+ 1)] .

Now we state the following result which is proven in [3] for a more general

setting:

Lemma 2.2.5 (Replacement Lemma). Recall that there exists κ > 0 such that

∇n ρnt (x) ≤ κ for any x ∈ Tn. There exists a finite constant C = C(ε0) such

that for any G : Tn → R and any δ > 0 we have

∑
x∈Tn

G(x)Eµn
[ωt (x)ωt (x+ 1)] ≤ δ

∫
Γ
√
f νt (d η)

+
C (1 + κ2)

δ
(‖G‖∞ + ‖G‖2∞) (H (t) + 1) .
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Proof of Theorem 2.2.1. By Lemma 2.2.4 and Lemma 2.2.5, with

Gt(x) = (∇n ρnt (x))2,

there exists a constant C = C (ε0) such that for any δ > 0 we have

∂tH (t) ≤ −(1− δ)
∫

Γ
√
ftdνt +H(t) + C (ε0)

+
C (1 + κ2)

δ
(‖(∇n ρnt )2‖∞ + ‖(∇n ρnt )2‖2∞) (H (t) + 1)

= −(1− δ)
∫

Γ
√
ftdνt +H(t) + C (ε0)

+
C (1 + κ2)2 κ2

δ
(H (t) + 1) .

The proof finishes taking δ ∈ (0, 1] and using Grönwall’s inequality.
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