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Motivation Applications  Upper Bounds

Weak Law of Large Numbers

Let X7, Xy, ... bei.i.d r.v with mean u < co and let
Sn=X1+ -+ X, then for every € > 0

as n — Q.

How quickly does this convergence to zero occur?
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Motivation Applications Upper Bounds

We can try to use Chebyshev inequality which states

(o) < v
n ne

This suggest a “decay rate” of order % if we treat Var (X;) and €
as a constant.

The goal of the /arge deviation theory is to show that in many
interesting cases the decay rate is in fact exponential: ¢"(®). The
exponent y(a) < 0 and -y(a) is called the large deviations rate
function, and in many cases it can be computed explicitly or
numerically.
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Chernoff Bound

Let X7, X5, ... bei.idandlet S, = X1 +---+ X,,. Fix a value
a > p, where p = E[X]. We consider now probability that the
average of X1,..., X, exceeds a.

Chernoff Upper Bound

Fix a positive parameter § > 0. We have

P (S > ) < B

n eGna
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Chernoff Bound

Thus we obtain an upper bound:
(Bt ) ()
n eda

e The bound is useful only if the ratio E[e?X1]/e% is less than
unity.

o E[e?X1] = M(f) is moment generating function of X

e We need E[e?X1] to be at least finite.

e If we could show that this ratio is less than unity, we would be
done - exponentially fast decay of the probability would be
established.
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Chernoff Bound

Similarly, suppose we want to estimate
S
n
for some a < p. Fixing now a negative 6 < 0, we obtain

(% <o) < (MO

Now we need to find a negative 6 such that M () < €. In
particular, we need to focus on 6 for which the moment generating
function is finite.
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Rate Function Existence Optimizing Upper Bound Examples Theorems

We've seen previously that the Chernoff Upper Bound suggests an
exponential "decay rate” of P(S,, > na)

Rate function

Let X1, X5, ... bei.idandlet S, = X1+ ---+ X,,. We want to
conclude that if the moment-generating function M (6) < oo for
some 0 > 0, P(S,, > na) — 0 exponentially rapidly and we will
identify:

1
v(a) = lim —logP(S,, > na)

n—oo n

Our first step is to prove that the limit exists. -y(a) is also known
as the rate function.
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We will use an observation that will be useful several times below:
Let m, = P(S,, > na). Then

Tmtn = TmTn (*)

Letting v, = log m, we have that vi4n > Ym + Tn

Lemma 1

| \

If Ym4n 2 Ym + Yn then as n — oo, ’Yn/n — Sup ’Vm/m' (*)
m
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e Lemma 1 implies that:

1
lim —logP(S, > na) = lim 1o v(a) exists and it's < 0.
n—oo N n—oo M

e It follows that:
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Hypothesis H1
M (0) = Elexp(6X;)] < oo for some § > 0

Chernoff Upper Bound

o Let 0L =sup{f: (0) < oo}, O_ =inf{6 : (#) < co} and note
that M (6) < co for 0 € (6, 6;) .

e (H1) implies that p = E[X] € (—o0, 00).

We've seen previously that:

M(9)
ebfa

B = na) < ( ) — exp(—n{af — 5(6)})

letting x(0) = log M(0)
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The previous inequality is useful when:

(M(9)>” <1oaf—r0) >0

efa

If a > p and 6 > 0 is small then af — k(0) > 0. (¥)
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Optimizing Upper Bound

Having found an upper bound on P(S,, > na) , it is natural to
optimize it by finding the maximum of fa — k(6) :

%{Ga —log M ()} =a— M'(0)/M(6)

so (assuming things are nice) the maximum occurs when
a=M'(6)/M(6) .

To be more precise, let's define the distribution function:

Foe) =~ [ Mar(

whenever M (0) < oco.

Carlos Martins — Rafael Cabral Large Deviations



Rate Function

Existence Optimizing Upper Bound Examples Theorems

We've seen in the proof of Lemma 2 that for § € (0, 6):

M'(0) = /xeomdF(a:)

Mean of Fy

Soif @ € (6, 01) , Fp is a distribution function with mean

/xng(m) = ]\]\/5((99)) (%)

Repeating the proof in Lemma 2, it is easy to see that if
0 € (0, 04) then

M"(0) = /OO 2297 dF (z)

v
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So we have
S5 - - ) = - ()

since the last expression is the variance of Fy.

Hypothesis H2
The distribution F' is not a point mass at u (= Var(X;) # 0)

We know that:

e M'(0)/M(0) is strictly increasing and af — log M (6) is concave.
(*)

o M(0)/M(0) = pu (¥)

This shows that for each @ > p there is at most one 6, > 0 that
solves a = M'(6,)/M(6,) , and this value of 6§ maximizes

af — log M(0) .
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Before discussing the existance of 6, we will consider the foIIowing:J

Example
M(0) and M'(6)/M(6) for:
©@ Normal Distribution
M(9) = exp(92/2) e M'(0)/M(6) =6
@ Exponential distribution with parameter A > 0
M(6) =A/(A—0) e M'(0)/M(6) =1/(A—0)
© Coin flips
M@O) = (e +e%)/2e
M'(0)/M(0) = (e’ —e %)/ (e’ +e7?)
© Perverted Exponential
M'(0)/M(6) < 2
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Observation 1

e Recall 64 = sup{f: p(f) < oo}

e In Example 1 (Normal Distribution) 6, = oo and
M'(0)/M(6) T oo as 0 1 65+

e In Example 2 (Exponential distribution) 4 = X and
M'(0)/M(6) T oo as 0 1 6+

So we can find 6 that solves a = M'(6)/M(0) for any a > p.

Observation 2

In Example 3 (Coin Flips) M'(0)/M(6) 1 1 as § — oo, but in this
case F' and hence Fy only have support on {—1,1}.
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Observation 3

Example 4 (Perverted Exponential) presents a problem since we
cannot solve a = M'(0)/M(6) when a > 2.

Theorem 2 will cover this problem case, but first we will treat the
cases in which we can solve the equation:

Exercise 2
Let z, = sup{x : F'(x) < 1}. Show that if z, < co then:

e M(6) < oo for all 6 >0 (*)
o M'(6)/M(0) — 0 as 61 0o, (¥)

| A
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Theorem 1

Suppose in addition to (H1) and (H2) that there is a 6, € (0, 0)
so that a = M'(0,)/M(6,) . Then, as n — oo,

n~logP(S, > na) — —ab, +log M(0,)(*)

In the proof of this theorem we will use the following lemma:
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Reminder

To get a feel for what the answers look like, we consider our
examples. Important information:

e k(0) =log M(0) e k'(0) = M'(0)/M(0) e 0, solves k' (0,) = a
o y(a) = limp oo (1/n) logP(Sy > na) = —aby, + K(6,)

| \

Example

v(a) for:
@ Normal Distribution
7(a) = —a/2
@ Exponential distribution with parameter A > 6
v(a) —a+1+loga
© Coin flips
v(a) = —{(1+a)log(l1+a)+ (1 —a)log(l —a)}/2 )
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Turning now to the problematic values for which we cannot solve
a= M (0,)/M(0,):

e We begin by observing that if x, = sup{z : F(z) <1} and F'is
not a point mass at x, then:

M'(6)/M(0) 1 zo as 6 1 oo but M'(0)/M(0) < x¢ for all § < .

Exercise 3

e However, the result for a = z, is trivial:

1
—log P(Sy, > nx,) = log P(X; = x,) for all n (*)
n
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Show that as a 1 z,, Y(a) | logP(X; = z,). (¥)

When z, = co, M'(8)/M(6) T oo as 6 1 oo, so the only case that
remains is covered by

Theorem 2

| \

Suppose x, = 0o, O+ < 0o, and ¢'(0)/¢(0) increases to a finite
limit ag as 0 1 04 If apg < a < ©

n"'logP(S, > na) — —afy +log M(61) ()

i. e, y(a) is linear for a > ay.
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