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Invariant measures,
Reversibility and Adjoint
processes



Invariant measures, Reversibility and Adjoint processes

In the same way that we considered invariant probability measures for
discrete time Markov chains, we may investigate invariant measures
for continuous time processes, i.e, probability measures µ such that
µPt = µ for every t ≥ 0.

Proposition

A probability measure µ is invariant if and only if µL = 0.
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Proof.
Of course, if µPt = µ for every t ≥ 0, taking the time derivative at
t = 0, we obtain that µL = 0.

Conversely, if µL = 0, by Trotter-Kato formula Pt = lim
t→0

(
I +

t

n
L

)n
,

we have that

µPt = lim
t→0

µ

(
I +

t

n
L

)n

= lim
t→0

µ

(
I +

t

n
L

)(
I +

t

n
L

)n−1

= lim
t→0

µ

(
I +

t

n
L

)n−1
doing this sucessively,

= µ.

(1)
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Corollary
A probability measure µ is invariant if and only if the probability
measure

ν(x) =
µ(x)λ(x)∑
y∈E µ(y)λ(y)

is invariant for the discrete time Markov chain with transition
probability p(·, ·).

Proof.
The identity µL = 0 can be rewritten as∑

x∈E
µ(x)λ(x)p(x, y) = µ(y)λ(y)

for every y ∈ E.
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It follows from the previous result that under the assumption of
indecomposability, that is in general easy to verify, we have the
existence of a unique invariant probability measure when E is finite.
In the countable case it will also be necessary to check conditions that
guaranty the positive recurrence. Most of the time, however, it will be
important to characterize more or less explicitly the invariant
measures. In order to do it we have to solve the |E| linear equations:∑

x∈E
µ(x)λ(x)p(x, y) = µ(y)λ(y)

for every y ∈ E. It is stronger but easier to try to solve the system
with |E|2 equations

µ(x)λ(x)p(x, y) = µ(y)λ(y)p(y, x)

known to the physicists as the detailed balance condition.
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It is clear that a summable solution µ of these equations is
automatically an invariant probability measure if properly
renormalized. In particular, it is the invariant probability measure if
the chain is indecomposable. Furthermore, an invariant measure
satisfying the detailed balance conditions possesses certain special
properties. To state them we need to introduce some notation.

For an invariant probability measure µ on E, denote by L2(µ) the
space of the square integrable functions with respect to µ. We extend
the operators Pt and L, originally defined on Cb(E), to the space
L2(µ): for f ∈ L2(µ), we denote by Ptf , Lf the functions defined in
previous sections.
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Remark
L is a bounded operator on L2(µ):

〈µ, [Lf ]2〉 ≤ 4λ
2 〈µ, f2〉.

Proof.

〈µ, [Lf ]2〉 =
∑
x∈E

µ(x)(Lf(x))2

=
∑
x∈E

µ(x)

∑
y∈E

λ(x)p(x, y)[f(y)− f(x)]

2

≤
∑
x∈E

µ(x)
∑
y∈E

λ(x)2p(x, y)2[f(y)− f(x)]2

≤
∑
x∈E

µ(x)
∑
y∈E

λ(x)2p(x, y)[2f(y)2 + 2f(x)2]

≤ 2
∑
x,y∈E

µ(x)λ(x)2p(x, y)f(y)2 + 2
∑
x,y∈E

µ(x)λ(x)2p(x, y)f(x)2

(2)
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Moreover, it follows from the estimates that we saw in section 3 that
for every function f in L2(µ) we have that:

lim
t→0
〈µ, {t−1[Ptf − f ]− Lf}2〉 = 0. (3)
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Proposition

The probability measure µ satisfies the detailed balance equation if and
only if the operators Pt are self-adjoint in L2(µ), i.e., if and only if
for every t ≥ 0, f, g ∈ L2(µ),∑

x∈E
µ(x)f(x)(Ptg)(x) =

∑
x∈X

µ(x)g(x)(Ptf)(x)

or, briefly,
〈f, Ptg〉µ = 〈Ptf, g〉µ. (4)

Here 〈·, ·〉µ stands for the inner product in L2(µ).
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Proof.
Fix two sites, x, y set f = 1{x}, g = 1{y} and take the time
derivative at t = 0 in identity (4) to obtain that

µ(x)L(x, y) = µ(y)L(y, x)

which is the detailed balance condition. Inversely, it follows from the
previous identity that

〈f, Lg〉µ = 〈Lf, g〉µ

for every f, g in L2(µ). It remains to recall Trotter-Kato formula to
conclude the proof.
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A probability measure satisfying the detailed balance conditions is
said to be reversible. The previous result states therefore that a
probability measure is reversible if and only if the generator is self
adjoint in L2(µ). We shall now look for conditions that guarantee
that the adjoint of the generator L in L2(µ) is also a generator.
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Proposition

Let µ be a probability measure. The adjoint of L in L2(µ), denoted by
L?, is a generator if and only if µ is invariant. In this case P ?t = etL

?

is also the adjoint of Pt in L2(µ) and the semigroup P ?t is
characterized by the pair (λ?, p?) given byλ?(x) = λ(x),∀x ∈ E

p?(x, y) = λ(y)µ(y)p(y,x)
λ(x)µ(x) ,∀x, y ∈ E.

Moreover,
〈f, Lg〉µ = 〈L?f, g〉µ, (5)

for every f, g ∈ L2(µ).
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Proof
A simple computation shows that the adjoint L? of L in L2(µ) is
given by the formula

µ(x)L?(x, y) = µ(y)L(y, x). (6)

In particular, L? satisfies always the first the first two properties of
generators: {

L?(x, x) = −λ(x) < 0, for x ∈ E
L?(x, y) ≥ 0, for x 6= y.

(7)

Therefore, L? is a generator if and only if∑
y∈E

L?(x, y) = 0

for every x ∈ E and hence if and only if µ is invariant because the
explicit expression (6) permits to rewrite the previous sum as

1

µ(x)

∑
y∈E

µ(y)L(y, x).
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On the other hand, the Trotter-Kato formula shows that the
semigroup P ?t associated to the generator L? is the adjoint of the
semigroup Pt in L2(µ).

Finally, we have already seen in the first part of the proof that the
jump rate λ and λ? coincide. The explicit formula (6) permits than to
compute p?(x, y). On the other hand, formula (5) follows from the
identity µ(x)λ(x)p(x, y) = µ(y)λ(y)p?(y, x) and a change of variables:

〈f, Lg〉µ =
∑
x,y

µ(x)λ(x)p(x, y)f(x)g(y)−
∑
x∈E

µ(x)λ(x)f(x)g(x).

The first term on the right hand side can be written as∑
x,y

µ(y)λ(y)p?(y, x)f(x)g(y) =
∑
x,y∈E

µ(x)λ(x)p?(x, y)f(y)g(x)

from the previous two identities it is easy to conclude the proof of the
proposition.
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The process P ?t , that is defined without ambiguity when the original
process admits a unique invariant measure, is called the adjoint
process. The adjoint process is closely connected to the process
reversed in time. This is the content of the next proposition.
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Proposition

If the semigroup P ?t is the adjoint of the semigroup Pt with respect to
the invariant probability measure µ, then for every n > k ≥ 0, every
sequence of times 0 ≤ t1 < . . . < tn and every sequence of bounded
functions {fj ; 1 ≤ j ≤ n},

Eµ[f1(Xt1) . . . fn(Xtn)]

=
∑
x∈E

µ(x)fk(x)Ex[fk+1(Xtk+1−tk) . . . fn(Xtn−tk)]×

× E?x[fk(Xtk−tk−1
) . . . f1(Xtk−t1)],

where E?x stands for the expectation with respect to the Markov chain
with transition probability P ?t starting from x.
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Proof.
The proof is straightforward. We just have to apply successively the
identity

µ(x)Pt(x, y) = µ(y)P ?t (y, x).
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We shall sometimes consider the symmetric part, denoted by S, of the
generator L in L2(µ). It is given by

S = 2−1(L+ L?).

A simple computation shows that the symmetric part S is itself a
generator characterized by the parameters λ? and p? given by

λs(x) = λ(x),∀x ∈ E,

ps(x, y) =
1

2

[
p(x, y) +

λ(y)µ(y)p(y, x)

λ(x)µ(x)

]
.

Furthermore, S satisfies the detailed balanced condition:

µ(x)S(x, y) = µ(y)S(y, x).
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Some Martingales in the
context of Markov process



Some Martingales in the context of Markov process

The purpose of this section is to introduce a class of martingales in
the context of Markov processes. Consider a bounded function
F : R+ × E → R smooth in the first coordinate uniformly over the
second: for each x ∈ E, F (·, x) is twice continuously differentiable and
there exists a finite constant C such that

sup
(s,x)

∣∣(∂1sF )(s, x)
∣∣ ≤ C, sup

(s,x)

∣∣(∂2sF )(s, x)
∣∣ ≤ C. (8)

In this formula, (∂1sF )(s, x) stands for the first time derivative of
F (·, x) and (∂2sF )(s, x) stands for the second time derivative of F (·, x).
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To each function F satisfying assumption (8), define MF (t) and
NF (t) by

MF (t) = F (t,Xt)− F (0, X0)−
∫ t

0

(∂s + L)F (s,Xs)ds,

NF (t) =
(
MF (t)

)2 − ∫ t

0

{
(
LF (s,Xs)

)2 − 2F (s,Xs)LF (s,Xs)
}
ds.

Lemma

Denote by {Ft, t ≥ 0} the filtration induced by the Markov process:
Ft = σ(Xs, s ≤ t). Then the processes MF (t) and NF (t) are
Ft-martingales.
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Proof
We start showing that MF (t) is a martingale. Fix 0 ≤ s < t. We need
to check that

Ex

[
MF (t)|Fs

]
= MF (s).

In other words,

Ex

[
F (t,Xt)− F (0, X0)−

∫ t

0

(∂r + L)F (r,Xr)dr|Fs
]

= F (s,Xs)− F (0, X0)−
∫ s

0

(∂r + L)F (r,Xr)dr

=⇒ Ex

[
F (t,Xt)|Fs

]
= F (s,Xs) +

∫ t

s

Ex

[
(∂r + L)F (r,Xr)|Fs

]
dr.

(9)
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For each r ≥ 0, denote by Fr : E → R (resp. F ′r : E → R ) the
function that at x takes the value F (r, x) (resp. ∂rF (r, x)). By the
Markov property and a change of variables in the integral, the
previous identity is reduced to

(Pt−sFt)(Xs) = Fs(Xs) +

∫ t−s

0

{(PrF ′s+r)(Xs) + PrLFs+r(Xs)} dr.

(10)
Since for t = s this identity is trivially satisfied, we just need to check
that the time derivative of both expressions are equals, i.e., that
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∂t(Pt−sFt)(x) = (Pt−sF
′
t )(x) + (Pt−sLFt)(x) (11)

for every x ∈ E and 0 ≤ s < t.

To prove this identity we compute the left hand side. Fix h > 0 and
rewrite the difference

(Pt−s+hFt+h)(x)− (Pt−sFt)(x)

t

as

h−1Ex

[
Ft+h(Xt−s+h)−Ft(Xt−s+h)

]
+h−1Ex

[
Ft(Xt−s+h)−Ft(Xt−s)

]
.

(12)
The first expression is equal to

1

h

∫ t+h

t

dr Ex

[
F ′r(Xt−s+h)− F ′t (Xt−s+h)

]
+ Ex

[
F ′t (Xt−s+h)− F ′t (Xt−s)

]
+Ex

[
F ′t (Xt−s)

]
.
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Since by assumption, (∂rF )(·, x) is Lipschitz continuous uniformly on
x, the first term vanishes as h→ 0. The second term also vanishes as
h→ 0 because the semigroup Pt is continuous. Therefore, as h→ 0,
the first term in (12) converges to (Pt−sF

′
t )(x). The second expression

in (12) is equal to

1

h

∫ t−s+h

t−s
dr Ex

[
LFt(Xr)

]
that converges, as h→ 0, to (Pt−sLFt)(x). This proves that MF (t) is
a martingale.
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We show now that NF (t) is a martingale. A simple computation and
the first part of the lemma show that MF (t)2 is equal to

F 2(t,Xt)−2F (t,Xt)

∫ t

0

ds (∂s+L)F (s,Xs)+

(∫ t

0

ds (∂s + L)F (s,Xs)

)2

(13)

plus a martingale term. Since F 2(t,Xt)−
∫ t

0

ds (∂s +L)F 2(s,Xs) is a

martingale, F 2(t,Xt) is equal to a martingale added to∫ t

0

ds (∂s + L)F 2(s,Xs). (14)

The second expression in (13) can be rewritten as

− 2MF (t)

∫ t

0

ds (∂s + L)F (s,Xs)− 2F (0, X0)

∫ t

0

ds (∂s + L)F (s,Xs)

−
(∫ t

0

ds (∂s + L)F (s,Xs)

)2

.

(15)
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By Ito’s formula, the first term in this expression is equal to a
martingale added to

− 2

∫ t

0

dsF (s,Xs)(∂s + L)F (s,Xs)

+ 2

∫ t

0

ds

(∫ s

0

dr (∂r + L)F (r,Xr)

)
(∂s + L)F (s,Xs).

An integration by parts shows that the second term of this formula
cancels with the third term of (15). The remaining expression added
to (14) is just the integral term we need to subtract in order to turn
(MF (t))2 in a martingale. This conclude the proof of the lemma.
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Estimates on the variance of additive functionals of Markov
processes

Consider a Markov Process with generator L satisfying the
assumptions of section 3 and having an invariant measure denoted by
π. Let S be the symmetric part of the generator L: S = 2−1(L+ L?).
For a function f ∈ L2(π), denote by ||f ||1 its H1 norm defined by

||f ||21 = 〈f, (−S)f〉π

and notice that ||f ||21 = −〈f, Lf〉π. Recall from section 4 that we
denote by ps(x, y) the transition probability associated to the
symmetric part of the generator. With this notation,

||f ||21 =
1

2

∑
x,y∈E

π(x)λ(x)p(x, y){f(y)− f(x)}2.

In particular, by Schwarz inequality, the H1 norm ||f ||21 of any
function f in L2(π) is bounded above by 2||λ||∞||f ||20, provided ||f0||
stands for the L2(π) norm of f .
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Let H1 be the Hilbert space generated by L2(π) and the inner
product 〈f, g〉1 = 〈f, (−S)g〉π : H1 = L2(π)|N , if N stands for the
kernel of the inner product 〈f, g〉1 (In the context of this chapter, N
is the space generated by constant functions because we assumed the
skeleton discrete time Markov chain to be indecomposable). Since
||f ||21 ≤ 2||λ||∞||f ||20, L2(π) ⊂ H1.

Denote by || · ||−1 the dual norm of H1 with respect to L2(π): for
f ∈ L2(π), let

||f ||2−1 = sup
g∈L2(π)

{2〈f, g〉π − ||g||21}. (16)

We claim that ||f ||2−1 ≥ (2||λ||∞)−1||f ||20 for each function f ∈ L2(π).
Indeed, since ||g||21 ≤ 2||λ||∞||g||20, the supremum on the right side of
(16) is bounded below by

sup
g∈L2(π)

{2〈f, g〉π − |2||λ||∞||g||20}.

By Schwarz inequality, this supremum is equal to (2||λ||∞)−1||f ||20.
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Denote by H−1 the subset of L2(π) of all functions with finite || · ||−1
norm. It follows from the definition of the H−1 norm that

2〈f, g〉π ≤
1

A
||f ||2−1 +A||g||21 (17)

for every f ∈ H−1, g ∈ L2(π), A > 0. Since L2(π) is dense in H1, this
inequality may be extended to functions gH1. Moreover, we clain that
SL2(π) = {Sf, f ∈ L2(π)} is contained in H−1 and

||Sf ||2−1 = ||f ||21,∀f ∈ L2(π).

Indeed, fix f ∈ L2(π). A simple computation shows that

2〈g, Sf〉π ≤ 〈g, (−S)g〉π + 〈f, (−S)f〉π = ||g||21 + ||f ||21

for every g ∈ L2(π). In particular, ||Sf ||−1 ≤ ||f ||1. Taking g = −f in
the supremum that defines ||f ||21 we deduce the reverse inequality.
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We are now ready to state the main result of this section.

Proposition
For each function g ∈ H−1 and t > 0,

Eπ

[( 1√
t

∫ t

0

g(Xs)ds
)2]
≤ 20||g||2−1.
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Proof
Since L is a generator, for every γ > 0, (γ − L)−1 is a bounded
operator in L2(π). In particular, since H−1 ⊂ L2(π), there exists fγ in
L2(π) such that

γfγ − Lfγ = g.

Taking on both sides of this equation the inner product with respect
to fγ and applying Schwartz inequality (17), we obtain that

γ〈fγ , fγ〉π ≤ ||g||2−1 and ||fγ ||21 ≤ ||g||2−1. (18)

For γ > 0 consider the process Mγ(t) defined by

Mγ(t) = fγ(Xt)− fγ(X0)−
∫ t

0

Lfγ(Xs) ds.
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By Lemma 5.1, Mγ(t) is a martingale if fγ is bounded.
Approximating fγ , that belongs to L2(π), by bounded functions we
deduce that Mγ(t) is a martingale in L2(π). With this notation we
may rewrite the expectation appearing in the statement of the lemma
as

1

t
Eπ

[(
Mγ(t)− fγ(Xt) + fγ(X0) +

∫ t

0

γfγ(Xs) ds
)2]

.

Since π is an invariant measure for the Markov process, by Schwartz
inequality, this expression is bounded above by

4

t

{
[2 + (γt)2]〈fγ , fγ〉π + Eπ

(
Mγ(t)2

)}
.

By Lemma 5.1 the quadratic variation of the martingale Mγ(t) is
equal to the time integral of

Lfγ(Xs)
2 − 2fγ(Xs)Lfγ(Xs).
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In particular, since the probability measure π is invariant, the
expectation of Mγ(t)2 is equal to 2t||fγ ||21 because −〈f, Lf〉π = ||f ||21
for every f ∈ L2(π). Therefore, the expectation appearing on the
statement of the lemma is less than or equal to

4

t

{
[2 + (γt)2]〈fγ , fγ〉π + 2t||fγ ||21

}
≤
{

4[2 + (γt)2](tγ)−1 + 8
}
||g||2−1

(19)

in virtue of (18). To conclude the proof of the proposition, it remains
to choose γ = t−1.
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The Feynman-Kac Formula



The Feynman-Kac Formula

Consider a bounded function V : R+ × E → R satisfying assumption
(8) and a bounded function F0 : E → R. Fix T > 0 and denote by
F : [0, T ]× E → R the solution of the differential equation{

(∂tu)(t, x) = (Lu)(t, x) + V (T − t, x)u(t, x),

u(0, x) = F0(x).
(20)

Proposition

The solution F has the following stochastic representation:

F (T, x) = Ex

[
e
∫ T
0
V (s,Xs)dsF0(XT )

]
.
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Proof
Consider the process {At, 0 ≤ t ≤ T} given by

At = F (T − t,Xt) exp

{∫ T

0

V (s,Xs)ds

}
.

By Lemma 5.1, At can be rewritten as{
MF

0 (t) +

∫ t

0

ds(∂s + L)F (T − s,Xs)

}
exp

{∫ t

0

V (s,Xs)ds

}
,

where MF
0 (t) is the martingale

F (T − t,Xt)−
∫ t

0

(∂s + L)F (T − s,Xs)ds.

Ito’s formula now gives that

At−
∫ t

0

ds e
∫ s
0
V (r,Xr) dr{F (T − s,Xs)V (s,Xs) + (∂s +L)F (T − s,Xs)}

is a martingale.
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Since F is the solution of (20), the integral term vanishes showing
that At is martingale. In particular,

Ex[AT ] = Ex[A0],

which proves the Proposition.

Remark
The proof of the previous Proposition shows that

e
∫ t
0V (r,Xr)drF (Xt)−

∫ t

0
ds e

∫ s
0 V (r,Xr)dr {(LF (Xs) + V (s,Xs)F (Xs)} (21)

is a martingale for each bounded function F : E → R.
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For t ≥ 0, denote by Lt : E × E → R the operator defined by

Lt(x, y) = L(x, y) + V (t, y)δx,y

where δx,y stands for the delta of Kronecker. Denote furthermore, for
0 ≤ s ≤ t, by PVs,t : E × E → R+ the operator given by

PVs,t(x, y) = E
[
e
∫ t
s
V (r,Xr)dr1{Xt = y}|Xs = x

]
. (22)

A simple computation, relying on Markov property, permits to rewrite
PVs,t(x, y) as

PVs,t(x, y) = Ex

[
e
∫ t−s
0

V (s+r,Xr)dr1{Xt−s = y}
]
.
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The collection {PVs,t : 0 ≤ s ≤ t} can be extended to act on bounded
functions:

(PVs,tf)(x) = Ex

[
e
∫ t−s
0

V (s+r,Xr) drf(Xt−s)
]
.

Property (21) applied to the bounded function F (z) = 1{z = y} and
a simple computation shows that {PVs,t, 0 ≤ s ≤ t} is a semigroup
associated to the operator Lt : PVs,tP

V
t,u for all 0 ≤ s ≤ t ≤ u and{

(∂tP
V
s,t)(x, y) = (PVs,tLt)(x, y),

PVs,s(x, y) = δx,y
(23)

for t ≥ s ≥ 0.
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The arguments presented in Section 3 permit to prove also the
Chapman-Kolmogorov equations:{

(∂sP
V
s,t)(x, y) = −(LsP

V
s,t)(x, y),

PVt,t(x, y) = δx,y
(24)

for 0 ≤ s ≤ t.

Assume now that L is a reversible generator with respect to an
invariant measure state ν. Since V is bounded, Lt = L+ V (t, ·) is also
a symmetric operator in L2(ν).

Denote by Γt the largest eigenvalue of L+ Vt :

Γt = sup
||f ||2=1

{
〈Vt, f2〉ν + 〈Lf, f〉ν

}
.
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By definition of the semigroup {PVs,t, 0 ≤ s ≤ t},

Eν

[
e
∫ t
0
V (r,Xr)dr

]
= 〈PV0,t1,1〉ν .

On the other hand, by the first Chapman-Kolmogorov equation, for
0 ≤ s ≤ t,

d

ds
〈PVs,t1, PVs,t1〉ν = −2〈LsPVs,t1, PVs,t1〉ν

because Ls is a symmetric operator. By definition of Γs, this
expression is bounded below by

−2Γs〈PVs,t1, PVs,t1〉ν .

Therefore, by Gronwall inequality and since PVt,t is the identity,

〈PV0,t1, PV0,t1〉ν ≤ exp

{∫ t

0

Γsds

}
.
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Since, by Schwarz inequality,

〈PV0,t1,1〉ν ≤ 〈PV0,t1, PV0,t1〉1/2ν ,

we have proved the following lemma:

Lemma
Assume that the Markov process is reversible with respect to an
invariant probability measure ν. Let V : R+ × E → R be a bounded
function. For each t ≥ 0, denote by Γt the largest eigenvalue of the
operator L+ V (t, ·). Then,

Eν

[
exp
{∫ t

0

V (r,Xr)dr
}]
≤ exp

{∫ t

0

Γsds
}
. (25)

Remark
In the case where ν is only an invariant measure, it is possible to
prove that (25) remains in force provided Γs is the largest eigenvalue
of S = 1

2 (L+ L?), the symmetric part of L ∈ L2(ν).
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The Feynman-Kac formula presented in Proposition 6 permits to
obtain an explicit formula for the Radon-Nikodyn derivative of a time
inhomogeneous Markov process with respect to another, generalizing
Proposition 2.6 to the inhomogeneous case.
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Fix a function F : R+ × E → R satisfying assumptions (5.1). Denote
by MF (t) the process defined by

MF (t) = exp {F (t,Xt)− F (0, X0)−
∫ t

0

ds e−F (s,Xs)(∂s + L)eF (s,Xs)}.

We claim that MF (t) is a mean 1 positive martingale. Indeed, fix x0
in E and define V,H : R+ × E → R by

V (t, x) = − exp{−F (t, x)}(∂s + L) exp{F (t, x)},
H(t, x) = exp{F (t, x)− F (0, x0)}.

(26)

It follows from the proof of Proposition 6 that

MF (t) = H(t,Xt) exp

{∫ t

0

V (s,Xs)ds

}
is a martingale. Since this martingale is equal to 1 Px0

almost surely
at time 0, it is a mean 1 positive martingale.
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Fix a time T > 0 and for each x0 in E, define on FT the probability
measure PFx0

by
EFx0

[G] = Ex0 [GMF (T )] (27)

for all bounded FT -measurable functions G. A simple computation
shows that the conditional expectation is

EFx0
[G |Fs] =

1

MF (s)
Ex0 [GMF (T )|Fs].
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For 0 ≤ s ≤ t ≤ T , define the functions QFs,t : E × E → R+ by

QFs,t(x, y) = PFx0
{Xt = y |Xs = x}.

Recall the definition of the function V introduced before and of the
semigroup {PVs,t, 0 ≤ s ≤ t} given by (22). It follows from the formula
for the conditional expectation that

QFs,t(x, y) = PVs,t(x, y) exp{F (t, y)− F (s, x)}.

We claim that {QFs,t, 0 ≤ s ≤ t ≤ T} is a semigroup of transition
probabilities. Indeed, it is clear that QFs,t(x, y) ≥ 0 for all x, y in E. It
follows from the explicit formula for the conditional expectation that∑
y∈E Q

F
s,t(x, y) = 1 for all 0 ≤ s ≤ t ≤ T and x ∈ E.
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Finally, by definition of QFs,t and because {PVs,t, 0 ≤ s ≤ t} is a
semigroup, ∑

z∈E
QFs,t(x, z)Q

F
t,u(z, y) = QFs,u(x, y)

for all s ≤ t ≤ u and all x, y in E. This proves that {QFs,t 0≤s≤t≤T } is
a semigroup of transitions probabilities. We now compute the
generator associated to this semigroup. Since
QFs,t(x, y) = PVs,t(x, y) exp {F (t, y)− F (s, x)}, by the second
Chapman-Kolmogorov equations (7.4),

∂tQ
F
s,t(x, y) = ∂t

{
PVs,t(x, y) exp {F (t, y)− F (s, x)}

}
= e{F (t,y)−F (s,x)} {(PVs,tLt)(x, y) + PVs,t(x, y)(∂tF (t, y))

}
.
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The explicit formula for Lt and some elementary computations lead
to the formula

∂tQ
F
s,t(x, y) = (QFs,tL

F
t )(x, y),

where

(LFt )(x, y) = L(x, y)e{F (t,y)−F (t,x)} − δx,ye{F (t,y)}Le{F (t,y)}.

In particular, for any bounded function H : E → R,

(LFt H)(x) =
∑
y∈E

λ(x)p(x, y) exp{F (t, y)− F (t, x)}[H(y)−H(x)].

(28)

We summarize in the next proposition the result we just proved.
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Proposition
Fix a function F : R+ × E → R satisfying assumptions (8). Fix a
time T > 0 and for each x0 ∈ E, define on FT the probability measure
PFx0

given by (27). Then, under PFx0
, Xt is a time inhomogeneous

Markov process with generator {LFt , 0 ≤ t ≤ T} given by (28) and
starting from x0.
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Obrigada!
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